8/22/10

Text Manipulation

Why teach it?

* Expand horizon about what are data
* Text data are plentiful
* These sources can be more compelling for

students; in some sense they are closer to home,
are more recognizable than certain scientific data
sources.

— Google search results

— State of Union speeches

— Spam and ham email

— Abstracts database

Why we teach it

From early problems in authorship attribution to more
recent work in large-scale text mining, there’s plenty of
interesting problems and data sources to analyze
Artifacts from computer-mediated communication
(web logs, bulletin boards, chat transcripts, email) all
provide complex and socially interesting data for
students to work with

Data often don’t come in the format that we would like
them and text manipulation is required to get them in
shape

Language for searching files with patterns

Spam filtering

Header from three email messages.

Date: Tue, 02 Jan 2007 12:17:45 -0800
From: Duncan Temple Lang <duncan@wald.ucdavis.edu> HAM:
To: Deborah Nolan <nolan@stat.Berkeley.EDU> :

Subject: Re: 90 days ——

Date: Sat, 27 Jan 2007 16:28:48 +0800

From: remade SSE <glzmeqrxr99@embarghsd.net>

To: depchairs03-04@uclink.berkeley.edu SPAM: Yelling in
Subject: [SPAM:XXXXXXXXX] 4" the subject line

Subject line has “Re:”

Date: Thu, 03 Apr 2008 09:24:53 +0700

From: Faustino Britt <Faustino@sfera.umk.pl>
To: Brice Frederick <nolan@stat.Berkeley.EDU>
Subject: Fancy repllc@ted watches

SPAM: There is an !
instead of i and @ not a

8/22/10

Web logs

/ Date always in []
169.237.46.168 - - [26/Jan/2004:10:47:58 -0800]

"GET /stat141/Winter04 HTTP/1.1" 301 328
"http://anson.ucdavis.edu/courses/"
"Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0; .NET CLR 1.1.4322)"

169.237.46.168 - - [26/Jan/2004:10:47:58 -0800]
"GET /stat141/Winter04/ HTTP/1.1" 200 2585
"http://anson.ucdavis.edu/courses/"
"Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0; .NET CLR 1.1.4322)"

Information is not
consistently
separated by, e.g.
comma

Text Mining
State of the Union Addresses

*k ok Speeches all in one file
separated by ***
State of the Union Address uiEelies
George Washington State_: of the union address
President
December 8, 1790 Date

Fellow-Citizens of the Senate and House of Representatives:

In meeting you again | feel much satisfaction in being able to
repeat my congratulations on the favorable prospects which
continue to distinguish our public affairs. The abundant fruits
of another year have blessed our country with plenty and
with the means of a flourishing commerce. ...

"De Witt County","16,798","97.8","0.5"
"Lac qui Parle County","8,067","98.8"
"Lewis and Clark County","55,716","95.2","0.2", ...

Merging data to place on a map

"De Witt County",IL,40169623,-88904690

"Lac qui Parle County",MN,45000955,-96175301 County Centers
"Lewis and Clark County",MT,47113693,-112377040

"St John the Baptist Parish",LA,30118238,-90501892

"St. John the Baptist Parish","43,044","52.6","44.8", .. Census

0.2" .. Noted the “St.

Election results
Note “County”

DeWitt 23 23 4,920 2,836 0
Lac Qui Parle 31 31 2,093 2,390 36

Lewis & Clark 54 54 16,432 12,655 386 and “Parish”
St. John the Baptist 35 35 9,039 10,305 74 missing in county
name

String Manipulation

* substr(x, start, stop) - Extract or replace
substrings in a character vector

* nchar(x) —x is a character vector; returns a vector

of the number of characters in each element of x
e strsplit(x, split) - Split the elements of x into
substrings at the split values
* paste(..., sep=""
character vectors

* tolower(x) and toupper(x) — translate character to

lower case / to upper case

, collapse = NULL) - Concatenate

8/22/10

Web Caching

1.000000 http://a.hatena.ne.jp/yamagen2001/ 72 1,42,55,57,68,69

Viewed 72 times
Changed at visits 1, 42, 55

1.000000 http://aces.boom.ru/all4/grebenyv.htm 59 Never Changed

over 59 visits

1.000000 http://africa.oneworld.net/article/rssheadlines/512 72
1,4,6,8,15,20,23,25,39,40,53,66,71,72

Changed 14 times
over the course of
the 72 visits

Structure

Tab-delimited

First piece can be thrown away
* Keep:

— URL

— Number of visits

— Times of change

How to handle the variable number of times of
change?

Ideas

* Split the string on tab character

— Will have 3 or 4 pieces

— Pick up the second as URL

— Pick up the third as number of times visited
* Split the 4t piece on commas

— Will have a variable number of times of change
* Pullit all into a data frame

txt = readLines(filename)
els = strsplit(txt,\\t)

urls = sapply(els, [, 2)
numlntervals = as.integer(sapply(els, [’, 3))

intervals = lapply(els, function(x)
if(length(x) == 3)
integer(0)
else
as.integer(strsplit(x[4], ",")[[1]]))

n = sapply(intervals, length)

refreshEvents = data.frame(url = rep(urls, n),
numintervals = rep(numintervals, n),
intervals = unlist(intervals))

8/22/10

Merging data to place on a map

"De Witt County",IL,40169623,-88904690

"Lac qui Parle County",MN,45000955,-96175301
"Lewis and Clark County",MT,47113693,-112377040
"St John the Baptist Parish",LA,30118238,-90501892

County Centers

"St. John the Baptist Parish","43,044","52.6","44.8", .. Census

"De Witt County","16,798","97.8","0.5" ugy n
"Lac qui Parle County","8,067","98.8","0. Noted the “St.
"Lewis and Clark County","55,716","95.2"

Election results

DeWitt 23 23 4,920 2,836 0
Note “County”

Lac Qui Parle 31 31 2,093 2,390 36

Lewis & Clark 54 54 16,432 12,655 386 and “Parish”
St. John the Baptist 35 35 9,039 10,305 74 missing in county
name

Find/eliminate the word “County”

Try to do this by using only these string
manipulation functions:

strsplit(), nchar(), substr(), paste()

... groups come up with pseudo-code/code
> ctyNames

[1] "De Witt County" "Lac qui Parle County"

[3] "Lewis and Clark County" "St John the
Baptist Parish”

Example — Find the word “County”

Use nchar() to find the length of the string and then
substr() to drop the last 6 characters (or 77?)

substr(ctyNames, 1, nchar(ctyNames)-7)
[1] "De Witt" "Lac qui Parle” "Lewis and Clark"
[4] "St John the Baptist”

That was lucky — both Parish and County have 6
letters...

n

Example — Find the word “County

strsplit() on blank character, examine the last
element, drop it, and paste() back together

> words = strsplit(countynames, split="")

> sapply(words, function(x) {paste(x[-length(x)],
collapse="")})

[1] "De Witt" "Lac qui Parle"

[3] "Lewis and Clark" "St John the Baptist"

8/22/10

Example — Find the word “County”

strsplit() on "" and search through for "C" followed by "o"

followed by "u" ...

> |etters = unlist(strsplit(string, ""))

> el = substring(pattern, 1, 1)

> possibles = which(letters == el)

> possibles

[119

> pattern == substring(string, possibles, possibles +
nchar(pattern) - 1)

[1] TRUE

Regular Expressions

* Domain specific language - What do you need?

¢ Atoms or units (e.g. a character)

* Compose into patterns — a sequence of
characters — match literals

* Express other types of structure — non-literal
characters, meta-characters
— e.g. beginning of a line or word,
— Short-hand for a concept — equivalence class of

characters

* Other shorthand — 0-9 is easier to read and less

likely to make a mistake than 0123456789

Regular Expressions

> regexpr("County", ctyNames)

[1] 91517 -1 Match the

attr(,"match.length") !fée’a':tf”g

(1] 666-1 ch(a)ganct\:er by

> grep("County", ctyNames) character

[1]1123

> gsub("County", "", ctyNames)

[1] "De Witt " "Lac qui Parle "

[3] "Lewis and Clark " "St John the Baptist
Parish"

The functions
grep(), regexpr(), gsub()
can be used with fixed = TRUE to apply to
literal pattern matching rather than treating
the contents of the pattern as from the regular
expression language.

8/22/10

Regular Expression matching

Pattern : "St" - note that there are 3 characters

String: "The Slippery St Francis"

Foundan S
Next character is nota t.
Start search over.
IsitanS?
No. Continue on to next
character.

I

Foundan S

Foundat

Found a blank

Move along string left to right, one
character at a time.

Look for a match to the first literal in
the pattern.

If find a match at position K in the
string, check that the second literal
in the pattern is in position K+1, and
soon.

If get a non match, return to position
K+1 and start the matching process
over.

We have a match!

Meta Characters

We need a way to express

* white space

* word boundaries

* sets or classes of literals

* the beginning and end of a line
* alternatives ("war” or “peace”)

Types of Meta Characters

e Start or end of line —e.g. find , "***" at the

beginning of the string

 Start or end of word — e.g. match, "St" in, "St.
John" and not, "St"in, "Street"

* Equivalent characters — e.g. match either cor Cin

* Multiplicities, e.g. any number of punctuation
marks in repl!c@ted

* Sub-expressions and alternatives — e.g. match,
"GET" or, "POST"

Anchors

A anchor the search to the beginning of the string
S anchor the search to the end of the string
\b start end of word

"CountyS" — pattern that matches a string with
County at the end of the string.

"\bCounty" — pattern that matches a word that
starts with County

8/22/10

Equivalence Classes

* [and] to express character classes (or
equivalence classes) , e.g. Mc[cClain

* [~xyz] any characters but x, y, and z

* Named equivalence classes, e.g.

[:alpha:] — any alphabetic character

[:digit:] — any single digit

[:space:] — white space (e.g. blank, tab, return)
[:punct:] — any punctuation symbol

Equivalence Classes

subjects

[1] "Subject: Re: 90 days"

[2] "Subject: [SPAM:XXXXXXX]"

[3] "Subject: Fancy repl!c@ted watches"

grep("[[:alpha:]1[!,;:.?][[:alpha:]]", subjects)

[112

grep("[[:alpha:]][[:punct:]][[:alpha:]]", subjects)
[1]23

grep("[[:alpha:]][!,;:.?[:digit:]][[:alpha:]]", subjects)
[1]2

grep("[[:alpha:]][!,;:.?[:digit:]]+[[:alpha:]]", subjects)
[1]23

Sub-patterns and alternatives

* (and) delimits a sub-pattern

* | defines alternatives

gsub(" County| Parish", "", countynames)
Why the blank before County and Parish?

gsub(" (County)|(Parish)", "", countynames)
Is this call to gsub the same as the previous?

Multiplicities

Preceding character or sub-pattern appears:

* 0 or more times

+ 1 or more times

? Oorltime

{n} exactly n times

{m,n} between m and n times, inclusive

8/22/10

Escaping Meta Characters

"." The literal may be anything

If you want to search for a literal that is a meta
character, then precede it with a\

In R, \ is a control character so any \ must be
preceded by a \ in order to denote a
backslash.

How would you search for a square bracket in a
string? What about a backslash?

Greedy matches

Be careful with "." and "*"

For example, .* would match any literal any
number of times, and so the entire string
would be a match

Question: what does "<.*>" match in the
following string:

"<p> This is a short paragraph.</p>"

Variables

It is possible to reference a matched pattern.
>web

[1] "169.237.46.168 - - [26/Jan/2004:10:47:58 -0800]
\"GET /stat141/Winter04 HTTP/1.1\" 301 308"

gsub(’(.*) - - \\[(-*) [-+][0-91{4\] "(GET| POST).*,
"WL,\\2, \\3', web)
[1] "169.237.46.168, 26/Jan/2004:10:47:58, GET"

Each parenthetical pattern is treated as a variable.
The first is \\1, the second is \\2. What is gsub() doing?

Text Mining
Sample - State of the Union Addresses

% %k

State of the Union Address
George Washington
December 8, 1790

Fellow-Citizens of the Senate and House of Representatives:

In meeting you again | feel much satisfaction in being able to
repeat my congratulations on the favorable prospects which
continue to distinguish our public affairs. The abundant fruits
of another year have blessed our country with plenty and with
the means of a flourishing commerce.

8/22/10

State of the Union Address

The goal of this homework is for you to analyze
the “State of the Union” speeches from 1776
to 2008. To do this you will need to prepare
the data in a form that is suitable for statistical
analysis. In particular, you will be examining
the words that each president used in his
address and their frequency of use. With this
information, you can compare the presidents
and see how they differ across time and party.

* Preparation: Use R to chop the document up
into a list called speeches, where each speech
is a character vector, one element for each
sentence

* Explore: Use summary statistics and plots to
compare the speeches. Does any president
stand out? Do presidents from the same era
give similar speeches?

* Word Vectors: There are over 12,000 unique
(stemmed) words in all speeches. Create a
word vector for each speech. Also compute
the document frequency for each word.

* Distances between speeches: Use the Shannon-
Jensen metric to compute the distance between
the word vectors

Analysis: Analyze the speeches according to their
word frequencies. Try using multi-dimensional
scaling and clustering. Produce a visualization of
the results.

Turn In: Write up one page on your findings in
the exploratory and final analysis, include 2
exploratory plots and 2 analysis plots. Include all
code in a plain text file. Your write up should
contain six interesting observations about the
presidents’ speeches. Use historical background
to help corroborate your findings.

