Basic Data Input

- To get started, you can give students binary data already in the R format.
 - save() one or more R objects to a file (with .rda extension)
 - Put it on a Web site.
- Students use load() to read the data into an R session directly
 - load(url("http://eeyore.ucdavis.edu/ESR2010/bayAreaHousing.rda"))
- Note the use or url() it is an example of a "connection", a stream of bytes that come from "somewhere", in this case a URL, but could be a file, another program outputting data, a character string.

Reading ASCII data

- Have to know how to read standard rectangular data
 - tab separated, comma-separated, etc.
- R has functions for this, i.e.
 - read. table(), read.csv(), etc.
 - read.fwf() for fixed width format.
- For efficiency reasons, very beneficial to use colClasses parameter to specify target type.
- But there are lots of issues.

Strings or factors

- · Common "gotcha"
- For better or worse, by default, R turns strings in rectangular data read from an ASCII file into factor objects.
- Use stringsAsFactors = FALSE

Problems in reading

- Quote characters
- · Missing values
- · Character Encoding
- Comment characters

Interactive code

 read.table("~/problemData2", quote = "", comment.char = "", fill = TRUE)

Accessing files - Paths

- Students need to know about working directories (getwd() & setwd())
- This is where the R session is "rooted"
 - all relative file names are relative to this directory.
- Students need to recognize that their code will not work if they move files, change directories, etc.
 - i.e. their code is not runnable and so we cannot help fix things.
- Using URLs makes things universally locatable.

Binary data

- R can read binary data.
- But one has to read the bytes and interpret them based on the actual known format of the data, e.g.
 - read 2 integers
 - then followed by n real numbers where n is the value of the second of the first two integers read, ...
- Students should not necessarily deal with this, but be aware of the existence of different binary formats & why they are used (compact representation)

Non-standard data input

- 3 problems:
 - Sample observations from a huge ASCII file w/o reading the whole file
 - Multiple data frames in a single CSV file.

- ragged data # timestamp=2006-02-11 08:31:58

usec=250 # minReadings=110 t=1139643118358;id=00:02:2D:21:0F: 33;pos=0.00.00.0;degree=0.0;00:14:bf:b1:97:8a=-38,2437000000,3;00:14:bf:b1:97:90=-56,2427000000,3;00:0f:a3:39:e1:c0=-53,2462000000,3;00:14:bf:b1: 97:8d=-65,2442000000,3;