8/22/10

Basic Data Input

* To get started, you can give students binary data
already in the R format.
— save() one or more R objects to a file (with .rda
extension)
— Put it on a Web site.

* Students use load() to read the data into an R
session directly
— load(url(“http://eeyore.ucdavis.edu/ESR2010/bayAreaHousing.rda”))

* Note the use or url() — it is an example of a “connection”, a stream

of bytes that come from “somewhere”, in this case a URL, but could
be a file, another program outputting data, a character string.

Reading ASCII data

Have to know how to read standard
rectangular data

— tab separated, comma-separated, etc.

R has functions for this, i.e.

—read. table(), read.csv(), etc.

— read.fwf() for fixed width format.

For efficiency reasons, very beneficial to use
colClasses parameter to specify target type.
But there are lots of issues.

Strings or factors

* Common “gotcha”

* For better or worse, by default, R turns strings
in rectangular data read from an ASCII file into
factor objects.

* Use stringsAsFactors = FALSE

8/22/10

Problems in reading

Quote characters

Interactive code

* read.table("~/problemData2",

* Missing values quote ="",
* Character Encoding comment.char =™,
fill = TRUE)
* Comment characters
Accessing files - Paths Binary data

Students need to know about working directories
(getwd() & setwd())
This is where the R session is “rooted”

— all relative file names are relative to this directory.
Students need to recognize that their code will
not work if they move files, change directories,
etc.

— i.e. their code is not runnable and so we cannot help

fix things.

Using URLs makes things universally locatable.

* R can read binary data.

* But one has to read the bytes and interpret them
based on the actual known format of the data,

e.g.

— read 2 integers

— then followed by n real numbers where n is the value
of the second of the first two integers read, ...
» Students should not necessarily deal with this,
but be aware of the existence of different binary
formats & why they are used (compact

representation)

Non-standard data input

* 3 problems:

— Sample observations from a huge ASCII file w/o
reading the whole file

— Multiple data frames in a single CSV file.

— ragged data
timestamp=2006-02-11 08:31:58
usec=250

minReadings=110
t=1139643118358;d=00:02:2D:21:0F:
33;p05=0.0,0.0,0.0;degree=0.0;00:14:bf:b1:97:8a=-38,2437000000,3;00:14:bf:

b1:97:90=-56,2427000000,3;00:0f:a3:39:e1:c0=-53,2462000000,3;00:14:bf:b1:

97:8d=-65,2442000000,3;

8/22/10

