Object Oriented Programming

* Object-oriented programming concepts are in
many programming languages

* R has a different model than
C++/Java/Python/JavaScript
— But still two fundamental concepts in common

* polymorphism/generic functions
* inheritance

R’s OOP

* R has 2 OOP models

— S3 —older, simpler, more dynamic, less structured
version

— S4 — newer, more structured, more powerful

S3 is the basis for most of the modeling software
inR

— so important to know to understand how R works

— powerful enough to produce good, widely used
software.

— easy enough to explain in undergrad class.

S3 O0OP

* Every object has a type and also a class,
sometimes the same

* The type is the fundamental data structure

* The class is a character string or vector that is a
label giving a more abstract notion of what the
object represents, e.g. a linear model, a
generalized linear model, a description of a
package, a grid of moving cars

* The classes are R programmer-made labels, not
necessarily built into the core R language

Linear & Generalized Linear Models

* As an example, let’s look at linear models
— glm.mtcars = gim(mpg ~ ., data = mtcars)
* class(glm.mtcars)
— This gives c(“glm”, “Im”) which indicates that it is
an object of class glm first, but also “Im”
e Let’s fit just a linear model
— Im.mtcars = Im(mpg ~ wt + cyl, mtcars)
* This has class just “Im” (since it just a linear
model and not a generalized linear model)

Generic Functions

* One key purpose of OOP in R is to allow users
call a function such as plot() or summary() and
to have the function behave differently and
appropriately for the given argument(s)

* In other words, plot() or summary() is a
generic verb that has methods for different
types of inputs.

Generic dispatch

* How might we implement this?

— We could define the plot() function as a large
sequence of if() statements that said what to do
for each type of class, e.g.

* plot = function(x, v, ...) {
if(is(x, “glm”))
return(callPlotCodeForGLM(x, y, ...))
else if(is(x, “Im”))
return(callPlotCodeForLM(x, v, ...))
else if(is(x, “matrix”))
return(callPlotCodeForMatrix(x, y, ...))
else # and so on for all classes we know about.

* This clearly is tedious, error-prone and very limited
— it can only take into account the classes we currently know about
— not those that others introduce in the future
* To add support for a new class, | would have to define a new
version of plot and my code.

— I could copy the original one and add my own
if(is(x, “myClass”))

somewhere
— or just handle the myClass case and then call the original one, e.g.
using graphics::plot(x, y, ...), i.e. delegate back to the original one.

* The latter approach is best as if the graphics::plot() function is
changed, | will still get those changes, and not the version | copied.
* Also, do | add my if(is(x, “myClass”)) at the top or bottom of the
sequence of if() tests for class?
— the order matters!

Support for two or more new classes

* What if two packages want to add support for
two or more classes?
— They would both need to make a new plot()

function and add if(is(x, “class-name”)) ... to their
new version

— But only one would be called and that would
depend on the order the packages were loaded
and added to the search path

— This makes for very volatile, non-robust code!

A better way — S3 dispatch

R provides a much better approach than the sequence
of if() statements and making copies of functions.
We define a generic function such as plot() as follows:

plot = function(x, y, ...)

UseMethod(“plot”)

The body calls UseMethod() with the name of the
generic.
This means that when the generic plot() function is
actually called (not defined), it will look for the
appopriate method based on the type of x.
(It can use a different argument, e.g. y, but typically we
“dispatch” on the type of the first argument.)

Finding methods

So how does UseMethod() find the appropriate method for
a given class
We use a very simple convention:
— find a function named
<generic name>.<class name>
e.g. plot.glm or plot.Im or plot.function
Algorithmically, you can think of it this way:

— find(paste(“plot”, c(class(x), “default”), sep = “.”))

— i.e. paste the generic name to each of the elements in the class
vector, including the word “default” and find functions with
these names

* use the first of these, or if none exists, raise an error

* by adding default to the names of the classes, we can have a catch-all
case, which may or may not make sense for the particular generic.

Defining a method

So suppose we introduce a new class, say
“Normal” to represent a Normal distribution.

dist = c(mean =4,sd =5)

class(dist) = “Normal”

(or structure(c(mean =4, sd = 5), class =
“Normal”)))

So we haven’t formally defined a class “Normal”,
but just put a label on the object dist to identify it
as an object of class “Normal”

* To be able to allow users to draw the density of
the particular “Normal” object, we can define a
method for plot() as
— plot.Normal =

function(x, vy, ...) {
lims = x["mean"] + c(- 3* x["sd"], 3* x["sd"])
h = seq(lims[1], lims[2], length = 1000)
plot(h, dnorm(h, x["mean"], x["sd"]), type ="I", ...)

Now when we call

plot(dist)
the generic plot() function will look for
plot.Normal and use our new method.

We have not changed any code, just added a new
class and method.

So we haven’t broken code or needed to retest
the original.

And others can define new classes in exactly the
same, isolated manner, e.g. Exponential, Poisson,
Cauchy, or for totally different types of objects.

Inheritance

* The second important benefit of OOP is inheritance.
* Let’s look at our glm object again
— It has a class vector of c(“glm”, “Im”), i.e. two labels.
* plot(glm.mtcars) causes the generic to look for a
method named plot.gm
— there is none (check)
— so it uses plot.Im which does exist.
* QOur glm object inherits the methods for the “parent”
classes when there is not a method that is specific to
the glm class.

* Aglm object is an Im object, but we can override or
specialize certain methods.

Methods that use the inherited
methods

We might define a method for plot for a glm class that does
something different from an Im object.
— we can do this by defining a function plot.gIm()
In many cases, such a method might want to do some pre-
computations and then call the method inherited from the Im class.
To do this, we would write our method something like
plot.glm = function(x, v, ...) {
here we do some precomputations
cat(“in plot.glm\n”)
NextMethod(“plot”) # call the inherited method from Im.
}

Here we are passing control back to the next method that would
have been called by the generic if plot.glm had not been defined.

* We could have written the previous method as
plot.glm = function(x, vy, ...) {
cat(“in plot.glm\n”)
plot.m(x, y, ...)

* This will appear to do the same thing in most cases, but it is quite
different
— it says always call plot.Im
— but what if our glm object ‘x” had a class
c(“glm”, “OtherClass”, “Im”)

— NextMethod() would have called the plot.OtherClass() method, not
plot.Im()

— So better to use NextMethod() as it respects the actual class hierarchy
on the object at run-time rather than when the plot.glm function was
written.

S4 classes & methods

* (see the file S4.R)

Issues with S3

* S3is very powerful and convenient

* However,

— there is no formal structure to the class
definitions and | can label the value 3 as a glm
object

x=3
class(x) = “glm”

* So there are no checks on the contents of the objects
of a particular class, or consistency about the class
vector (e.g. missing the “Im” here as a parent class.)

* Without a formal structure, relying on programmers to
be consistent amongst each other and across time!!!!

Dispatching on more than one
argument

* Also, what happens if we want to write a method
for the case

xisaglm

y is @ numeric vector
and another case for

xisanIm

y is @ matrix
Since an S3 generic only looks at the class of a
single parameter, we have to go back to a
sequence of if() statements within each of the
methods — bad news!

sS4

The S4 class & method system addresses both

issues

— formal definitions of classes

— validation that the contents of an object of a class
are appropriate

— define methods for combinations of types of one
or more parameters.

S4 Example - Shapes

* Let’s define a set of classes representing shapes,
i.e. circles, squares, rectangles, triangles,
octagons, polygons, ...

* We'll start with a class representing the basic
concept of a shape, but ensure that users cannot
create an instance of this “abstract” class, but
only the “concrete” or real classes.

— The Shape class is a virtual class — no instances can be
created.

» setClass(“Shape”, representation(“VIRTUAL"))

Circle

We define a Circle class as a sub-class of Shape (via
contains = “Shape”) and specify that it has a single slot
named “radius”
We also want new instances of Circle to have a radius
of 1 unit, so we specify a prototype.
setClass(“Circle”,
representation(radius = “numeric”),
contains = “Shape”,
prototype = list(radius = 1))
Now we can create instances of the class Circle
— cr = new(“Circle”)
cr2 = new(“Circle”, radius = 10)

Accessing slots in S4 objects

* While you might think of S4 objects as a list containing

the values of the slots, this is not the case

* You cannot use cr$radius
* Instead, we use @ to access slots

cr@radius
cr@radius = 20

* This ensures that we correctly

— access slots inherited from parent/ancestor classes

— and validate assignments to the slots so that the right
hand side are consistent with the definition of the type of
the slot.

Finding the names of slots

It is hard to remember the set of slots in all of the
classes one is working with.
We use slotNames() to find these on an object or
class
— slotNames(cr)
slotNames(“Circle”)
We can find the definition of a class, i.e the slots,
their types, the ancestor classes, etc. with
getClass(“Circle”)

This ability to query the class & definition of an
object is often called “reflection”.

Validity methods

* Of course, a circle cannot have a negative radius,
and nor can it have two or more radii or an
empty numeric vector as a radius.

* Our class definition hasn’t protected us against a
user doing

new(“Circle”, radius = c(-10, 100))

* So we want to specify a validity method that will

be used to ensure that the contents of a Circle
object are legitimate, both individually and
collectively (i.e. that all the potential slots are
jointly meaningful)

Validity method

So we write a function that takes a potential Circle object and then perform the relevant checks.
If it is okay, we return TRUE; otherwise we return a string describing the problem
We use setValidity() to associate the validity function with the class for which it is intended
setValidity("Circle",
function(object) {
r = object@radius
if(length(r) == 1 && r >=0)
TRUE
else if(length(r) == 0)
“no radius in Circle"
else if(length(r) > 1)
“more than one radius in Circle"
else if(r < 0)
"negative radius in Circle"

N

Inherited slots

We defined Shape as being a virtual class with no
slots.

However, we might have added slots such as
border color and interior color, border width, etc.
The class would still be VIRTUAL, but all sub-
classes would then inherit the set of slots from
Shape.

We access the inherited slots in the same way as
regular slots, i.e. cr@borderWidth

Methods

* Let’s define a generic function area() and define methods
for it to act on different classes of Shape objects.

* We define a generic function in S4 via setGeneric()

* setGeneric(“area”,

function(obj, ...)
standardGeneric(“area”))

* We give the name of the generic function and the skeleton
function implementing the generic.

* That skeleton calls standardGeneric() with the name of the
generic and this is analogous to UseMethod(), i.e. when the
generic is called, it will find the appropriate method given
the actual arguments.

... in the signature of a generic

* Itis a good idea to specify a signature for the
generic that is most representative of the
methods that we will define for it, i.e.

— if there will usually be 2 arguments, explicitly
specify this function(x, vy, ...)

* Add ... at the end (if not already present) so
that methods can explicitly add their own
named parameters.

Defining methods

* Instead of using the simple naming convention of
generic.className to identify a method, we use
setMethod() to define and register a method in
S4.

* We specify

— the name of the generic for which the method is
being defined, e.g. “area”

— the class signature for which it is to be used, i.e. the
parameters and their corresponding classes for which
the method applies

— and the actual function implementing the method.

Method definition

* setMethod(“area”, “Circle”,
function(obj, ...)
pi * obj@radius”2)
* Now when we call
area(cr)
our method will be found

area for Ellipse

* To define an area method for an Ellipse, we
might use
setMethod("area", "Ellipse",
function(obj, ...)
pi * prod(obj@radius))

Inheritance & 'is a'

* A Circle is a special type of Ellipse, i.e. one with
the two radii constrained to be equal.

* We might use this to define a Circle as

setClass("Circle", contains = "Ellipse")

* We could define a validity method that ensured
the Circle had a radius slot of length 2 and that
the elements were the same.

* We could then inherit the area() method, and
most likely other methods too.

* This reduces the code we need to write and
provide — always a good thing, at least initially!

* Drawing a circle might be faster using
graphical primitives for circles rather than
those for ellipses.

* In this case, we might want to override the
method for draw() for an Ellipse to provide a
specialized version for the sub-class Circle,

— setMethod("draw", "Circle",
function(x, at, ...)
drawCircle(at[1], at[2],
radius = x@radius[1]))

* The choice to have sibling classes or sub-classes
can be difficult and take both experience and
careful consideration of how the classes will be
used.

* There is a tradeoff between reducing the amount
of code via inheriting methods, having to provide
specialized methods for too many methods, and
having less efficient representation of the object,
i.e. using a vector of length 2 when we only need
one value for the radius of a Circle.

* We might even go as far as to use a virtual
class 2DShape which maintains a vector of
two giving the length dimensions of the
object.

We could use this for both Ellipses and
Rectangles and use an IsoLength class to get
Circle and Square from these.

* The complexity and indirectness is probably
not worth it unless we want to exploit the
common ancestor class extensively.

setClassUnion

If we add characteristics such as color and border width to
the Shape class, we have to think about representing color.
Colors can be specified in various different ways
— by name, e.g., "red", "pink",
— by an #RGB string, e.g. #FF0000,
— or by a vector of values c(R, G, B)

for the Red, Green and Blue components.
— and we might even have an alpha level for a color.
If we define a slot color in our Shape class, we have to
specify a type and we don't seem to be able to
conveniently accommodate all of these different types in a
single slot.

* We want a general class Color that can
accommodate all of these, i.e. that can be any
of a name string, a RGB string, or a numeric
vector

setClassUnion() is used for this, to define a

new class that can have values from any of the
specified other classes.

setClass("ColorName", contains = "character")
setClass("RGBString", contains = "character")
setClass("RGBColor", contains = "numeric"

setClassUnion("Color",
c("ColorName", "RGBString", "RGBColor"))

Now, to specify the color in a Shape object, we
might use
new("Circle",

borderColor = new("ColorName", "red"))

Helper functions

* To avoid having to use new("ColorName", ...)
and new("RGBString", ...), we probably would
want to write an R function that converted a
string to the appropriate Color object, i.e.
ColorName or RGBString

* The function would examine the string and
figure out if it was in the RGBString format or
not.

* Note also that we might not want to bother with
the RGBString class in the Color definition.

* We can always process that string and convert it
to an RGBColor object

* This is where we would like to have a method to
coerce from RGBString to RGBColor.

* We also want to have helper/constructor
functions that create Colors and Shape objects
and perform the relevant coercions to the
expected types.

setAs()

« If we define Circle and Ellipse as separate,
unrelated classes both derived from Shape,
we might want to define a method that turns
a Circle into an Ellipse
— such an object would have the 2 radii equal to the

radius of the circle

— We can define a coercion method from one class
to another using setAs()

— setAs(“Circle”, “Ellipse”,
function(from)
new(“Ellipse”, radius = rep(frome@radius, R)))

coercion from RGBString to RGBColor

* We can use col2rgb to do this
* setAs("RGBString", "RGBColor"
function(from)
new("RGBColor",
as.numeric(col2rgb(from))))

Packages & OOP

* When we put our code into an R package (a
good thing), there are some issues to be
aware of relating to OOP

* If you don't use a NAMESPACE file (booo!),
things are pretty straightforward and work as
one might expect.

* If you do use a NAMESPACE
(congratulations!), you have to export
methods and S4 classes.

Exporting S3

* When we want specific S3 methods to be
available outside of a package, we export
them via the NAMESPACE file with the
directive S3method() call

* This takes the name of the generic and the S3
class
— S3method(plot, myClass)

Exporting S4 classes & methods

