8/22/10

Advanced Computing

* In reality, we typically only get one computing
class with our students.

* Students need more exposure to internalize
the ideas and make expressing computations
2" nature.

* Soideally 2 courses
— either an undergraduate course & graduate course
— or 2 undergrad. courses.

* Encourage grad. students to take undergrad.
class and then graduate class.

* 8 — 10 years of math concepts & vocabulary
1 course of computing !!!

* But need strong culture and support within a
dept. to encourage students to see computing

as important and not as a distraction from
“real” purpose.

Advanced Computing

* In practice, the “Advanced” course covers the
fundamentals covered in the intro. class since
only one course.

— getting started with R, language design and
concepts, writing functions & programming

— data input/output, text manipulation

— shell tools and remote login




8/22/10

New topics

* Thenturnto
— efficient code
— profiling
linking to existing C code (not writing it)
— Parallel/Distributed computing concepts & packages
basics of C programming
interfacing to other languages/systems
+ e.g. Java, Python, BUGS
— Software design & development
« Object Oriented programming
« Writing R packages
Important environment tools
* Version control (Subversion, mercurial)
« LaTeX, Sweave, Docbook (XML authoring system for richer dynamic documents)
Strategies for working with big data
— Symbolic math. software

* Too much in 10 weeks, but whet their appetite
and invite them to explore topics that interest
them.

— Give them the pitch why these things are useful for
them and why they need to learn them for their
professional development and career.

— Give them the concepts and some details to get them
started and have them explore themselves

* with support on the mailing list

« advertises that some people are pursuing the topics and
helps encourage others to also.

Optional Topics or Programming
Exercises

* Web scraping

* Web graphics

* More computational statistics topics

— i.e. algorithms used in implementing statistical

methods

numerical optimization

bootstrap

cross-validation

Random number generation techniques

MCMC

Computer experiments & simulation

Profiling




8/22/10

Efficiency — timing code

* system.time(expression) returns the amount
of time it took to evaluate the expression
* 3 measurements (or 5 if sub-processes)

— User, system and total elapsed time.

— Want user + system = total, or else something else
consuming the machine so problematic
measurement.

* Students should explore how time changes
with size of the inputs.

* Issues with resolution and measuring time for
small increments.

* Plot time versus input size and see if algorithm
is linear, polynomial, exponential
— Empirical algorithmic complexity

* To improve speed, use different algorithm.
* Or refine code

— move expressions within loops that are invariant
to compute just once and assigned to variable
— Avoid concatenating vectors, but pre-allocate and
assign to i-th element.
« i.e. x = ¢(); for(i in seq(along = y)) x = c(x, g(ylil))

Profiling

* |dentify bottlenecks by measuring what functions

are called the most often and take the most time.

* Rprof() function turns on measuring in the

evaluator, producing data about function calls.

* Rprof(“myProfilingData”)

Evaluate expressions
Rprof(NULL)

* Data is now available in the file myProfilingData.




8/22/10

Analyzing profiling data

* (See the code in rwl.R, courtesy of Ross Ihaka)
* Read profiling data into R via summaryRprof()
prof = summaryRprof(“myProfilingData”)
* List with 3 elements
— Look at profSby.self
— self.time self.pct total.time total.pct
“sample" 0.94 52.2 1.06 58.9
"rw2d1" 0.70 38.9 1.80 100.0
"length" 0.08 4.4 0.08 4.4
== 0.04 2.2 0.04 2.2
"t 002 1.1 0.02 1.1
" 0.02 1.1 0.02 1.1

2-D Random Walk

* First version (rw2d1) implements the
algorithm in the most obvious way that
mirrors the natural description of the process
— good idea to implement using the obvious
approach and "bank" that so one can check more
subtle implementations.

— Use as a benchmark/validator

— Also, if it is sufficiently fast, stop and don't over
optimize.

* Problem with comparing result to benchmark
when random number generation
* Use set.seed() to have a common starting
point
— But still issues if generate random numbers in
different ways, order, etc.

* Profiling tells us sample() is taking all the time.

* We have many calls to sample — 2 per iteration of
the loop

— in both cases, we generate just a single value, and
both are from a binary distribution, i.e. up or down,
left or right.

— sample() is very powerful, but overkill. The overhead
of setting up the values to sample from is too much
for a single value.

— Can replace with a Bernoulli, or a simple Uniform and
whether it is > .5 or not.




8/22/10

* Interestingly, while we remove sample() as a
bottleneck, we will later bring it back!

— Because we will generate many values from a
given set of values in a vectorized operation, not a
single scalar returned each time.

— In that context, the overhead of establishing the

possible sample values becomes very small part of
the overall operation.

* As we progress through the different
implementations, we gradually move away from
the loop and towards vectorized operations.

* Until R can recognize potential for vectorization
and do it automatically for us, students need to
learn to write code using vectorized operations
where possible

* This also means that they should write functions
that are vectorized also, so that they and others
can use those functions in vectorized ways.

* Focus energy on improving the calls to the
functions in the first rows of this data frame.

* Rewrite algorithm, adjust expressions.

R packages

* Writing R packages is simple
— requires following straightforward conventions about folders
and meta-data in specific files

* Easy for anyone to do, even on Windows

— tool chain for building & installing packages getting easier there.

« Several important benefits
— Easy to send self-installing code to self or others, including
instructor
* no issue with source individual files, in correct order, etc.

— Can include data so others can reproduce issues, help debug
Can contain tests to verify the code is functional
Documentation
NAMESPACES




8/22/10

Structure is a folder with several sub-folders and a
DESCRIPTION file

package.skeleton() function will create this for you
— but better to understand the details directly

Create a folder, typically with the name being the name
of the package (not essential)

Create and populate a DESCRIPTION file in the package
folder.

Create an R/ directory under that.
Put R code files (.R, .1, .q, ...) in the R/ directory.
DONE!

DESCRIPTION file

* Package: RNYTimes

* Title: Access to the New York Times REST services

* Description: This provides R functions to access content

¢ from the New York Times using its REST services.

* Version: 0.1-0

* Author: Duncan Temple Lang

* Imports: XML, RJISONIO, RCurl

* Depends: methods

* Maintainer: Duncan Temple Lang <duncan@r-project.org>
¢ License: BSD

Processing the package

* One needs to install the package before loading it
— Shell command
¢ R CMD INSTALL myPackage
* myPackage is the directory/folder containing your code
* | often use R CMD INSTALL . when located in the package
directory.
— Can control where the installed package is located
« via the - libraryDirectory option
* R_LIBS or R_USER_LIBS environment variable (preferable)
— Then within R, library(myPackage)

Validating a package

* R CMD check myPackage
— checks the package can be installed
— has all the relevant pieces
— is consistent with the meta data
— runs any examples in the documentation files
— processes any tests in the tests/ directory

— checks the code for references to non-defined/
global variables

* Just a good thing to run!




8/22/10

Build a package to Distribute

* R CMD build myPackage

— creates a tar.gz file with the source of the package
others can install

* R CMD build —binary myPackage
— builds a binary version of the package for the type
of machine on which you run the command

 people can install without needing additional tools on
their machine

« especially useful for building packages with C/FORTRAN
code.

C/FORTRAN code

To add C/FORTRAN code for use in a package, put
the files in a directory named src/ under the
package directory, i.e. parallel to the R/ directory.
R CMD INSTALL will automatically compile & link
into a DLL/Shared Object.

Have to explicitly load it using dyn.load()/
library.dynam()

OR preferably, use a NAMESPACE file and
useDynLib() within that.

NAME SPACEs

* Add a NAMESPACE file to a package
* File that contains meta-information directives about what in the
package the user should be able to see, and what should be hidden.
» 2 class of objects in the package
— those that are exported, those that are not
— export(myFun, myOtherFun)

* leave out the internal implementation functions that | don’t want people to be
able to call directly.

— Alternatively, export using a regular expression to match variable
names
* exportPattern(“.*”)
* Also, use directives to load DLL/SO
— useDynLib(myPackage)

name space concept

When you load a package into the search
path, it might contain functions that conflict
with or hide others later in the search path.

This can be disastrous and is not good
software design.

So we want to hide some variables/objects
which are not to be exported.

So good hygiene to protect others from your
naming scheme




8/22/10

What about imports?

But what about functions we use in our package that
come from other packages?

What if some other package in our search path
provides, e.g. plot or Im ?
We want graphics::plot and stats::Im
— (The :: is for specifying the namespace in which the
variable is located.)
So in our NAMESPACE file, we would use
— importFrom(graphics, plot)
importFrom(stats, Im)
The code in the package will look in its imports and not
along the search path.

Documentation

* Don’t need to write documentation to use

package mechanism

* Do need to write documentation to publish

package on CRAN and have it pass R CMD check.

¢ Use the prompt() function to generate template

doc. files for each function/object you want to
document.

* Then edit. LaTeX-like markup language.

— See Writing R Extensions manual.

Data for a package

* Putrda, csy, etc. files in a data/ directory

* Then can load into R via
— data(myObject)

Big Data

* There are several approaches to dealing with
large amounts of data in R

* Several packages
— filehash, ff, bigmemory, biglm, bigglm, externalptr
data types

— Some deviate from the common semantics of the
language and so are not ideal




8/22/10

Big Data

* Challenge on small computers — period.

* So have to have students use big, centralized
hardware in dept.

* Need to know UNIX shell, ssh and be able to
transfer code and data.
— R package mechanism is excellent for this
— So too distributed version control

* So my focus is more on these fundamentals
rather than specialized approaches to large data,

i.e. need to get the students to the stage where
we can focus on these more interesting details.

* Parallel/distributed computing on a cluster or
with multiple cores is perhaps more
pedagogically interesting.

* Concepts that are more transferable across other
languages and less “ad hoc”, R-specific.

* Focuses them on thinking about parallel
algorithms
— in practice, most students will work with

“embarassingly parallel” problems and so not have to
think about changing the algorithm.

Packages for Distributed Computing

* See the High Performance Computing Task
View on CRAN

* e.g. snow/snowfall, foreach, Rmpi, multicore
— mapReduce
— biocep

Issues

* Some issues in configuring cluster and firewalls to
enable students to start tasks on multiple nodes.

¢ But programming interface quite simple.

* Distributing data-intensive tasks across nodes can
greatly reduce performance improvement due to
overhead of copying data.

* Similarly, short tasks are overwhelmed by

proportion of time to distribute, start and harvest
results.




8/22/10

* Students must have seen (or see for 15t time)
the fundamentals.

10



