
Text as data: Working with regular expressions

Text as data: Why we teach it

• In the last three days, we’ve seen a couple of examples in which
students have to manipulate text:

1. The Obama/Clinton county data set required record matching
across disparate databases

2. The wireless data set involved extracting particular fields from a
long data record

Text as data: Why we teach it

• In my class, text manipulation seems to come up in almost every
homework; formally, we have three specific text assignments

1. Analyze usage patterns of a web site based on a log file

• http://www.stat.ucla.edu/~cocteau/access_log.txt

2. Explore patterns of language usage in a day’s worth of chat

• http://www.stat.ucla.edu/~cocteau/chat.txt

3. Identify the number of times reporters wrote for the NY Times

• http://www.stat.ucla.edu/~cocteau/1950.txt

134.226.32.57 - - [20/Sep/2007:07:54:29 -0700] "GET /~sczhu/icons/
daught.gif HTTP/1.0" 200 1898 "http://www.stat.ucla.edu/~sczhu/"
"Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.7) Gecko/
20070914 Firefox/2.0.0.7"

134.226.32.57 - - [20/Sep/2007:07:54:29 -0700] "GET /~sczhu/icons/
bio.gif HTTP/1.0" 200 1681 "http://www.stat.ucla.edu/~sczhu/" "Mozilla/
5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.7) Gecko/20070914
Firefox/2.0.0.7"

134.226.32.57 - - [20/Sep/2007:07:54:30 -0700] "GET /~sczhu/
Zhu_LA_sm.gif HTTP/1.0" 200 39313 "http://www.stat.ucla.edu/~sczhu/"
"Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.7) Gecko/
20070914 Firefox/2.0.0.7"

134.226.32.57 - - [20/Sep/2007:07:54:30 -0700] "GET /favicon.ico HTTP/
1.0" 200 318 "-" "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:
1.8.1.7) Gecko/20070914 Firefox/2.0.0.7"

74.6.28.138 - - [20/Sep/2007:07:54:50 -0700] "GET /~nchristo/
statistics100B/syllabus100b.pdf HTTP/1.0" 200 47206 "-" "Mozilla/5.0
(compatible; Yahoo! Slurp; http://help.yahoo.com/help/us/ysearch/
slurp)"

164.67.132.219 - - [20/Sep/2007:07:54:55 -0700] "GET /robots.txt HTTP/
1.0" 200 559 "-" "gsa-crawler%20%28gsa1%2C%20contact%3A%20jhuang
%40ais.ucla.edu%29 (Enterprise; S5-J4JEBZS9PUJJA; jhuang@ais.ucla.edu)"

164.67.132.219 - - [20/Sep/2007:07:54:55 -0700] "GET /rss/feed.php?
unit=uclastat HTTP/1.0" 200 1739 "-" "gsa-crawler%20%28gsa1%2C
%20contact%3A%20jhuang%40ais.ucla.edu%29 (Enterprise; S5-J4JEBZS9PUJJA;
jhuang@ais.ucla.edu)"

134.226.32.57 - - [20/Sep/2007:07:55:03 -0700] "GET /%7Esczhu/
talks.html HTTP/1.0" 200 9489 "http://www.stat.ucla.edu/~sczhu/"
"Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.7) Gecko/
20070914 Firefox/2.0.0.7"

access_log.txt

apetalous - But, if that's the case, then again, it's a good market.
Doesn't mean the stock is a good investment. That's the thing... you
can't just invest in one stock and expect to make millions overnight,
or even have your investment protected by the stock. It's a fluid game.

WHERE IS THE ISTHMUS OF CORINTH?

hey Pyro Pixie

BY WHAT PROCESS IS ROCK WORN DOWN BY THE WEATHER

what do you use when you script perl in windows?

englanddg, tin foil doesn't work.

ok devs, according to everything ive been told in every store ive gone
to... 4 stores and 5 or 6 people... for what i need/want, 720 is fine

hugglez Witchen

that goes for all you opps

brb... need a break before i freakin choke LL

its all good

Heyya fellas

It must be copper foil.

How about movie?

31 f usa here

we're talking bout beer chat.txt

By PAUL CROWELL
The New York Times (by Edward Hausner)
By LEE E.COOPER
By JOHN D. MORRIS Special to THE NEW YORK TIMES.
By KALMAN SEIGEL
By HAROLD FABER
The New York Times
By FELIX BELAIR Jr. Special to THE NEW YORK TIMES.
By LINDESAY PARROTT Special to THE NEW YORK TIMES.
Special to THE NEW YORK TIMES.
By WALTER H. WAGGONER Special to THE NEW YORK TIMES.
By SANKA KNOX
By JAMES RESTON Special to THE NEW YORK TIMES.
Special to THE NEW YORK TIMES.
Special to THE NEW YORK TIMES.
Special to THE NEW YORK TIMES.
Special to THE NEW YORK TIMES.
Special to THE NEW YORK TIMES.
Special to THE NEW YORK TIMES.
Special to THE NEW YORK TIMES.
Special to THE NEW YORK TIMES.
Special to THE NEW YORK TIMES.
Special to THE NEW YORK TIMES.
Special to THE NEW YORK TIMES.
Special to THE NEW YORK TIMES.
By MILTON BRACKER Special to THE NEW YORK TIMES.
Special to THE NEW YORK TIMES.
Special to THE NEW YORK TIMES.
Special to THE NEW YORK TIMES.
By TILLMAN DURDIN Special to THE NEW YORK TIMES.
Special to THE NEW YORK TIMES.
By HANSON W.BALDWIN
By STANLEY LEVEY
Special to THE NEW YORK TIMES.
Special to THE NEW YORK TIMES.
Special to THE NEW YORK TIMES.
Special to THE NEW YORK TIMES.

1950.txt

Text as data: Why we teach it

• In general, we (as statisticians) are often asked to deal with rather
complex patterns in data; sometimes they’re part of the “clean up”
process, and sometimes the presence or absence of patterns yield
data

• Text data is also plentiful it is relatively easy to create large amounts of
interesting text data...

Text as data: Why we teach it

• From early problems in authorship attribution to more recent work in
large-scale text mining, there’s plenty of interesting problems and data
sources to analyze

• Artifacts from computer-mediated communication (web logs, bulletin
boards, chat transcripts, email) all provide complex and socially
interesting data for students to work with

• These sources can be more compelling for students; in some sense
they are closer to home, are more recognizable than certain scientific
data sources, and can kick off important discussions about privacy and
computer technologies (OK, I might be the only one interested in that)

w
w
w
.
c
s
.
c
o
r
n
e
l
l
.
e
d
u
/
h
o
m
e
/
k
l
e
i
n
b
e
r
/

w
w
w
.
c
s
.
c
o
r
n
e
l
l
.
e
d
u
/
h
o
m
e
/
k
l
e
i
n
b
e
r
/

Tools to manipulate text - R

• There are a number of languages and tools that can manipulate text;
your choice in an introductory computing course will depend on when
you take up the subject, your audience, and your goals for the class

• As an example, R has some basic facilities to deal with character
strings and vectors; there are functions to extract or replace
substrings, to split strings into pieces, and to identify patterns

• Let’s have a look at these...

> txt = "here's an experiment with text."
> nchar(txt) # the length of the string
[1] 31

> substr(txt,8,15) # create a substring from char 8 to 15
[1] "an exper"

> strsplit(txt," ") # divide on ‘whitespace’
[[1]]
[1] "here's" "an" "experiment" "with" "text."

> strsplit(txt,"an") # divide on ‘an’
[[1]]
[1] "here's " " experiment with text."

> sub("experiment","simple attempt",txt) # substitution once
[1] "here's an simple attempt with text."

> gsub("e","i",txt) # ... and multiple substitutions
[1] "hiri's an ixpirimint with tixt."

> toupper(txt) # changing case
[1] "HERE'S AN EXPERIMENT WITH TEXT."

Tools to manipulate text - R

On the previous slide, we gave examples of the functions sub, gsub,
and strsplit involving simple replacement and matching patterns;
these functions operate with a more elaborate language for defining
patterns, a construction we’ll get to in a few minutes

• As the “motivating” examples I presented at the beginning illustrate,
we are usually not working quietly with a single string, but instead we
have to “process” a number of lines stored in a character vector

• In a simple example that both Deb and I use, we examine the logs
created by a web server...

Example: Web server logs

• Each time you request a file from a web site, a line is appended to the
bottom of a log file; a file that quietly and continually records all the
activity taking place

• All of the actions from the millions (or thousands or hundreds or, as in
the case of our own UCLA Statistics site, tens) of people browsing
your site at any moment are added to this file in time order

• What kinds of information might a log of this kind collect? What would
you, as a site owner want to know?

> alog = scan("access_log.txt",what="",sep="\n")
Read 50000 items

> alog = scan(url("http://www.stat.ucla.edu/~cocteau/access_log.txt"),what="",sep="\n")
Read 50000 items

> alog[1]
[1] "134.226.32.57 - - [20/Sep/2007:07:54:29 -0700] \"GET /~sczhu/icons/daught.gif HTTP/
1.0\" 200 1898 \"http://www.stat.ucla.edu/~sczhu/\" \"Mozilla/5.0 (Windows; U; Windows NT
5.1; en-US; rv:1.8.1.7) Gecko/20070914 Firefox/2.0.0.7\""

> alog[50000]
[1] "165.134.208.6 - - [21/Sep/2007:12:05:03 -0700] \"GET /favicon.ico HTTP/1.1\" 200 318
\"-\" \"Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.0.12) Gecko/20070508
Firefox/1.5.0.12\""

Combined log format

The format of this file is fairly standardized; each line contains a series of
records about the transaction it represents

IP address

Identity

Userid

date

Request

Status

Bytes

Referrer

Agent

Let’s start by considering the “Status” or success/failure of each
transaction in our sample

Server status...

• A fast Google search gives us a list of
possible errors

• Note that Error 200 actually means a
success

• Error 206 means that only part of the file
was delivered; the user cancelled the
request before it could be delivered

• Error 304 is “not modified”; sometimes
clients perform conditional GET requests

HTTP Error 101
Switching Protocols. Again, not really an "error", this HTTP Status
Code means everything is working fine.

HTTP Error 200
Success. This HTTP Status Code means everything is working fine.
However, if you receive this message on screen, obviously something
is not right... Please contact the server's administrator if this problem
persists. Typically, this status code (as well as most other 200 Range
codes) will only be written to your server logs.

HTTP Error 201
Created. A new resource has been created successfully on the
server.

HTTP Error 202
Accepted. Request accepted but not completed yet, it will continue
asynchronously.

HTTP Error 203
Non-Authoritative Information. Request probably completed
successfully but can't tell from original server.

HTTP Error 204
No Content. The requested completed successfully but the resource
requested is empty (has zero length).

HTTP Error 205
Reset Content. The requested completed successfully but the client
should clear down any cached information as it may now be invalid.

HTTP Error 206
Partial Content. The request was canceled before it could be fulfilled.
Typically the user gave up waiting for data and went to another page.
Some download accelerator programs produce this error as they
submit multiple requests to download a file at the same time.

HTTP Error 300
Multiple Choices. The request is ambiguous and needs clarification
as to which resource was requested.

HTTP Error 301
Moved Permanently. The resource has permanently moved
elsewhere, the response indicates where it has gone to.

HTTP Error 302
Moved Temporarily. The resource has temporarily moved elsewhere,
the response indicates where it is at present.

HTTP Error 303
See Other/Redirect. A preferred alternative source should be used at
present.

> strsplit(alog[1]," ")[1]
[[1]]
 [1] "134.226.32.57"
 [2] "-"
 [3] "-"
 [4] "[20/Sep/2007:07:54:29"
 [5] "-0700]"
 [6] "\"GET"
 [7] "/~sczhu/icons/daught.gif"
 [8] "HTTP/1.0\""
 [9] "200"
[10] "1898"
[11] "\"http://www.stat.ucla.edu/~sczhu/\""
[12] "\"Mozilla/5.0"
[13] "(Windows;"
[14] "U;"
[15] "Windows"
[16] "NT"
[17] "5.1;"
[18] "en-US;"
[19] "rv:1.8.1.7)"
[20] "Gecko/20070914"
[21] "Firefox/2.0.0.7\""

> errs = sapply(strsplit(alog," "),function(x) x[9]) # isolate errors

> table(errs) # table ‘em

 200 206 301 302 304 400 401 403 404 405
41093 1501 1431 223 3704 4 4 367 1669 4

> strsplit(alog[1]," ")[1]
[[1]]
 [1] "134.226.32.57"
 [2] "-"
 [3] "-"
 [4] "[20/Sep/2007:07:54:29"
 [5] "-0700]"
 [6] "\"GET"
 [7] "/~sczhu/icons/daught.gif"
 [8] "HTTP/1.0\""
 [9] "200"
[10] "1898"
[11] "\"http://www.stat.ucla.edu/~sczhu/\""
[12] "\"Mozilla/5.0"
[13] "(Windows;"
[14] "U;"
[15] "Windows"
[16] "NT"
[17] "5.1;"
[18] "en-US;"
[19] "rv:1.8.1.7)"
[20] "Gecko/20070914"
[21] "Firefox/2.0.0.7\""

> ips = sapply(strsplit(alog," "),function(x) x[1]) # pull out ip addrs

> sort(table(ips),decreasing=TRUE)[1:10] # ... and sort ‘em

70.184.223.117 128.97.55.194 164.67.132.220 76.167.214.187 128.97.86.248
 13050 1626 757 614 520
208.68.136.250 164.67.132.219 66.249.73.99 138.9.25.242 24.5.6.46
 519 408 232 217 217

Moving on

• Going along in this way, we could start to
answer the sort of questions that are
somewhat standard for traffic analysis
services: When is the server active? What
kinds of errors do we see? Who are my
most frequent users?

• In the end, we want to peer into these logs
a little more deeply and examine what is
being accessed; this data is found in the
eleventh field of the split log-line

• A deeper “content” analysis requires a
more expressive language for describing
patterns

134.226.32.57 - - [20/Sep/2007:07:54:29 -0700] "GET /~sczhu/icons/
daught.gif HTTP/1.0" 200 1898 "http://www.stat.ucla.edu/~sczhu/"
"Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.7) Gecko/
20070914 Firefox/2.0.0.7"

134.226.32.57 - - [20/Sep/2007:07:54:29 -0700] "GET /~sczhu/icons/
bio.gif HTTP/1.0" 200 1681 "http://www.stat.ucla.edu/~sczhu/" "Mozilla/
5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.7) Gecko/20070914
Firefox/2.0.0.7"

134.226.32.57 - - [20/Sep/2007:07:54:30 -0700] "GET /~sczhu/
Zhu_LA_sm.gif HTTP/1.0" 200 39313 "http://www.stat.ucla.edu/~sczhu/"
"Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.7) Gecko/
20070914 Firefox/2.0.0.7"

134.226.32.57 - - [20/Sep/2007:07:54:30 -0700] "GET /favicon.ico HTTP/
1.0" 200 318 "-" "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:
1.8.1.7) Gecko/20070914 Firefox/2.0.0.7"

74.6.28.138 - - [20/Sep/2007:07:54:50 -0700] "GET /~nchristo/
statistics100B/syllabus100b.pdf HTTP/1.0" 200 47206 "-" "Mozilla/5.0
(compatible; Yahoo! Slurp; http://help.yahoo.com/help/us/ysearch/
slurp)"

164.67.132.219 - - [20/Sep/2007:07:54:55 -0700] "GET /robots.txt HTTP/
1.0" 200 559 "-" "gsa-crawler%20%28gsa1%2C%20contact%3A%20jhuang
%40ais.ucla.edu%29 (Enterprise; S5-J4JEBZS9PUJJA; jhuang@ais.ucla.edu)"

164.67.132.219 - - [20/Sep/2007:07:54:55 -0700] "GET /rss/feed.php?
unit=uclastat HTTP/1.0" 200 1739 "-" "gsa-crawler%20%28gsa1%2C
%20contact%3A%20jhuang%40ais.ucla.edu%29 (Enterprise; S5-J4JEBZS9PUJJA;
jhuang@ais.ucla.edu)"

134.226.32.57 - - [20/Sep/2007:07:55:03 -0700] "GET /%7Esczhu/
talks.html HTTP/1.0" 200 9489 "http://www.stat.ucla.edu/~sczhu/"
"Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.7) Gecko/
20070914 Firefox/2.0.0.7"

134.226.32.57 - - [20/Sep/2007:07:54:29 -0700] "GET /~sczhu/icons/
daught.gif HTTP/1.0" 200 1898 "http://www.stat.ucla.edu/~sczhu/"
"Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.7) Gecko/
20070914 Firefox/2.0.0.7"

134.226.32.57 - - [20/Sep/2007:07:54:29 -0700] "GET /~sczhu/icons/
bio.gif HTTP/1.0" 200 1681 "http://www.stat.ucla.edu/~sczhu/" "Mozilla/
5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.7) Gecko/20070914
Firefox/2.0.0.7"

134.226.32.57 - - [20/Sep/2007:07:54:30 -0700] "GET /~sczhu/
Zhu_LA_sm.gif HTTP/1.0" 200 39313 "http://www.stat.ucla.edu/~sczhu/"
"Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.7) Gecko/
20070914 Firefox/2.0.0.7"

134.226.32.57 - - [20/Sep/2007:07:54:30 -0700] "GET /favicon.ico HTTP/
1.0" 200 318 "-" "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:
1.8.1.7) Gecko/20070914 Firefox/2.0.0.7"

74.6.28.138 - - [20/Sep/2007:07:54:50 -0700] "GET /~nchristo/
statistics100B/syllabus100b.pdf HTTP/1.0" 200 47206 "-" "Mozilla/5.0
(compatible; Yahoo! Slurp; http://help.yahoo.com/help/us/ysearch/
slurp)"

164.67.132.219 - - [20/Sep/2007:07:54:55 -0700] "GET /robots.txt HTTP/
1.0" 200 559 "-" "gsa-crawler%20%28gsa1%2C%20contact%3A%20jhuang
%40ais.ucla.edu%29 (Enterprise; S5-J4JEBZS9PUJJA; jhuang@ais.ucla.edu)"

164.67.132.219 - - [20/Sep/2007:07:54:55 -0700] "GET /rss/feed.php?
unit=uclastat HTTP/1.0" 200 1739 "-" "gsa-crawler%20%28gsa1%2C
%20contact%3A%20jhuang%40ais.ucla.edu%29 (Enterprise; S5-J4JEBZS9PUJJA;
jhuang@ais.ucla.edu)"

134.226.32.57 - - [20/Sep/2007:07:55:03 -0700] "GET /%7Esczhu/
talks.html HTTP/1.0" 200 9489 "http://www.stat.ucla.edu/~sczhu/"
"Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.7) Gecko/
20070914 Firefox/2.0.0.7"

The need for a pattern language

• While simple splits are effective in isolating fields, when we want to
look into the file a little more deeply, we see that we need something
more elaborate

• For example, suppose we want to identify the kind of file being
downloaded based on its suffix; or perhaps we want to determine the
amount of traffic generated by Rob Gould (a faculty member in our
department)

• Looking at the next slide, you see pretty quickly that a more
sophisticated approach to dealing with patterns in text is required...

/consult/paid/
/robots.txt
/frames/global.php?body=/departments/index_body.php&head=/departments/index_head.php
/departments/
/~rgould/120bs06/podcast/podcast.xml
/~rgould/120aw06/podcast/podcast.xml
/departments/index_head.php
/style_sheets/Global.css
/departments/index_body.php
/graphics/world.gif
/textbook/singles/describe_single/central/mean.html
/style_sheets/Global.css
/graphics/logo1_167x90.gif
/consult/tutor.php
/consult/free.php
/%7Ergould/11f03/skillcheck3.html
/%7Ergould/x401f01/worksheet1.html
/~dinov/courses_students.dir/02/Spr/STAT_XL10.dir/
/~vlew/stat11/WI01/old/labs/?M=D
/~dinov/courses_students.dir/02/Spr/STAT_XL10.dir/HWs.dir/HW1_XL10_sol.pdf
/forums/read.php?f=327&i=3&t=2
/%7Edinov/courses_students.dir/02/Fall/
/~rgould/152c1www/hints.html
/forums/read.php?f=327&i=3&t=2
/history/people/gould.gif.gz
/index.css
/css/uclastat/site.css
/~apresson/photos/other/ASHG06-New%20Orleans/slides/PA110889.html
/favicon.ico
/~sczhu/Lotus/images/research/fire_Ori.gif
/data/andrews-and-herzberg/T66.1
/~fredphoa/Spring2007_Stat13/PS7sol.pdf
/~sczhu/Lotus/images/research/fire_sketch_Ori.gif
/~cocteau/teaching/stat13/labs/lab3.pdf
/textbook/
/style_sheets/Global.css
/~cocteau/stat202a/lectures.2005/lecture19.pdf

Tools to manipulate text - Unix

• As an aside, in my own class, I start with basic shell tools; the students
are more familiar with commands like split, sort, wc, cut and
uniq

• Combinations of these utilities (“piped” together) are a fairly common
way to work with large quantities of text data; these tools are also
extremely useful for the data preparation and data cleaning phases of
an analysis

Rudimentary pattern matching

• Because I start with the shell, by the time we get to regular
expressions, we have already encountered some basic pattern
matching notions

• For example, the command wc *.txt will provide a simple
accounting of all the files that end with the characters .txt; in this
expression * acts as a wildcard and matches 0 or more other
characters

Rudimentary pattern matching

• In the expression *.txt we can name two kinds of characters

The .txt is made up of literal or normal text characters

The * is a metacharacter

• While specifying groups of files in this way is quite useful, it is not very
expressive in terms of the patterns one can specify; the Unix shell
does offer us richer notation, but rather than explain it in detail, I move
to a more general construction

Regular expressions

• Simply put, a regular expression is a sequence of characters that
defines a pattern; most characters in the pattern simply “match”
themselves in a target string

• A few characters are used in patterns as metacharacters; these allow
us to indicate positioning, grouping and repetition

• To experiment with regular expressions, we’ll first need an engine that,
given a (series of) strings and a pattern, can execute the matches; I
use the shell as an engine, others use R...

Implementation - The shell

• Because I start with the shell before R, regular expressions are
introduced using the Unix utility grep (the name comes from an
editing operation: g/re/p, see the next slide)

• grep skims lines from a file (the strings) that have (or don’t have) a
particular pattern, that match (or don’t match) a particular regular
expression

 "Grep was invented for me. I was making a program to read
 text aloud through a voice synthesizer. As I invented
 phonetic rules I would check Webster's dictionary for words
 on which they might fail. For example, how do you cope with
 the digraph `ui', which is pronounced many different ways:
 `fruit', `guile', `guilty', `anguish', `intuit', `beguine'?
 I would break the dictionary up into pieces that fit in ed's
 limited buffer and use a global command to select a list. I
 would whittle this list down by repeated scannings with ed
 to see how each proposed rule worked."

 "The process was tedious, and terribly wasteful, since the
 dictionary had to be split (one couldn't afford to leave a
 split copy on line). Then ed copied each part into /tmp,
 scanned it twice to accomplish the g command, and finally
 threw it away, which takes time too."

 "One afternoon I asked Ken Thompson if he could lift the
 regular expression recognizer out of the editor and make a
 one-pass program to do it. He said yes. The next morning I
 found a note in my mail announcing a program named grep. It
 worked like a charm. When asked what that funny name meant,
 Ken said it was obvious. It stood for the editor command
 that it simulated, g/re/p (global regular expression print)."

From an interview with Doug McIlroy

 "Progress on my talking program accelerated dramatically.
 From that special-purpose beginning, grep soon became a
 household word. (Something I had to stop myself from writing
 in the first paragraph above shows how firmly naturalized
 the idea now is: `I used ed to grep out words from the
 dictionary.') More than any other single program, grep
 focused the viewpoint that Kernighan and Plauger christened
 and formalized in `Software Tools': make programs that do
 one thing and do it well, with as few preconceptions about
 input syntax as possible."

Implementation - The shell

• As with the shell itself, regular expressions have different flavors
depending on their implementation

• The most direct way to use the tools we will present is with the
command egrep rather than grep; this specifies so-called extended
regular expressions

• To try out any of the expressions we will describe you can enter the
command

egrep ‘pattern’ file

Implementation - R

• R also has facilities to manipulate text, and it is arguably better in an
introductory course to describe regular expressions there

• In general, if we have stored our text data (character vector) in txt
and our pattern (character string) in pattern, we can call

• grep(pattern,txt) # the indices of matches

• grep(pattern,txt,value=TRUE) # the matches

Regular expressions

• As I mentioned before, most characters in a pattern “match”
themselves; the simplest pattern consists only of these literals

• For example, the literal Obama matches the following chat lines:

Israel can't risk Obama winning if it wants to attack Iran, because Obama
would be actively against such an attack, while Bush would merely not
support such an attack

I think Obama would support it.

Obama alone with Jesse Jackson and a boxcutter

I support Obama but I also believe Iran's nuclear programme must be
stopped before it's too late

Obama would be rolled by Iran like a cigar

> chat = scan("chat.txt","",sep="\n") # reading data
Read 137332 items

> post = chat[100] # just one string
> post
[1] "yer i'll stick around for a few more mins then bed"

> substr(post,10,12) # ... and subset it
[1] "sti"

> result = grep('Obama',chat,value=T) # which refer to Obama?
> result[1:5]

[1] " Israel can't risk Obama winning if it wants to attack Iran, because
Obama would be actively against such an attack, while Bush would merely not
support such an attack"

[2] " I think Obama would support it."

[3] " Obama alone with Jesse Jackson and a boxcutter"

[4] " I support Obama but I also believe Iran's nuclear programme must be
stopped before it's too late"

[5] " Obama would be rolled by Iran like a cigar"

Regular expressions

• It’s useful to see what’s going on when a “match” occurs; suppose
we’re given the pattern Obama, and the target string I think Obama
would support it.

• The grep engine moves along the target string character-by-
character, testing for a match of the first literal in the pattern, the O; it
fails to match until the 9th position

• Once it matches the O, it advances to the next literal and sees if the
10th character in the target string is a match, is a b; it will continue in
this way until it matches the compete pattern (possibly many times) or
runs out of characters in the target string

Regular expressions

• At a technical level, you can think of a regular expression as (finite)
state machine that changes its state as it processes a string character-
by-character according to rules specified by the pattern

• We’ll have (a little) more to say about this when our patterns get a little
more complicated

Regular expressions

• To continue (and in the spirit of bipartisanship) the literal McCain
would match to the following chat lines

McCain would actively support such an attack

what is this McCain and 'mental recession' my TV is speaking of

McCain says he knows nothing about the economy, seems his advisor
doesn't either

i absolutely am scared to death of McCain - the man looks like Reagan
just before they announced he had Alazheimers

 What McCain should hammer home is fiscal responsibility.

 McCain "Casper Milktoast" couldnt' hammer a thumbtack

 now careful sunny, McCain will say you are whining

Regular expressions

• Any character except for [\^$.|?*+(){} can be used to specify a
literal; they match a single instance of themselves (the rest serve a
role as metacharacters that we’ll describe in a second; we’ll also
describe what to do if your pattern involves one of these)

• Again, the metacharacters allow us to specify much more complicated
patterns; for example, what if we only want the word “Obama”? or
sentences that end in the word “McCain”, or “Mccain” or “mccain”?

Regular expressions

• It’s clear that we need a way to express

white space

word boundaries

sets or classes of literals

the beginning and end of a line

alternatives (”war” or “peace”)

• Metacharacters to the rescue!

Regular expressions

• We’ll now present some simple metacharacter constructions

• ^,$,\b to specify positioning

• [and] to express character classes (or equivalence classes)

• (and), | to define subexpressions and alternatives

• *,+,? to indicate multiplicities

Some metacharacters

^ represents the start of a line

^i think

will match the lines

i think thats 03 or 04

i think micheal jackson was 10 times better then prince

i think it was at 70 when i booted

i think they both kinda suck

i think i need to restart irsii for this to take effect

i think i have it wrong

i think cause i am over tired

Some metacharacters

$ represents the end of a line

morning$

will match the lines

He left this morning

He just left this morning

it'll only take a morning

i filled a mates 320gb in a a morning

sale this morning

Escaping metacharacters

\ before one of the special characters [\^$.|?*+(){} lets us include
these in a pattern; in technical terms, we have “escaped” the special
meaning of these characters

\$1

will match the lines

$65 bucks for a 5 yr warrenty, and they called offering 3 more yrs for $125, so
I took it

Six years ago, the majority of Americans was concerned that drilling in the
ANWR Wildlife Refuge might upset the porcupine caribou. With the price of oil
at $140 and rising, suddenly we're wondering; "Maybe it's all right for the
porcupine caribou to just hop over the pipelines and enjoy the vast regions
where there are none."

$1500 gets you a pimpin setup

$199 iphone launch today eh

Character classes with []

A character class matches a single character out of all the possibilities
contained in the brackets; there are certain rules that apply in these classes
that we’ll get to in a second...

M[cC]cain

will match the lines

who here blamed Mccain for Grhams comments?

or maybe they aren't falling for Mccain, Goldbrick4, there's a diff

and Mccain disavowed the comments quickly

07/11/2008 Mccain 42 Obama 43

i hope Mccain will be the next

Character classes with []

In terms of rules that work within character classes, you can specify a
range of letters [a-z] or [a-zA-Z]; notice that the order within the class
doesn’t matter

^[0-9][a-zA-Z]

will match the lines

6am here... and a lil tired

1k for a sli setup with quad core and 8800gt in sli

4gb ram, the works

1st i heard of it

4th time ive asked

Character classes with []

There are also built-in classes that are convenient because you
encounter them often and they offer a degree of cross-language
portability for your code; [:digit:], [:punct:], [:alpha:],
[:lower:], [:upper:], [:space:]

[[:upper:]][[:punct:]]$

will match the lines

WHERE IS THE ISTHMUS OF CORINTH?

WHERE IS THE ISTHMUS OF CORINTH?

Nice going Lady L! The answer was GREECE.

WHAT IS THE LONGEST LIVING LAND MAMMAL AFTER MAN?

Well done Lady L! The answer was ELEPHANT.

Character classes with []

When used at the beginning of a character class, the “^” is also a
metacharacter and indicates matching characters NOT in the indicated class

[^?.]$

will match the lines

i like basketballs

6 and 9

dont worry... we all die anyway!

Not in Baghdad

helicopter under water? hmmm

Other examples

• In a similar way, the symbols \d, \w, and \s can stand in for digits, word
characters and spaces; similarly, \D, \W and \S are so-called negated
versions, not digits, not words and not spaces

• These can be used anywhere in a regular expression, not just within
enclosing []’s in a character class

More metacharacters: .

“.” is used to refer to any character. So

9.11

will match the lines

Asia: (SSEA 2996.284 -19.849 -0.66) (HSI 22184.551 +362.77 +1.66) (N225
13039.69 -27.52 -0.21) (STI 2926.84 +25.26 +0.87) (TWII 7244.76 +169.11
+2.39) (KS11 1567.51 +30.08 +1.96) (KLSE 1150.39 +14.90 +1.31) (BSESN
13469.85 -456.391 -3.28)

9/11 was before 9/12

WASHINGTON(AP) Senate Republicans on Wednesday scuttled an attempt by
Sen. Hillary Clinton to establish an independent, bipartisan panel patterned after
the 9/11 Commission to investigate what went wrong with federal, state and local
governments response to Hurricane Katrina.

More metacharacters: |

This does not mean “pipe” in the context of regular expressions; instead it
translates to “or”; we can use it to combine two expressions, the
subexpressions being called alternatives

flood|fire

will match the lines

i cant count how many times I was fired years ago

by flood

heard that Schwartzenegger has called up The National Guard to help fight the
fires in CA

no flood!

firecacker get a life

the world needs hatred, impatience, rage, fury, storms, fire

More metacharacters: |

We can include any number of alternatives...

flood|earthquake|hurricane

will match the lines

what was the name of the city in new jersey bob dylan sang about in the hurricane?

hurricanes would destroy me!

i will make a flood protection system for it

And yes, MN is not known for their earthquakes

More metacharacters: |

The alternatives can be real expressions and not just literals

^[Gg]ood|[Bb]ad

will match the lines

good luck with it

or you just have bad oppinions

miss u very badlyyy

it's a bad habit

not cus guns are bad

good music

More metacharacters: (and)

Subexpressions are often contained in parentheses to constrain the
alternatives

^([Gg]ood|[Bb]ad)

will match the lines

bad words

bad bad boys

bad news

good evening/morning Melodyy and scout!

good Debs

good to seem I'm innocent

bad day here Orphic

More metacharacters: ?

The question mark indicates that the indicated expression is optional

[Gg]eorge([Ww]\.)? [Bb]ush

will match the lines

Chief Judge Vaughn Walker of the US District Court in California has ruled that
President George W. Bush is a felon.

george bush calls it the {"internets"}

george bush is a legend

One thing to note...

In the following

[Gg]eorge([Ww]\.)? [Bb]ush

we wanted to match a “.” as a period; to do that, we had to “escape” the
metacharacter, preceding it with a backslash

In general, we have to do this for any metacharacter we want to include in
our match

More metacharacters: * and +

The * and + signs are metacharacters used to indicate repetition; * means
“any number, including none, of the item” and + means “at least one of the
item”

\(.*\)

will match the lines

anyone wanna chat? (24, m, germany)

hello, 20.m here... (east area + drives + webcam)

(he means older men)

()

NOTE: These were run on LAST
YEAR’S DATA so you won’t get the

same result with chat.txt

More metacharacters: * and +

The * and + signs are metacharacters used to indicate repetition; * means
“any number, including none, of the item” and + means “at least one of the
item”

[0-9]+ (.*)[0-9]+

will match the lines

working as MP here 720 MP battallion, 42nd birgade

so say 2 or 3 years at colleage and 4 at uni makes us 23 when and if we finish

fixing to spend over $15,00 to fill two 2.5 gallon gas jugs

it went down on several occasions for like, 3 or 4 *days*

Mmmm its time 4 me 2 go 2 bed

NOTE: These were run on LAST
YEAR’S DATA so you won’t get the

same result with chat.txt

A machine view again...

• Recall that we can think of a regular expression as a kind of machine
that moves along a string, examining each character; we can now
revisit that

• Suppose we have the simple pattern a(bb)+a, which means matching
the the character a, followed by some number of double b’s, followed
by a final a

• The state machine that would do this is given graphically as

A machine view again...

• And here is how it would process the string abbbba

More metacharacters: { and }

{ and } are referred to as interval quantifiers; the let us specify the minimum
and maximum number of matches of an expression

[Bb]ush(+[^]+ +){1,5} debate

will match the lines

Bush has historically won all major debates he's done.

in my view, Bush doesn't need these debates..

bush doesn't need the debates? maybe you are right

That's what Bush supporters are doing about the debate.

Felix, I don't disagree that Bush was poorly prepared for the debate.

indeed, but still, Bush should have taken the debate more seriously.

Keep repeating that Bush smirked and scowled during the debate

NOTE: These were run on LAST
YEAR’S DATA so you won’t get the

same result with chat.txt

More metacharacters: { and }

{m,n} means at least m but not more than n matches

{m} means exactly m matches

{m,} means at least m matches

More metacharacters: (and) revisited

In most implementations of regular expressions, the parentheses not only
limit the scope of alternatives divided by a “|”, but also can be used to
“remember” text matched by the subexpression enclosed

We refer to the matched text with \1, \2, etc.

More metacharacters: (and) revisited

So the expression

‘ ([a-zA-Z]+) \1’

will match the lines

blah blah blah blah
i was standing all all alone against the world outside...
hi anybody anybody at home
what was that movie with with brad pitt & tom cruise
ha ha ha bionicwoman, how observant

NOTE: These were run on LAST
YEAR’S DATA so you won’t get the

same result with chat.txt

Some words of warning

• So far, we have focused mainly on the presence of at least one
instance of a pattern in a string; as I mentioned at the beginning, we
are often looking to extract the matches from the target strings or
perhaps replace them

• Then we need to be a little more careful about how a match happens...

Greedy * and +

• When you specify repetition with * and +, the engine performs a
greedy search for your pattern; by that I mean it will continue to match
arbitrary characters with . until the regular expression would fail

• This is why it finds the last W in our string and not the second; we can
flip this behavior with *? and +?

