
Introduction to the R Language
Functions

Biostatistics 140.776

The R Language

Functions

Functions are created using the function() directive and are
stored as R objects just like anything else. In particular, they are R
objects of class “function”.

f <- function(<arguments>) {
Do something interesting

}

Functions in R are “first class objects”, which means that they can
be treated much like any other R object. Importantly,

Functions can be passed as arguments to other functions

Functions can be nested, so that you can define a function
inside of another function

The return value of a function is the last expression in the function
body to be evaluated.

The R Language

Function Arguments

Functions have named arguments which potentially have default
values.

The formal arguments are the arguments included in the
function definition

The formals function returns a list of all the formal
arguments of a function

Not every function call in R makes use of all the formal
arguments

Function arguments can be missing or might have default
values

The R Language

Argument Matching

R functions arguments can be matched positionally or by name. So
the following calls to sd are all equivalent

> mydata <- rnorm(100)
> sd(mydata)
> sd(x = mydata)
> sd(x = mydata, na.rm = FALSE)
> sd(na.rm = FALSE, x = mydata)
> sd(na.rm = FALSE, mydata)

Even though it’s legal, I don’t recommend messing around with the
order of the arguments too much, since it can lead to some
confusion.

The R Language

Argument Matching

You can mix positional matching with matching by name. When
an argument is matched by name, it is “taken out” of the
argument list and the remaining unnamed arguments are matched
in the order that they are listed in the function definition.

> args(lm)
function (formula, data, subset, weights, na.action,

method = "qr", model = TRUE, x = FALSE,
y = FALSE, qr = TRUE, singular.ok = TRUE,
contrasts = NULL, offset, ...)

The following two calls are equivalent.

lm(data = mydata, y ~ x, model = FALSE, 1:100)
lm(y ~ x, mydata, 1:100, model = FALSE)

The R Language

Argument Matching

Most of the time, named arguments are useful on the
command line when you have a long argument list and you
want to use the defaults for everything except for an argument
near the end of the list

Named arguments also help if you can remember the name of
the argument and not its position on the argument list
(plotting is a good example).

The R Language

Argument Matching

Function arguments can also be partially matched, which is useful
for interactive work. The order of operations when given an
argument is

1 Check for exact match for a named argument

2 Check for a partial match

3 Check for a positional match

The R Language

Defining a Function

f <- function(a, b = 1, c = 2, d = NULL) {

}

In addition to not specifying a default value, you can also set an
argument value to NULL.

The R Language

Lazy Evaluation

Arguments to functions are evaluated lazily, so they are evaluated
only as needed.

f <- function(a, b) {
a^2

}
f(2)

This function never actually uses the argument b, so calling f(2)
will not produce an error because the 2 gets positionally matched
to a.

The R Language

Lazy Evaluation

Another example

f <- function(a, b) {
print(a)
print(b)

}

> f(45)
[1] 45
Error in print(b) : argument "b" is missing, with no default
>

Notice that “45” got printed first before the error was triggered.
This is because b did not have to be evaluated until after
print(a). Once the function tried to evaluate print(b) it had to
throw an error.

The R Language

The “...” Argument

The ... argument indicate a variable number of arguments that
are usually passed on to other functions.

... is often used when extending another function and you
don’t want to copy the entire argument list of the original
function

myplot <- function(x, y, type = "l", ...) {
plot(x, y, type = type, ...)

}

Generic functions use ... so that extra arguments can be
passed to methods (more on this later).

> mean
function (x, ...)
UseMethod("mean")

The R Language

The “...” Argument

The ... argument is also necessary when the number of
arguments passed to the function cannot be known in advance.

> args(paste)
function (..., sep = " ", collapse = NULL)

> args(cat)
function (..., file = "", sep = " ", fill = FALSE,

labels = NULL, append = FALSE)

The R Language

Arguments Coming After the “...” Argument

One catch with ... is that any arguments that appear after ...
on the argument list must be named explicitly and cannot be
partially matched.

> args(paste)
function (..., sep = " ", collapse = NULL)

> paste("a", "b", sep = ":")
[1] "a:b"

> paste("a", "b", se = ":")
[1] "a b :"

The R Language

A Diversion on Binding Values to Symbol

How does R know which value to assign to which symbol? When I
type

> lm <- function(x) { x * x }
> lm
function(x) { x * x }

how does R know what value to assign to the symbol lm? Why
doesn’t it give it the value of lm that is in the stats package?

The R Language

A Diversion on Binding Values to Symbol

When R tries to bind a value to a symbol, it searches through a
series of environments to find the appropriate value. When you
are working on the command line and need to retrieve the value of
an R object, the order is roughly

1 Search the global environment for a symbol name matching
the one requested.

2 Search the namespaces of each of the packages on the search
list

The search list can be found by using the search function.

> search()
[1] ".GlobalEnv" "package:stats" "package:graphics"
[4] "package:grDevices" "package:utils" "package:datasets"
[7] "package:methods" "Autoloads" "package:base"

The R Language

Binding Values to Symbol

The global environment or the user’s workspace is always the
first element of the search list and the base package is always
the last.

The order of the packages on the search list matters!

User’s can configure which packages get loaded on startup so
you cannot assume that there will be a set list of packages
available.

When a user loads a package with library the namespace of
that package gets put in position 2 of the search list (by
default) and everything else gets shifted down the list.

Note that R has separate namespaces for functions and
non-functions so it’s possible to have an object named c and
a function named c.

The R Language

Scoping Rules

The scoping rules for R are the main feature that make it different
from the original S language.

The scoping rules determine how a value is associated with a
free variable in a function

R uses lexical scoping or static scoping. A common
alternative is dynamic scoping.

Related to the scoping rules is how R uses the search list to
bind a value to a symbol

Lexical scoping turns out to be particularly useful for
simplifying statistical computations

The R Language

Lexical Scoping

Consider the following function.

f <- function(x, y) {
x^2 + y / z

}

This function has 2 formal arguments x and y. In the body of the
function there is another symbol z. In this case z is called a free
variable.
The scoping rules of a language determine how values are assigned
to free variables. Free variables are not formal arguments and are
not local variables (assigned insided the function body).

The R Language

Lexical Scoping

Lexical scoping in R means that

the values of free variables are searched for in the
environment in which the function was defined.

What is an environment?

An environment is a collection of (symbol, value) pairs, i.e. x
is a symbol and 3.14 might be its value.

Every environment has a parent environment; it is possible for
an environment to have multiple “children”

the only environment without a parent is the empty
environment

A function + an environment = a closure or function closure.

The R Language

Lexical Scoping

Searching for the value for a free variable:

If the value of a symbol is not found in the environment in
which a function was defined, then the search is continued in
the parent environment.

The search continues down the sequence of parent
environments until we hit the top-level environment; this
usually the global environment (workspace) or the namespace
of a package.

After the top-level environment, the search continues down
the search list until we hit the empty environment.

If a value for a given symbol cannot be found once the empty
environment is arrived at, then an error is thrown.

The R Language

Lexical Scoping

Why does all this matter?

Typically, a function is defined in the global environment, so
that the values of free variables are just found in the user’s
workspace

This behavior is logical for most people and is usually the
“right thing” to do

However, in R you can have functions defined inside other
functions

Languages like C don’t let you do this

Now things get interesting — In this case the environment in
which a function is defined is the body of another function!

The R Language

Lexical Scoping

make.power <- function(n) {
pow <- function(x) {

x^n
}
pow

}

This function returns another function as its value.

> cube <- make.power(3)
> square <- make.power(2)
> cube(3)
[1] 27
> square(3)
[1] 9

The R Language

Exploring a Function Closure

What’s in a function’s environment?

> ls(environment(cube))
[1] "n" "pow"
> get("n", environment(cube))
[1] 3

> ls(environment(square))
[1] "n" "pow"
> get("n", environment(square))
[1] 2

The R Language

Lexical vs. Dynamic Scoping

y <- 10

f <- function(x) {
y <- 2
y^2 + g(x)

}

g <- function(x) {
x * y

}

What is the value of

f(3)

The R Language

Lexical vs. Dynamic Scoping

With lexical scoping the value of y in the function g is looked
up in the environment in which the function was defined, in
this case the global environment, so the value of y is 10.

With dynamic scoping, the value of y is looked up in the
environment from which the function was called (sometimes
referred to as the calling environment).

In R the calling environment is known as the parent frame

So the value of y would be 2.

The R Language

Lexical vs. Dynamic Scoping

When a function is defined in the global environment and is
subsequently called from the global environment, then the defining
environment and the calling environment are the same. This can
sometimes give the appearance of dynamic scoping.

> g <- function(x) {
+ a <- 3
+ x + a + y
+ }
> g(2)
Error in g(2) : object "y" not found
> y <- 3
> g(2)
[1] 8

The R Language

Other Languages

Other languages that support lexical scoping

Scheme

Perl

Python

Common Lisp (all languages converge to Lisp)

The R Language

Consequences of Lexical Scoping

In R, all objects must be stored in memory

All functions must carry a pointer to their respective defining
environments, which could be anywhere

The R Language

Application: Optimization

Why is any of this information useful?

Optimization routines in R like optim, nlm, and optimize
require you to pass a function whose argument is a vector of
parameters (e.g. a log-likelihood)

However, an object function might depend on a host of other
things besides its parameters (like data)

When writing software which does optimization, it may be
desirable to allow the user to hold certain parameters fixed

The R Language

Maximizing a Normal Likelihood

Write a “constructor” function

make.NegLogLik <- function(data, fixed=c(FALSE,FALSE)) {
params <- fixed
function(p) {

params[!fixed] <- p
mu <- params[1]
sigma <- params[2]
a <- -0.5*length(data)*log(2*pi*sigma^2)
b <- -0.5*sum((data-mu)^2) / (sigma^2)
-(a + b)

}
}

Note: Optimization functions in R minimize functions, so you
need to use the negative log-likelihood.

The R Language

Maximizing a Normal Likelihood

> set.seed(1); normals <- rnorm(100, 1, 2)
> nLL <- make.NegLogLik(normals)
> nLL
function(p) {

params[!fixed] <- p
mu <- params[1]
sigma <- params[2]
a <- -0.5*length(data)*log(2*pi*sigma^2)
b <- -0.5*sum((data-mu)^2) / (sigma^2)
-(a + b)

}
<environment: 0x165b1a4>
> ls(environment(nLL))
[1] "data" "fixed" "params"

The R Language

Estimating Parameters

> optim(c(mu = 0, sigma = 1), nLL)$par
mu sigma

1.218239 1.787343

Fixing σ = 2

> nLL <- make.NegLogLik(normals, c(FALSE, 2))
> optimize(nLL, c(-1, 3))$minimum
[1] 1.217775

Fixing µ = 1

> nLL <- make.NegLogLik(normals, c(1, FALSE))
> optimize(nLL, c(1e-6, 10))$minimum
[1] 1.800596

The R Language

Plotting the Likelihood

nLL <- make.NegLogLik(normals, c(1, FALSE))
x <- seq(1.7, 1.9, len = 100)
y <- sapply(x, nLL)
plot(x, exp(-(y - min(y))), type = "l")

nLL <- make.NegLogLik(normals, c(FALSE, 2))
x <- seq(0.5, 1.5, len = 100)
y <- sapply(x, nLL)
plot(x, exp(-(y - min(y))), type = "l")

The R Language

Plotting the Likelihood

0.6 0.8 1.0 1.2 1.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

ex
p(

−
(y

 −
 m

in
(y

))
)

The R Language

Plotting the Likelihood

1.70 1.75 1.80 1.85 1.90

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

x

ex
p(

−
(y

 −
 m

in
(y

))
)

The R Language

Lexical Scoping Summary

Objective functions can be “built” which contain all of the
necessary data for evaluating the function.

No need to carry around long argument lists — useful for
interactive and exploratory work.

Code can be simplified and cleaned up and
compartmentalized.

Reference: Robert Gentleman and Ross Ihaka (2000). “Lexical
Scope and Statistical Computing,” JCGS, 9, 491–508.

The R Language

