
Closures allow us to trap auxiliary arguments or data so
that they don't need to be specified by the user

more elegant than and less confusing than parameters
of a function with a default value.

But where they really become essential is when our
function can update the value of the "hidden" variables

When the function has state that gets updated across
separate calls to that function (instance)

For those of you who know C, closures have a similarity
to static variables within a routine.

value persists across calls to routine, and any changes
persist.

int
numTimesCalled()
{
 static int count = 0;
 count = count + 1;
 return(count);
}

Dynamic Programming
Use results from previous computations when doing
subsequent computations

Consider, e.g., the Fibonacci sequence
 F(n) = F(n-1) + F(n-2)
 F(0) = 1, F(1) = 1

generator =
function()
{
 .Fibonacci<- c(1, 1)
 function(n) {
 curMax = length(.Fibonacci)
 if(curMax >= n)
 return(.Fibonacci[n])

 for(i in seq(curMax + 1, n))
 .Fibonacci[i] <<- .Fibonacci[i - 1] + .Fibonacci[i - 2]

 .Fibonacci[n]
 }
}
fibonacci = generator()

fib = generator()

fib(4)
fib(8)

environment(fib)$.Fibonacci
[1] 1 1 2 3 5 8 13 21

Processing big XML files
Want to get the times of change for each topic in
Wikipedia

Wikipedia is an 11G XML file
Read into memory as a tree, then use XPath
Very slow, may not even be feasible.

So we need to use a different approach that doesn’t
create the tree in memory, but instead reads the XML
as a stream reporting “events” such as
 at the start of an element
 closing an element
 reading text
 comment...

SAX - Simple API for XML

This is an “event” driven style of programming.
We give the XML function a collection of functions
associated with the different events.

The XML parser calls the appropriate function when
each event occurs, passing information about the event,
e.g. the name and attributes of the node
 the content of the “text”
 name of the

create =
function(verbose = FALSE)
{
 times <- character()

 inTotalTimeElement = FALSE

 # called for start of <Total_Time> element, so always set inTotalTime to TRUE
 tt = function(name, ...) {

 if(verbose) cat("In tt\n")

 inTotalTimeElement <<- TRUE
 }

 # If we are in a Total_Time element, put the x into the times vector
 collect = function(x) {
 if(verbose) cat("in collect\n")

 if(inTotalTimeElement)
 times <<- c(times, x)
 }

 # Need to turn inTotalTimeElement off if it is on.
 endElement = function(name, ...) {

 if(name == "Total_Time")
 inTotalTimeElement <<- FALSE
 }

 # return a list of functions which are used by the SAX parser and also .result
which gives us the values
 list("Total_Time" = tt,
 .endElement = endElement,
 .text = collect,
 .result = function()
 as.numeric(times))
}

h = create()

o = xmlEventParse("http://eeyore.ucdavis.edu/itunes-
short.xml", handlers = h, saxVersion = 2)

h$.result()

Analogous to classes with methods in Python, Java, C++

A class defines the nature of each instance

data (variables) and

methods which can access and update those and
those updates are available in calls to subsequent
methods.

In these languages, we are always dealing with a
reference to a variable within object, not a copy.

But in R, we always deal with copies of values
but closures allow us to have mutable state.

createNormal =
function(mu = 0, sd = 1)
{

 sample =
 function(num = 1)
 rnorm(num, mu, sd)

 shift =
 function(to)
 mu <<- to

 scale =
 function(by)
 sd <<- by

 list(sample = sample, shift = shift, scale = scale)
}

funs = createNormal()

funs$sample()
funs$sample(10)

funs$shift(-10)
mean(funs$sample(1000))

funs$scale(10)
sd(funs$sample(1000))

