Input Example Code
Examples

- Mannheim wireless data
- Enron email summary information
 (Mark's example lab)
- Ad hoc longitudinal data
 Name, age, SSN
 v11, v12, v13, .., v15, ...
 v21, v22, .., v24, v25
 with variable number of observations per person.
Data

- Each record has a
 - time stamp \(t=1139692477303 \)
 - own MAC address \(\text{id}=00:02:2D:21:0F:33 \)
 - position \(\text{pos}=0.0,0.5,0.0 \)
 - orientation \(\text{degree}=130.5 \)
- for each base station it can detect, measures
 - MAC address of the base station
 - signal strength
 - channel frequency
 - whether it is an access point or ad hoc network device.
First off, `txt = readLines(file)`

Remove the lines that start with #

- Use regular expression
  ```r
  txt = txt[ - grep("^#\", txt) ]
  ```

- or `txt = txt[substring(txt, 1, 1) != "#"]`

Now split each line at the ; to get the tokens

- `records = strsplit(txt, ";")`
Consider simple record
\[
t=1139692477303; id=00:02:2D:21:0F:33; pos=0.0,0.05,0.0; degree=130.5;
00:14:bf:b1:97:8a=-43,2437000000,3; 00:0f:a3:39:e1:c0=-52,2462000000,3
\]

So 1 position, detected 2 other wireless devices

Consider if we stacked the wireless device entries
\[
00:14:bf:b1:97:8a=-43,2437000000,3
00:0f:a3:39:e1:c0=-52,2462000000,3
\]

Starting to look a lot more usual

Let’s turn this into a character matrix
(turn the values into numbers later in one operation for all of the records)
00:14:bf:b1:97:8a=-43,2437000000,3
00:0f:a3:39:e1:c0=-52,2462000000,3

For each line, split the “words” separate by = and ,

w = strsplit(txt, "=|,"") - regular expression

Turn into a 2 by 4 matrix with
MAC
matrix(unlist(w), , 4, byrow = TRUE)
Write a function to do this
(handle case where no wireless base stations)

Use this function & lapply() on all the records to
generate a list of * by 4 matrices.
All different number of rows.

```r
function(x) {
  macs = x[-(1:4)]  # drop the handheld device
  if(length(macs) == 0)
    return(matrix(NA, 0, 4))
  matrix(unlist(strsplit(macs, "=|,\")), , 4, byrow = TRUE)
}
```
Now, if we could “stack” these all together into a single matrix of 4 columns we’d almost be finished.

The `rbind()` (row bind) function is useful:

```
rbind( m1, m2, m3)
```

But we have a list of matrices, not 2. So we can’t say `rbind(list.of.matrices)`

We want R to do:

```
rbind(list.of.matrices[[1]], list.of.matrices[[2]], ....)
```

Could loop, either concatenating or pre-allocating the matrix and inserting into particular rows.
So we use `do.call()`, a powerful function for these cases.

Give the name of the function to call and a list of the arguments.

Unravels 2nd argument as we wanted above.

`do.call("rbind", list.of.matrices)`
and `as.data.frame()` and convert columns 2:4 to numbers.
We need to put the corresponding information for the hand-held device (position, degree, time) with each row in the data.frame.

Each record now maps to multiple rows of data frame.

Record 1 corresponds to `nrow(list.of.matrices[[1]])` rows.

Suppose we have a simple data.frame() of time, pos, degree in hand.held.

`hand.held[c(1, 1),]` would match the corresponding 2 rows.
* Usually, `rep()` repeats a vector a number of times
 `rep(c(1, 2), 3) => c(1, 2, 1, 2, 1, 2)`

* But `rep(vector, vector)` repeats element-wise
 `rep(c(1, 2), c(3, 2)) => c(1, 1, 1, 2, 2)`

* `i = rep(1:nrow(hand.held),
 sapply(list.of.matrices, nrow))`
* `hand.held[i]`
- Got to do checks at each step of the way
- compute summary statistics of number of elements, number of records, etc. and plot, etc.
State of the Union speeches

- Break the data into speeches, words, president, year
- EDA
- Multi-dimensional scaling to see "proximity" over time and/or party affiliation
NASA geographic & atmospheric data

Data Expo from JSM '06 organized by Paul Murrell

http://stat-computing.org/dataexpo/2006/

Many files in different directories in slightly awkward format.

VARIABLE : Mean high cloud amount (%)
FILENAME : ISCCPMonthly_avg.nc
FILEPATH : /usr/local/fer_data/data/
SUBSET : 24 by 24 points (LONGITUDE-LATITUDE)
TIME : 16-JAN-1995 00:00

113.8W 111.2W 108.8W 106.2W 103.8W 101.2W 98.8W
27 28 29 30 31 32 33
36.2N / 51: 26.00 23.00 23.00 17.00 19.50 17.00 16.00
33.8N / 50: 20.00 20.00 18.50 16.50 18.00 15.00 15.00
31.2N / 49: 16.00 16.00 14.00 12.50

Explore "important features of the data"!