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It goes against the grain of modern education to
teach children to program. What fun is there in
making plans, acquiring discipline in organizing
thoughts, devoting attention to detail and learning
to be self-critical?

Alan J. Perlis
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Statistics Curriculum: Then...
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Discussing the statistics curriculum
It’'s personal!



How is the world
different today?

High throughput technologies for collecting
vast quantities of data

Large databases for investigating subtle
associations

Interactive computing with advanced
statistical algorithms

Sophisticated searches across models and
variables to identify important risks

Statisticians working at the interface with
science



Statisticians are “part of the problem”
(in a good way!)
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Where do statisticians belong?




Statistician’s toolbelt grows

* A facility with computational tools is becoming
necessary to interact with people doing
cutting edge science

— databases
— web services, XML

* Not everything can be crammed into a
rectangular data frame

* “It's a poor workman who blames his tools (or
lack thereof)”



Statistician as scientist

« Courses in computing can be used to
train students to act like scientists rather
than automatons

* We can collect our own data

 To interact with data, we need data
technologies



“I must find out where my people
are going so that | can lead them’

J

 Complex data are being generated in all
areas and new technologies are being
applied to deal with them

* Other fields are getting sophisticated

— e.g. Majors/PhDs in bioinformatics or
statistical genetics

 Should we lead or let others show us
the way?
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What are other fields doing?



Washington University in St. Louis
School of Medicine

“This PhD program [in statistical
genetics]...offers an interdisciplinary
approach to preparing future scientists
with analytical/statistical, computational,
and human genetic methods for the
study of human disease.”



USC Keck School of Medicine

* “The objective of the PhD program [in
statistical genetics] is to produce a
statistical geneticist or genetic
epidemiologist with in-depth statistical
and analytic skills in biostatistics,
computational methods and the
molecular biosciences.”



What are we doing?



JHSPH Biostatistics

“The PhD program of the Johns Hopkins
Department of Biostatistics provides training
in the theory of probability and...biostatistical
methodology. The program is unique in its
emphasis on...requiring its graduates to
complete rigorous training in real analysis-
based probability and statistics, equivalent to
what is provided in most departments of
mathematical statistics.”



UC Davis Statistics

“the core program for every graduate
student in statistics includes graduate
level core courses in mathematical
statistics, applied statistics and
multivariate analysis. Students obtain
training in computational statistics and
can choose from a variety of special
topics courses.”



Where do statisticians belong?
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Obstacles

* |nstitutional: Curriculum development slow
and narrow in focus (also Gibson’s Law)

* Views
— Computing can be self taught and picked up as
you go
— Computing is just a skill and should not be part of
the curriculum

* Faculty training: We are not taught this; it's
not natural for us like math



Obstacles (cont'd)

* |It's easy to add material to the curriculum, but
we can’t keep students in school forever
— What material do we subtract?

— |Is computing part of the “core” or is it “extra™?

« Resource allocation: faculty who are teaching
computing to 20 students could be teaching
Intro Stat to 200 students



Who can teach this?

« Statisticians with a strong computing focus
appear “randomly” in the field

« Can we depend on this point process
forever?

— No: A(t) is going to O.

* These people will continue to appear but
there may not be a compelling reason for
them to go into statistics (or be in a statistics
department)



Can we depend on other
departments?

* I'm not sure....

* Engage CS departments to tailor
courses for us?

 Political reasons



Mathematics
Calculus I & II

Chemistry (for class of 2004-2006)

Introductory Chemistry I

Introductory Organic Chemistry
Introductory Chemistry Lab I & II
Intermediate Organic Chemistry

Intermediate Chemistry
Organic Chemistry Lab

Chemistry (for class of 2007 and later)

Introductory Chemistry I
Introductory Chemistry II

Introductory Chemistry Lab I & II
Introductory Organic Chemistry I
Introductory Organic Chemistry II
Introductory Organic Chemistry Lab

Biology

General Biology I & 11
Biochemistry

Cell Biology

Biochemistry Lab

Cell Biology Lab

Genetics

Developmental Biology
Genetics Lab or
Developmental Biology Lab

Physics
General Physics
General Physics Lab

110.106-107 or 110.108-109

030.101
030.104
030.105-106
030.201
030.204
030.225

030.101
030.102
030.105-106
030.205
030.206
030.225

020.151-152
020.305
020.306
020.315
020.316
020.330
020.363
020.340
020.373

171.103-104 or 171.101-102
173.111-112

JHU BA Program
in Biology (core
courses)



We can just conduct one big observational
experiment and see who wins.



Some fields manage to absorb change, but
withstand progress.

Alan J. Perlis (adapted)



