Computing in the Statistics Curriculum

Roger D. Peng

Johns Hopkins Bloomberg School of Public Health

JSM 2008 Denver, CO It goes against the grain of modern education to teach children to program. What fun is there in making plans, acquiring discipline in organizing thoughts, devoting attention to detail and learning to be self-critical?

Alan J. Perlis

Computers have been around for a while...

Computers have been around for a while...

Changes in Computing: Then...

...And Now

Statistics Curriculum: Then...

CONTENTS

CHAP.					
	EDITORS' PREFACE		- 199		PAGE
	PREFACE TO TENTH EDITION				ix
I.	INTRODUCTORY				ī
11.	DIAGRAMS .				24
III.	DISTRIBUTIONS	1.	÷	-	41
IV					41
	TESTS OF GOODNESS OF FIT, INDEPL	ENDEN	CE /	IND	
	HOMOGENEITY; WITH TABLE OF X2	•			. 78
v.	TESTS OF SIGNIFICANCE OF MEANS, DI MEANS, AND REGRESSION COEFFICIEN	FFERE	NCES	OF	
			÷		114
	THE CORRELATION COEFFICIENT .				175
VII.	INTRACLASS CORRELATIONS AND THE	Anai	YSIS.	OF	
	VARIANCE				211
	FURTHER APPLICATIONS OF THE ANALYSIS		ARIAN	CE	248
IX.	THE PRINCIPLES OF STATISTICAL ESTIMAT	TION		÷.,	200
	Sources used for Data and Methods			-	
			-		336
	BIBLIOGRAPHY				340
	INDEX				351

TABLES

1.	AND II.	No	RMAI	L DIS	TRIBU	TION		. '				77
III.	TABLE	OF ,	χ ²									112
IV.	TABLE	0F 1										
V.A.	CORREL	ATIO	N C	DEFEI	TENT	Ste	VIELO			· .	•	174
											•	209
. 377	CORREL.	A 110										210
v1.	TABLE	OF #			•				- · ·		242	247

RA Fisher, *Statistical Methods for Research Workers*

...And now?

8 Hypothesis Testing

345

403

10 Decision Theor

	10.1	Introduction 461
	10.2	Common Decision The
		10.2.1 Point Estimation 10.2.2 Hypothesis Testing 10.2.3 Interval Estimation
	10.3	
	1	10.3.1 Bayesian Decision I 10.3.2 Finding Bayes Rule
	10.4	Admissibility of Decis
s 378		10.4.1 Comparing Decision 10.4.2 Finding Admissible 10.4.3 Admissibility of the
	10.5	Minimax Rules 487
, 19 M A	10.6	Invariant Decision Pro
·	10.7	Stein's Paradox 495
		Exercises 500
		Miscellanea 507

11 The Analysis Variance

- 11.1 Introduction 509
- 11.2 The Oneway Analysis 11.2.1 Model and Distribution 11.2.2 The Classic ANOV 11.2.3 Inferences Regardi 11.2.4 The ANOVA F Tr 11.2.5 Simultaneous Estin 11.2.6 Partitioning Sums

Casella & Berger

8.1 Introduction 345

8.2 Methods of Finding Tests 346
8.2.1 Likelihood Ratio Tests 346
8.2.2 Invariant Tests 351
8.2.3 Bayesian Tests 354
8.2.4 Union-Intersection and Intersection-Union Tests 356

8.3 Methods of Evaluating Tests 358

8.3.1 Error Probabilities and the Power Function 358
8.3.2 Most Powerful Tests 365
8.3.3 Unbiased and Invariant Tests 370
8.3.4 Locally Most Powerful Tests 376
8.3.5 Sizes of Union-Intersection and Intersection-Union Tests 378

8.4 Other Considerations 381

8.4.1 Asymptotic Distribution of LRTs 381 8.4.2 Other Large-Sample Tests 383

Exercises 385

Miscellanea 400

9 Interval Estimation

9.1 Introduction 403

9.2 Methods of Finding Interval Estimators 406

9.2.1 Inverting a Test Statistic 406 9.2.2 Pivotal Quantities 413

- 9.2.3 Guaranteeing an Interval 416
- 9.2.4 Bayesian Intervals 422
- 9.2.5 Invariant Intervals 426

9.3 Methods of Evaluating Interval Estimators 429

9.3.1 Size and Coverage Probability 429

- 9.3.2 Test-Related Optimality 433
- 9.3.3 Invariant Optimality 437

- 3.2 The method of least squares, 94
 - A General and linear regression models B Weighted least squares
- 3.3 Maximum likelihood estimates, 99
- A One parameter families
 - B Maximum likelihood in multiparameter families
- C Maximum likelihood and other methods
- 3.4 Comments, 107
- 3.5 Problems and complements, 108
- 3.6 References, 114

COMPARISON OF ESTIMATES—OPTIMALITY THEORY

- 4.1 Criteria of estimation; 116
- 4.2 Uniformly minimum variance unbiased estimates, 120
- 4.3 The information inequality, 126
- 4.4 Large sample theory, 132
 - A Consistency
 - B Asymptotic normality and related properties
 - C Asymptotic efficiency and optimality
- 4.5 Unbiased and maximum likelihood estimates. A comparison, 141
- 4.6 Comments, 142
- 4.7 Problems and complements, 142
- 4.8 References, 151

5 FROM ESTIMATION TO CONFIDENCE INTERVALS AND TESTING 153

- 5.1 Precision, confidence intervals, and bounds, 153
 - A The one dimensional case
 - B Confidence regions of higher dimension
 - C Other concepts of confidence regions
 - 5.2 The elements of hypothesis testing, 163
 - A Introduction and the Neyman-Pearson framework
 - B The p value: the test statistic as evidence
 - C Power and sample size: indifference regions
 - 5.3 Confidence procedures and hypothesis testing, 177
 - A The duality between tests and confidence regions
 - B Confidence intervals and power
 - C Applications of confidence intervals to comparisons and selections
 - 5.4 Comments, 184
 - 5.5 Problems and complements, 184
 - 5.6 References, 191

6 OPTIMAL TESTS AND CONFIDENCE INTERVALS: LIKELIHOOD RATIO TESTS AND RELATED PROCEDURES

- 6.1 The Nevman-Pearson lemma, 192
- 6.2 Uniformly most powerful tests, 198
- 6.3 Uniformly most accurate confidence bounds, 206
- 6.4 Likelihood ratio and related procedures, 209
 - A Tests for the mean of a normal distribution-matched pair experiments
 - B Tests and confidence intervals for the difference in means of tw normal populations
 - C The two-sample problem with unequal variances
- 6.5 Likelihood ratio procedures for bivariate normal distributions
 - A Testing independence, confidence intervals for ρ
 - B Tests for the bivariate mean vector
- 6.6 Large sample approximations in testing, 225 A Approximations to the distribution of test statistics under B Consistency and local power
- 6.7 Comments, 232
- 6.8 Problems and complements, 233
- 6.9 References, 247

7 LINEAR MODELS—REGRESSION AND ANALYSIS OF VARIA

- 7.1 Introduction to the general linear model, 248
 - A Some examples of linear models
 - B Statement and assumptions of the general linear model
 - C What does assuming a linear model mean?
 - D Matrix formulation of the linear model
 - E Related models
- 7.2 Estimation in linear models, 260
 - A The canonical form

B Estimation of linear functions of the means: relations to le squares and unbiasedness theory

- C The variance of linear least squares estimates: the Gau Markoff theorem
- D Estimation of the error variance
- E Distribution theory: confidence intervals
- 7.3 Tests in linear models, 273
- A General theory
 - B Linear regression
 - C Analysis of variance models
- 7.4 Simultaneous confidence intervals and multiple comparisons
 - A The Tukey methods
 - B The Scheffé method

Bickel & Doksum

116

Discussing the statistics curriculum

It's personal!

How is the world different today?

- High throughput technologies for collecting vast quantities of data
- Large databases for investigating subtle associations
- Interactive computing with advanced statistical algorithms
- Sophisticated searches across models and variables to identify important risks
- Statisticians working at the interface with science

Statisticians are "part of the problem" (in a good way!)

McCall MN, Irizarry RA (2008) Consolidated strategy for the analysis of microarray spike-in data. Nucleic Acids Research. To appear.

Meluh PB, Pan X, Yuan DS, Tiffany C, Chen O, Sookhai-Mahadeo S, Wang X, Peyser BD, **Irizarry** RA, Spencer FA, Boeke JD (2008) Analysis of genetic interactions on a genome-wide scale in budding yeast: diploid-based synthetic lethality analysis by microarray. *Methods in Molecular Biology* 416:221-247.

Bjornsson HT, Albert TJ, Ladd-Acosta CM, Green RD, Rongione MA, Middle CM, Irizarry RA, Broman KW, Feinberg AP (2008) SNP-specific array-based allelespecific expression analysis. *Genome Research*. To appear.

Lin S, Carvalho B, Cutler D, Arking D, Chakravarti A, Irizarry RA (2008) Validation and Extension of an Empirical Bayes Method for SNP Calling on Affymetrix Microarrays. *Genome Biology*. To appear.

Irizarry RA, Ladd-Acosta C, Carvalho B, Wu H, Brandenburg SA, Wen B, Feinberg AP (2008) Comprehensive High-throughput Arrays for Restriction endonucleasebased Methylation (CHARM). Genome Research. To appear

Rodriguez-Quinones JF, Irizarry RA, Diaz-Blanco NL, Rivera-Molina FE, Gomez-Garzon D, Rodriguez-Medina JR (2008) Global mRNA expression analysis in myosin II deficient strains of Saccharomyces cerevisiae reveals an impairment of cell integrity functions. *BMC Genomics* 9(1):34

Bengtsson H, Irizarry R, Carvalho B, Speed TP (2008) Estimation and assessment of raw copy numbers at the single locus level. *Bioinformatics*. To appear.

Gopi Goswami, Jun S. Liu, Wing H. Wong (2007) Evolutionary Monte Carlo Methods for Clustering. Journal of Computational & Graphical Statistics, Vol. 16, No. 4, pp.855-876. [preprint] Qing Zhou, Hiram Chipperfield, Douglas A Melton, Wing Hung Wong (2007) A gene regulatory network in mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA, 104:16438-16443. doi_10.1073_pnas.0701014104. [online] Qing Zhou and Wing Hung Wong (2007) Coupling hidden Markov models for the discovery of cis-regulatory modules in multiple species. Annals of Applied Statistics, 1:36-65. DOI:10.1214/07-AOAS103. [preprint] [software] Steven A. Vokes, Hongkai Ji, Scott McCuine, Toyoaki Tenzen, Shane Giles, Sheng Zhong, William J. R. Longabaugh, Eric H. Davidson, Wing H. Wong and Andrew P. McMahon (2007)Genomic characterization of Gli-activator targets in sonic hedgehog-mediated neural patterning. Development, 134, 1977-1989. doi: 10.1242/dev.001966. [online] [in the news] Karen Kapur, Yi Xing, Zhengqing Ouyang and Wing Hung Wong (2007) Exon array assessment of gene expression. Genome Biology, 2007, 8:R82. doi:10.1186/gb-2007-8-5-r82. [online] Yi Xing, Zhengging Ouyang, Karen Kapur, Matthew P. Scott, Wing Hung Wong (2007) Assessing the Conservation of Mammalian Gene Expression Using High-density Exon Arrays. Molecular Biology and Evolution, 2007 24(6):1283-1285; doi:10.1093/molbev/msm061. [online] [Supplementary Data] Ji-Hye Paik, Ramya Kollipara, Gerald Chu, Hongkai Ji, Yonghong Xiao, Zhihu Ding, Lili Miao, Zuzana Tothova, James W. Horner, Daniel R. Carrasco, Shan Jiang, D. Gary Gilliland, Lynda Chin, Wing H. Wong, Diego H. Castrillon, and Ronald A. DePinho (2007) FoxOs Are Lineage-Restricted Redundant Tumor Suppressors and Regulate

Endothelial Cell Homeostasis.

Cell, Vol 128, 309-323. DOI 10.1016/j.cell.2006.12.029 . [online]

Where do statisticians belong?

Statistician's toolbelt grows

- A facility with computational tools is becoming necessary to interact with people doing cutting edge science
 - databases
 - web services, XML
- Not everything can be crammed into a rectangular data frame
- "It's a poor workman who blames his tools (or lack thereof)"

Statistician as scientist

- Courses in computing can be used to train students to act like scientists rather than automatons
- We can collect our own data
- To interact with data, we need data technologies

"I must find out where my people are going so that I can lead them"

- Complex data are being generated in all areas and new technologies are being applied to deal with them
- Other fields are getting sophisticated
 - e.g. Majors/PhDs in bioinformatics or statistical genetics
- Should we lead or let others show us the way?

4.	Time Series	
	Milk, Tea, and Coffee (Acquire and Parse)	55
	Cleaning the Table (Filter and Mine)	55
	A Simple Plot (Represent and Refine)	57
	Labeling the Current Data Set (Refine and Interact)	59
	Drawing Axis Labels (Refine)	62
	Choosing a Proper Representation (Represent and Refine)	73
	Using Rollovers to Highlight Points (Interact)	76
	Ways to Connect Points (Refine)	77
	Text Labels As Tabbed Panes (Interact)	83
	Interpolation Between Data Sets (Interact)	87
	End of the Series	92
5.	Connections and Correlations	
	Changing Data Sources	94
	Problem Statement	95
	Preprocessing	96
	Using the Preprocessed Data (Acquire, Parse, Filter, Mine)	111
	Displaying the Results (Represent)	118
	Returning to the Question (Refine)	121
	Sophisticated Sorting: Using Salary As a Tiebreaker (Mine)	126
	Moving to Multiple Days (Interact)	127
	Smoothing Out the Interaction (Refine)	132
	Deployment Considerations (Acquire, Parse, Filter)	133
6.	Scatterplot Maps	145
۰.	Preprocessing	
	Loading the Data (Acquire and Parse)	. 145
	Drawing a Scatterplot of Zip Codes (Mine and Represent)	155
	Highlighting Points While Typing (Refine and Interact)	157
	Show the Currently Selected Point (Refine)	158
	Progressively Dimming and Brightening Points (Refine)	. 162
	Zooming In (Interact)	165
	Changing How Points Are Drawn When Zooming (Refine)	167
	Deployment Issues (Acquire and Refine)	177
	Next Steps	178
	r tent orepa	180

7.	Trees, Hierarchies, and Recursion
	Using Recursion to Build a Directory Tree
	Using a Queue to Load Asynchronously (Interact)
	An Introduction to Treemaps
	Which Files Are Using the Most Space?
	Viewing Folder Contents (Interact)
	Improving the Treemap Display (Refine)
	Flying Through Files (Interact)
	Next Steps
8.	Networks and Graphs
	Simple Graph Demo
	A More Complicated Graph
	Approaching Network Problems
	Advanced Graph Example
	Mining Additional Information
9.	Acquiring Data
,	Where to Find Data
	Tools for Acquiring Data from the Internet
	Locating Files for Use with Processing
	Loading Text Data
	Dealing with Files and Folders
	Listing Files in a Folder
	Asynchronous Image Downloads
	Using openStream() As a Bridge to Java
	Dealing with Byte Arrays
	Advanced Web Techniques
	Using a Database
	Dealing with a Large Number of Files
10.	Parsing Data
	Levels of Effort
	Tools for Gathering Clues
	Text Is Best
	Text Markup Languages

B Fry. Visualizing Data

What are other fields doing?

Washington University in St. Louis School of Medicine

 "This PhD program [in statistical genetics]...offers an interdisciplinary approach to preparing future scientists with analytical/statistical, computational, and human genetic methods for the study of human disease."

USC Keck School of Medicine

 "The objective of the PhD program [in statistical genetics] is to produce a statistical geneticist or genetic epidemiologist with in-depth statistical and analytic skills in biostatistics, computational methods and the molecular biosciences." What are we doing?

JHSPH Biostatistics

 "The PhD program of the Johns Hopkins Department of Biostatistics provides training in the theory of probability and...biostatistical methodology. The program is unique in its emphasis on...requiring its graduates to complete rigorous training in real analysisbased probability and statistics, equivalent to what is provided in most departments of mathematical statistics."

UC Davis Statistics

 "the core program for every graduate student in statistics includes graduate level core courses in mathematical statistics, applied statistics and multivariate analysis. Students obtain training in computational statistics and can choose from a variety of special topics courses."

Where do statisticians belong?

xkcd.com

Where do statisticians belong?

xkcd.com

Obstacles

- Institutional: Curriculum development slow and narrow in focus (also Gibson's Law)
- Views
 - Computing can be self taught and picked up as you go
 - Computing is just a skill and should not be part of the curriculum
- Faculty training: We are not taught this; it's not natural for us like math

Obstacles (cont'd)

- It's easy to add material to the curriculum, but we can't keep students in school forever
 - What material do we subtract?
 - Is computing part of the "core" or is it "extra"?
- Resource allocation: faculty who are teaching computing to 20 students could be teaching Intro Stat to 200 students

Who can teach this?

- Statisticians with a strong computing focus appear "randomly" in the field
- Can we depend on this point process forever?
 - No: $\lambda(t)$ is going to 0.
- These people will continue to appear but there may not be a compelling reason for them to go into statistics (or be in a statistics department)

Can we depend on other departments?

- I'm not sure....
- Engage CS departments to tailor courses for us?
- Political reasons

Mathematics

Calculus I & II

Chemistry	(for c	lass of	2004-2006)
-----------	--------	---------	------------

Introductory Chemistry I	030.101
Introductory Organic Chemistry	030.104
Introductory Chemistry Lab I & II	030.105-106
Intermediate Organic Chemistry	030.201
Intermediate Chemistry	030.204
Organic Chemistry Lab	030.225

Chemistry (for class of 2007 and later)

Introductory Chemistry I	030.101
Introductory Chemistry II	030.102
Introductory Chemistry Lab I & II	030.105-106
Introductory Organic Chemistry I	030.205
Introductory Organic Chemistry II	030.206
Introductory Organic Chemistry Lab	030.225

Biology

General Biology I & II	020.151-152
Biochemistry	020.305
Cell Biology	020.306
Biochemistry Lab	020.315
Cell Biology Lab	020.316
Genetics	020.330
Developmental Biology	020.363
Genetics Lab or	020.340
Developmental Biology Lab	020.373

Physics

General Physics General Physics Lab 171.103-104 or 171.101-102 173.111-112 JHU BA Program in Biology (core courses) We can just conduct one big observational experiment and see who wins.

Some fields manage to absorb change, but withstand progress.

Alan J. Perlis (adapted)