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Example: Effect of treatment in a randomized controlled

experiment

11 pairs of rats, each pair from the same litter.

Randomly—by coin tosses—put one of each pair into “en-

riched” environment; other sib gets ”normal” environment.

After 65 days, measure cortical mass (mg).

treatment 689 656 668 660 679 663 664 647 694 633 653
control 657 623 652 654 658 646 600 640 605 635 642
difference 32 33 16 6 21 17 64 7 89 -2 11

How should we analyze the data?

(Cartoon of [?]. See also [?] and [?, pp. 498ff]. The experiment had 3 levels, not 2,

and there were several trials.)
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Informal Hypotheses

Null hypothesis: treatment has “no effect.”

Alternative hypothesis: treatment increases cortical mass.

Suggests 1-sided test for an increase.
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Test contenders

• 2-sample Student t-test:

mean(treatment) - mean(control)

pooled estimate of SD of difference of means

• 1-sample Student t-test on the differences:

mean(differences)

SD(differences)/
√

11

Better, since littermates are presumably more homoge-

neous.

• Permutation test using t-statistic of differences: same

statistic, different way to calculate P -value. Even better?
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Strong null hypothesis

Treatment has no effect whatsoever—as if cortical mass were

assigned to each rat before the randomization.

Then equally likely that the rat with the heavier cortex will

be assigned to treatment or to control, independently across

littermate pairs.

Gives 211 = 2,048 equally likely possibilities:

difference ±32 ±33 ±16 ±6 ±21 ±17 ±64 ±7 ±89 ±2 ±11

For example, just as likely to observe original differences as

difference -32 -33 -16 -6 -21 -17 -64 -7 -89 -2 -11
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Weak null hypothesis

On average across pairs, treatment makes no difference.
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Alternatives

Individual’s response depends only on that individual’s assign-

ment

Special cases: shift, scale, etc.

Interactions/Interference: my response could depend on whether

you are assigned to treatment or control.
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Assumptions of the tests

• 2-sample t-test: masses are iid sample from normal dis-
tribution, same unknown variance, same unknown mean.
Tests weak null hypothesis (plus normality, independence,
non-interference, etc.).

• 1-sample t-test on the differences: mass differences are
iid sample from normal distribution, unknown variance,
zero mean. Tests weak null hypothesis (plus normality,
independence, non-interference, etc.)

• Permutation test: Randomization fair, independent across
pairs. Tests strong null hypothesis.

Assumptions of the permutation test are true by design:
That’s how treatment was assigned.
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Student t-test calculations

Mean of differences: 26.73mg
Sample SD of differences: 27.33mg
t-statistic: 26.73/(27.33/

√
11) = 3.244.

P -value for 1-sided t-test: 0.0044

Why do cortical weights have normal distribution?

Why is variance of the difference between treatment and con-
trol the same for different litters?

Treatment and control are dependent because assigning a
rat to treatment excludes it from the control group, and vice
versa.

Does P -value depend on assuming differences are iid sample
from a normal distribution? If we reject the null, is that
because there is a treatment effect, or because the other
assumptions are wrong?
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Permutation t-test calculations

Could enumerate all 211 = 2,048 equally likely possibilities.

Calculate t-statistic for each.

P -value is

P =
number of possibilities with t ≥ 3.244

2,048

(For mean instead of t, would be 2/2,048 = 0.00098.)

For more pairs, impractical to enumerate, but can simulate:

Assign a random sign to each difference.

Compute t-statistic

Repeat 100,000 times

P ≈
number of simulations with t ≥ 3.244

100,000
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Calculations

simPermuTP <- function(z, iter) {
# P.B. Stark, www.stat.berkeley.edu/~stark 5/14/07
# simulated P-value for 1-sided 1-sample t-test under the
# randomization model.

n <- length(z)
ts <- mean(z)/(sd(z)/sqrt(n)) # t test statistic
sum(replicate(iter, {zp <- z*(2*floor(runif(n)+0.5)-1);

tst <- mean(zp)/(sd(zp)/sqrt(n));
(tst >= ts)

}
)

)/iter
}
simPermuTP(diffr, 100000)
0.0011

(versus 0.0044 for Student’s t distribution)
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Other tests: sign test, Wilcoxon signed-rank test

Sign test: Count pairs where treated rat has heavier cortex,
i.e., where difference is positive.

Under strong null, distribution of the number of positive dif-
ferences is Binomial(11, 1/2). Like number of heads in 11
independent tosses of a fair coin. (Assumes no ties w/i pairs.)

P -value is chance of 10 or more heads in 11 tosses of a fair
coin: 0.0059.

Only uses signs of differences, not information that only the
smallest absolute difference was negative.

Wilcoxon signed-rank test uses information about the order-
ing of the differences: rank the absolute values of the dif-
ferences, then give them the observed signs and sum them.
Null distribution: assign signs at random and sum.
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Still more tests, for other alternatives

All the tests we’ve seen here are sensitive to shifts–the alter-

native hypothesis is that treatment increases response (cor-

tical mass).

There are also nonparametric tests that are sensitive to other

treatment effects, e.g., treatment increases the variability of

the response.

And there are tests for whether treatment has any effect at

all on the distribution of the responses.

You can design a test statistic to be sensitive to any change

that interests you, then use the permutation distribution to

get a P -value (and simulation to approximate that P -value).

14



Silliness

Treat ordinal data (e.g., Likert scale) as if measured on a

linear scale; use Student t-test.

Maybe not so silly for large samples. . .

t-test asymptotically distribution-free.

How big is big?
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Back to Rosenzweig et al.

Actually had 3 treatments: enriched, standard, deprived.

Randomized 3 rats per litter into the 3 treatments, indepen-

dently across n litters.

How should we analyze these data?
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Test contenders

n litters, s treatments (sibs per litter).

• ANOVA–the F -test:

F =
BSS/(s− 1)

WSS/(n− s)

• Permutation F -test: use permutation distribution instead
of F distribution to get P -value.

• Friedman test: Rank within litters. Mean rank for treat-
ment i is R̄i.

Q =
12n

s(s+ 1)

s∑
i=1

(
R̄i −

s+ 1

2

)2
.

P -value from permutation distribution.
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Strong null hypothesis

Treatment has no effect whatsoever—as if cortical mass were

assigned to each rat before the randomization.

Then equally likely that each littermate is assigned to each

treatment, independently across litters.

There are 3! = 6 assignments of each triple to treatments.

Thus, 6n equally likely assignments across all litters.

For 11 litters, that’s 362,797,056 possibilities.
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Weak null hypothesis

The average cortical weight for all three treatment groups

are equal. On average across triples, treatment makes no

difference.
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Assumptions of the tests

• F -test: masses are iid sample from normal distribution,
same unknown variance, same unknown mean for all lit-
ters and treatments. Tests weak null hypothesis.

• Permutation F -test: Randomization was as advertised:
fair, independent across triples. Tests strong null hy-
pothesis.

• Friedman test: Ditto.

Assumptions of the permutation test and Friedman test are
true by design: that’s how treatment was assigned.

Friedman test statistic has χ2 distribution asymptotically.
Ties are a complication.
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F -test assumptions–reasonable?

Why do cortical weights have normal distribution for each

litter and for each treatment?

Why is the variance of cortical weights the same for different

litters?

Why is the variance of cortical weights the same for different

treatments?
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Is F a good statistic for this alternative?

F (and Friedman statistic) sensitive to differences among the

mean responses for each treatment group, no matter what

pattern the differences have.

But the treatments and the responses can be ordered: we

hypothesize that more stimulation produces greater cortical

mass.

deprived =⇒ normal =⇒ enriched
low mass =⇒ medium mass =⇒ high mass

Can we use that to make a more sensitive test?
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A test against an ordered alternative

Within each litter triple, count pairs of responses that are “in
order.” Sum across litters.

E.g., if one triple had cortical masses

deprived 640
normal 660
enriched 650

that would contribute 2 to the sum: 660 ≥ 640, 650 ≥ 640,
but 640 < 650.

Each litter triple contributes between 0 and 3 to the overall
sum.

Null distribution for the test based on the permutation dis-
tribution: 6 equally likely assignments per litter, independent
across litters.
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A different test against an ordered alternative

Within each litter triple, add differences that are “in order.”
Sum across litters.

E.g., if one triple had cortical masses

deprived 640
normal 660
enriched 650

that would contribute 30 to the sum: 660 − 640 = 20 and
650−640 = 10, but 640 < 650, so that pair contributes zero.

Each litter triple contributes between 0 and 2 × range to
the sum.

Null distribution for the test based on the permutation dis-
tribution: 6 equally likely assignments per litter, independent
across litters.
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Quick overview of nonparametrics, robustness

Parameters: related notions

• Constants that index a family of functions–e.g., the nor-

mal curve depends on µ and σ (f(x) = (2π)1/2σ−1e
−(x−µ)2

2σ2 )

• A property of a probability distribution, e.g., 2nd moment,

a percentile, etc.
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Parametric statistics: assume a functional form for the prob-
ability distribution of the observations; worry perhaps about
some parameters in that function.

Non-parametric statistics: fewer, weaker assumptions about
the probability distribution. E.g., randomization model, or
observations are iid.

Density estimation, nonparametric regression: Infinitely many
parameters. Requires regularity assumptions to make infer-
ences. Plus iid or something like it.

Semiparametrics: Underlying functional form unknown, but
relationship between different groups is parametric. E.g., Cox
proportional hazards model.

Robust statistics: assume a functional form for the proba-
bility distribution, but worry about whether the procedure is
sensitive to “small” departures from that assumed form.
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Groups A group is an ordered pair (G,×), where G is a col-
lection of objects (the elements of the group) and × is a
mapping from G

⊗
G onto G,

× : G
⊗
G → G

(a, b) 7→ a× b,

satisfying the following axioms:

1. ∃e ∈ G s.t. ∀a ∈ G, e× a = a. The element e is called the
identity .

2. For each a ∈ G, ∃a−1 ∈ G s.t. a−1×a = e. (Every element
has an inverse.)

3. If a, b, c ∈ G, then a × (b × c) = (a × b) × c. (The group
operation is associative.)
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Abelian groups If, in addition, for every a, b ∈ G, a× b = b× a
(if the group operation commutes), we say that (G,×) is an

Abelian group or commutative group.
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The permutation group Consider a collection of n objects,

numbered 1 to n. A permutation is an ordering of the objects.

We can represent the permutation as a vector. The kth

component of the vector is the number of the object that is

kth in the ordering.

For instance, if we have 5 objects, the permutation

(1,2,3,4,5) (1)

represents the objects in their numbered order, while

(1,3,4,5,2) (2)

is the permutation that has item 1 first, item 3 second, item 4

third, item 5 fourth, and item 2 fifth.

Permutations as matrices. Associativity follows from asso-

ciativity of matrix multiplication. [FIX ME!]
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The permutation group is not Abelian

For instance, consider the permutation group on 3 objects.

Let π1 ≡ (2,1,3) and π2 ≡ (1,3,2).

Then π1π2(1,2,3) = (3,1,2), but π2π1(1,2,3) = (2,3,1).
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Simulation: pseudo-random number generation

Most computers cannot generate truly random numbers, al-

though there is special equipment that can (usually, these rely

on a physical source of “noise,” such as a resistor or a radia-

tion detector). Most so-called random numbers generated by

computers are really “pseudo-random” numbers, sequences

generated by a software algorithm called a pseudo-random

number generator (PRNG) from a starting point, called a

seed. Pseudo-random numbers behave much like random

numbers for many purposes.

The seed of a pseudo-random number generator can be thought

of as the initial state of the algorithm. Each time the algo-

rithm produces a number, it alters its state—deterministically.

If you start a given algorithm from the same seed, you will

get the same sequence of pseudo-random numbers.
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Each pseudo-random number generator has only finitely many

states. Eventually—after the period of the generator, the

generator gets back to its initial state and the sequence re-

peats. If the state of the PRNG is n bits long, the period

of the PRNG is at most 2n bits—but can be substantially

shorter, depending on the algorithm.

Better generators have more states and longer periods, but

that comes at a price: speed. There is a tradeoff between the

computational efficiency of a pseudo-random number gener-

ator and the difficulty of telling that its output is not really

random (measured, for example, by the number of bits one

must examine).

32



Evaluating PRNGs

See http://csrc.nist.gov/rng/ for a suite of tests of pseudo-

random number generators. Tests can be based on statistics

such as the number of zero and one bits in a block or se-

quence, the number of runs in sequences of differing lengths,

the length of the longest run, spectral properties, compress-

ibility (the less random a sequence is, the easier it is to com-

press), and so on.
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You should check which PRNG is used by any software pack-
age you rely on for simulations. Linear Congruential Gener-
ators are of the form

xi = ((axi−1 + b) mod m)/(m− 1).

They used to be popular but are best avoided. (They tend
to have a short period, and the sequences have underlying
regularity that can spoil performance for many purposes. For
instance, if the LCG is used to generate n-dimensional points,
those points lie on at most m1/n hyperplanes in IRn.

For statistical simulations, a particularly good, efficient pseudo-
random number generator is the Mersenne Twister. The
state of the Mersenne Twister is a 624-vector of 32-bit inte-
gers and a pointer to one of those vectors. It has a period
of 219937 − 1, which is on the order of 106001. It is imple-
mented in R (it’s the default), Python, Perl, and many other
languages. For cryptography, a higher level of randomness is
needed than for most statistical simulations.
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No pseudo-random number generator is best for all purposes.

But some are truly terrible.

For instance, the PRNG in Microsoft Excel is a faulty im-

plementation of an algorithm (the Wichmann-Hill algorithm,

which combines four LCGs) that isn’t good in the first place.
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McCullough, B.D., Heiser, David A., 2008. On the accuracy

of statistical procedures in Microsoft Excel 2007. Computa-

tional Statistics and Data Analysis 52 (10), 4570–4578.

http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6V8V-4S1S6FC-5-3F&_

cdi=5880&_user=4420&_orig=mlkt&_coverDate=06%2F15%2F2008&_sk=

999479989&view=c&wchp=dGLbVzb-zSkWb&md5=85d93a6c0700f2dbc483f5ed6b239db2&ie=

/sdarticle.pdf

Excerpt: Excel 2007, like its predecessors, fails a standard set

of intermediate-level accuracy tests in three areas: statisti-

cal distributions, random number generation, and estimation.

Additional errors in specific Excel procedures are discussed.

Microsoft’s continuing inability to correctly fix errors is dis-

cussed. No statistical procedure in Excel should be used until

Microsoft documents that the procedure is correct; it is not

safe to assume that Microsoft Excel’s statistical procedures
36
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give the correct answer. Persons who wish to conduct sta-

tistical analyses should use some other package.

If users could set the seeds, it would be an easy matter to

compute successive values of the WH RNG and thus ascer-

tain whether Excel is correctly generating WH RNGs. We

pointedly note that Microsoft programmers obviously have

the ability to set the seeds and to verify the output from the

RNG; for some reason they did not do so. Given Microsoft’s

previous failure to implement correctly the WH RNG, that

the Microsoft programmers did not take this easy and obvi-

ous opportunity to check their code for the patch is absolutely

astounding.



McCullough, B.D., 2008. Microsoft’s ‘Not the Wichmann-

Hill’ random number generator. Computational Statistics and

Data Analysis 52 (10), 4587–4593.

http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6V8V-4S21TGC-2-22&_

cdi=5880&_user=4420&_orig=search&_coverDate=06%2F15%2F2008&_

sk=999479989&view=c&wchp=dGLbVtz-zSkzk&md5=38238ccd25a60a408480df345be88e34&ie=

/sdarticle.pdf
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Drawing (pseudo-)random samples using PRNGs

A standard technique for drawing a pseudo-random sample of

size n from N item is to assign each of the N items a pseudo-

random number, then take the sample to be the n items that

were assigned the n smallest pseudo-random numbers.

Note that when N is large and n is a moderate fraction of

N , PRNGs might not be able to generate all
(
N
n

)
subsets.

Henceforth, will assume that the PRNG is “good enough”

that its departure from randomness does not affect the ac-

curacy our simulations enough to matter.
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Bernoulli trials

A Bernoulli trial is a random experiment with two possible

outcomes, success and failure. The probability of success is

p; the probability of failure is 1− p.

Events A and B are independent if P (AB) = P (A)P (B).

A collection of events is independent if the probability of the

intersection of every subcollection is equal to the product of

the probabilities of the members of that subcollection.

Two random variables are independent if every event deter-

mined by the first random variable is independent of every

event determined by the second.
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Binomial distribution

Consider a sequence of n independent Bernoulli trials with

the same probability p of success in each trial. Let X be the

total number of successes in the n trials.

Then X has a binomial probability distribution:

Pr(X = x) =
(n
x

)
px(1− p)n−x. (3)
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Hypergeometric distribution

A simple random sample of size n from a finite population of

N things is a random sample drawn without replacement in

such a way that each of the
(
N
n

)
subsets of size n from the

population is equally likely to be the sample.

Consider drawing a simple random sample from a population

of N objects of which G are good and N −G are bad. Let X

be the number of good objects in the sample.

Then X has a hypergeometric distribution:

P (X = x) =

(
G
x

)(
N−G
n−x

)
(
N
n

) , (4)

for max(0, n− (N −G)) ≤ x ≤ min(n,G).
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Hypothesis testing

Much of this course concerns hypothesis tests. We will think

of a test as consisting of a set of possible outcomes (data),

called the acceptance region. The complement of the accep-

tance region is the rejection region.

We reject the null hypothesis if the data are in the rejection

region.

The significance level α is an upper bound on the chance

that the outcome will turn out to be in the rejection region

if the null hypothesis is true.
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Conditional tests

The chance is sometimes a conditional probability rather than

an unconditional probability. That is, we have a rule that

generates an acceptance region that depends on some aspect

of the data. We’ve already seen an example of that in the

rat cortical mass experiment. There, we conditioned on the

cortical masses, but not on the the randomization.

If we test to obtain conditional significance level α (or smaller)

no matter what the data are, then the unconditional signifi-

cance level is still α:

Pr{Type I error} =
∫
x

Pr{Type I error|X = x}µ(dx)

≤ sup
x

Pr{Type I error|X = x}.
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P -values

Suppose we have a family of hypothesis tests for testing a

given null hypothesis at every significance level α ∈ (0,1).

Let Aα denote the acceptance region for the test at level α.

Suppose further that the tests nest, in the sense that if α1 <

α2, then Aα1 ⊂ Aα2

Then the P -value of the hypothesis (for data X) is

inf{α : X /∈ Aα} (5)
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Confidence sets

We have a collection of hypotheses H. We know that some

H ∈ H must be true—but we don’t know which one.

A rule that uses the data to select a subset of H is a 1 − α
confidence procedure if the chance that it selects a subset

that includes H is at least 1− α.

The subset that the rule selects is called a 1− α confidence

set.

The coverage probability at G is the chance that the rule

selects a set that includes G if G ∈ H is the true hypothesis.
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Duality between tests and confidence sets

Suppose that some hypothesis H ∈ H must be true. Suppose

we have a family of significance-level α tests {AG : G ∈ H}
such that for each G ∈ H,

Pr
G
{X /∈ AG} ≤ α. (6)

Then the set

C(X) ≡ {G ∈ H : AG 3 X} (7)

is a 1− α confidence set for the true H.
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Tests and confidence sets for Bernoulli p

We have Xj ∼ Bernoulli(p). Can draw as big an iid sample

{Xj}nj=1 as we like.

We want to test the hypothesis that p ≤ p0 at level α and we

want to find a 1-sided upper confidence interval for p.

Or might want 2-sided confidence interval, or to test the

hypothesis p > p0, or a 1-sided lower confidence interval.
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Tests for Bernoulli p: fixed n

Test hypothesis p ≥ p0 at level α based on number X of suc-
cesses in n independent trials, n fixed. Then X ∼ Binomial(n, p)
with n known and p not.

Reject when X = x if

α ≥ Pr{X ≤ x||p = p0} =
x∑
t=0

(n
t

)
pt0(1− p0)n−t. (8)

Here, the notation || means “computed on the assumption
that.” It’s common to use a single vertical bar for this pur-
pose, but single bars also denote conditioning; here, we have
an assumption, not a conditional probability.

Upper confidence bound:

p+
α = max{π :

x∑
t=0

(n
t

)
πt(1− π)n−t > α}. (9)
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Upper confidence bound for binomial p

binoUpperCL <- function(n, x, cl = 0.975, inc=0.000001, p=x/n) {

if (x < n) {

f <- pbinom(x, n, p, lower.tail = TRUE);

while (f >= 1-cl) {

p <- p + inc;

f <- pbinom(x, n, p, lower.tail = TRUE)

}

p

} else {

1.0

}

}
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Lower confidence bound for binomial p

binoLowerCL <- function(n, x, cl = 0.975, inc=0.000001, p=x/n) {

if (x > 0) {

f <- pbinom(x-1, n, p, lower.tail = FALSE);

while (f >= 1-cl) {

p <- p - inc;

f <- pbinom(x-1, n, p, lower.tail = FALSE)

}

p

} else {

0.0

}

}
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Lower confidence bound for “good” items from SRS

hyperLowerCL <- function(N, n, x, cl = 0.975, p=ceiling(N*x/n)) {

if (x < n) {

f <- phyper(x-1, p, N-p, n, lower.tail = FALSE);

while (f >= 1-cl) {

p <- p - 1;

f <- phyper(x-1, p, N-p, n, lower.tail = FALSE);

}

p

} else {

0.0

}

}

51



Upper confidence bound for “good” items from SRS

hyperUpperCL <- function(N, n, x, cl = 0.975, p=floor(N*x/n)) {

if (x < n) {

f <- phyper(x, p, N-p, n, lower.tail = TRUE);

while (f >= 1-cl) {

p <- p + 1;

f <- phyper(x, p, N-p, n, lower.tail = TRUE);

}

p

} else {

1.0

}

}
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Sequential test for p

If generating each Xj is expensive (e.g., if it involves running a

climate model on supercomputer clusters for months), might

want to minimize the sample size. Sequential testing: draw

until you have strong evidence that p ≤ p0 (or that p > p0).

Null: p > p0. Control the chance of type I error.

Two common criteria: expected sample size at fixed p and

maximum expected sample size.

α: maximum chance of rejecting null when p > p0.

β: maximum chance of not rejecting null when p ≤ p1 < p0.
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Let Tm ≡
∑m
j=1Xj and

p1m

p0m
≡
pTm1 (1− p1)m−Tm

pTm0 (1− p0)m−Tm
. (10)

Ratio of binomial probability when p = p1 to binomial prob-

ability when p = p0 (binomial coefficients in the numerator

and denominator cancel).
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Wald’s sequential probability ratio test (SPRT) for p

Conclude p ≤ p0 if

p1m

p0m
≥

1− β
α

. (11)

Conclude p > p0 if

p1m

p0m
≤

β

1− α
. (12)

Otherwise, draw again.

The SPRT approximately minimizes the expected sample size

when the true p is p0 or p1 < p0. For values in (p1, p0), it can

have larger sample sizes than fixed tests.
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SPRT miracle

Don’t need to know the distribution of the test statistic under

the null hypothesis to find the critical values for the test.
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Derivation of Wald’s SPRT

Testing between two hypotheses, H0 and H1, on the basis

of data {Xj} ⊂ X , with X a measurable space. According to

both hypotheses, the {Xj} are iid. Each hypothesis specifies

a probability distribution for the data.

Suppose those two distributions are absolutely continuous

with respect to some dominating measure µ on X . Let f0 be

the density (wrt µ) of the distribution of Xj if H0 is true and

let f1 be the density (wrt µ) of the distribution of Xj if H1

is true.
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Neyman-Pearson Lemma

For testing H0 against H1 based on {Xj}nj=1, most powerful

level-α test is of the form

Reject if
Πn
j=1f1(Xj)

Πn
j=1f0(Xj)

≥ tα, (13)

with tα chosen so that the test has level α; that is, to be the

smallest value of t for which

Pr

(
Πn
j=1f1(Xj)

Πn
i=1f0(Xj)

≥ t||{Xj} iid f0

)
≤ α. (14)

(Randomization might be necessary to attain level α exactly.)
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Derivation of SPRT (contd)

At stage m, divide outcome space into 3 disjoint regions,

A0m, A1m and Am.

Draw X1. If X1 ∈ A01, accept H0 and stop. If X1 ∈ A11,

accept H1 and stop. If X1 ∈ A1, draw X2.

If you draw Xm, then: If Xm ∈ A0m, accept H0 and stop. If

Xm ∈ A1m, accept H1 and stop. If Xm ∈ Am, draw Xm+1.
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Derivation (contd)

A fixed-n test is a special case: A0m and A1m are empty for

m < n (so Am is the entire outcome space when m < n).

A0n is the acceptance region of the test, and A1n is the

complement of A0n (so Am is empty when m = n).
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Derivation (contd)

Suppose sequential procedure stops after drawing XN . N is

random.

Suppose S is a particular sequential test procedure. Let

IE(N ||h) = IE(N ||h, S) be the expected value of N if Hh is

true, h ∈ {0,1}, for test S.

Tests S and S′ have the same strength if they have the same

chances of type I errors and of type II errors (α and β).

If S and S′ have the same strength, S is better than S′ if

IE(N ||h, S) ≤ IE(N ||h, S′) for h = 1,2, with strict inequality for

either h = 1 or h = 2 (or both).
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Admissible, best, and optimal sequential tests

A sequential test is admissible if there is no better test of
the same strength.

A test of a given strength is best if, among all tests of
that strength, it has the smallest values of both IE(N ||0)
and IE(N ||1). (This is the analog of a most powerful test in
the fixed-n setting.)

A test S∗ is optimal if it is admissible and

max
h

IE(N ||h, S∗) ≤ max
h

IE(N ||h, S) (15)

for all admissible tests S with the same strength as S∗.

The efficiency of a sequential test S is

maxh IE(N ||h, S∗)
maxh IE(N ||h, S)

(16)

where S∗ is an optimal test with the same strength as S.
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Bayes decision

Suppose we had a prior on {H0, H1}:

Pr{H0 is true } = π0, Pr{H1 is true } = π1 = 1− π0. (17)

Let

phm ≡ Πm
j=1fh(Xj), h ∈ {0,1}. (18)

After making m draws, the posterior probability of Hh given

the data {Xj} is

πhm =
πhphm

π0p0m + π1p1m
. (19)
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Bayes decision, contd

Let λh ∈ (1/2,1) be the desired posterior probability of ac-

cepting hypothesis Hh when it is true, h ∈ {0,1}.

Then we could test by accepting Hh at stage m (and stop-

ping) if πhm ≥ λh at stage m, and drawing again if π0m < λ0

and π1m < λ1.

Implicitly defines

Ahm = {x : πhm ≥ λh if Xj = xj, j = 1, . . . , n}. (20)

Need A0m, A1m to be disjoint. Suppose not: π0m ≥ λ0 and

π1m ≥ λ1. Then 1 = π0m+π1m ≥ λ0+λ1 > 1, a contradiction.
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Bayes decision, contd

Re-write stopping rule:

Accept H0 at stage m if

p1m

p0m
≤
π0

π1
·

1− λ0

λ0
; (21)

accept H1 at stage m if

p1m

p0m
≥
π0

π1
·

λ1

1− λ1
. (22)

Right hand sides don’t depend on m.
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Even if {πh} do not exist, makes sense to use the rule

• accept H0 if p1m
p0m
≤ a

• accept H1 if p1m
p0m
≥ b

• draw again if a < p1m
p0m

< b

for some a < b. This is the SPRT.
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Cylindrical points

Have a potentially infinite sequence of observations, (Xj)
∞
j=1.

Each possible sequence is an element of IR∞.

Suppose we have a finite sequence (xj)
m
j=1.

The cylindrical point defined by (xj)
m
j=1 is

C((xj)
m
j=1) ≡ {y ∈ IR∞ : yj = xj, j = 1, . . . ,m}. (23)

Suppose S ⊂ IR∞. If there is some (xj)
m
j=1 for which S =

C((xj)
m
j=1), then S is a cylindrical point of order m.
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The cylindrical point C((xj)
m
j=1) is of type 0 iff

p1m

p0m
≤ a (24)

and

a <
p1k

p0k
< b, k = 1, . . . ,m− 1. (25)

The cylindrical point C((xj)
m
j=1) is of type 1 iff

p1m

p0m
≥ b (26)

and

a <
p1k

p0k
< b, k = 1, . . . ,m− 1. (27)
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Let Ch be the union of all cylindrical points of type h, h = 0,1.

Then

Pr{C0 ∪ C1||Hh} = 1, h = 0,1. (28)

(Requires work to show–this is where iid assumption is used.)

This means that the procedure terminates with probability 1,

if H0 is true or if H1 is true.

For every element of C1, p1m
p0m
≥ b, so

Pr{C1||H1} ≥ bPr{C1||H0} = bα. (29)

Similarly,

β = Pr{C0||H1} ≤ aPr{C0||H0}. (30)
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We also have

Pr{C0||H0} = 1− α and Pr{C1||H1} = 1− β. (31)

Hence

1− β ≥ bα (32)

and

β ≤ a(1− α). (33)

Rearranging yields

α

1− β
≤

1

b
(34)

and
β

1− α
≤ a. (35)
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Notes:

• iid assumption can be weakened substantially. Only used

to prove that Pr{C0 ∪ C1||Hh} = 1.

• only need to know the likelihood function under the two

hypotheses, α, and β

• can sharpen the choice of thresholds, but not by much if

α and β are small.
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References on sequential tests for Bernoulli p

[?, ?, ?]

References on sequential tests forMonte Carlo p

[?, ?, ?]

References on 2-SPRT, etc. [FIX ME!]
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Assignment: comparing SPRT and fixed sample-size tests

Implement the SPRT in R from scratch.

Taking p0 = 0.05, p1 = 0.045, α = 0.001, β = 0.01, estimate

(by simulation) the expected number of samples that must

be drawn when p = 0.01,0.02, . . . ,0.1.

Compare the expected sample sizes with sample sizes for a

fixed-n test with the same α and β.

Justify your choice of the number of replications to use in

your simulations.

For each of the 10 scenarios, report the empirical fraction of

type I and type II errors and 99% confidence intervals for the

probabilities of those errors.
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Assignment hint

Order of operations matters for accuracy and stability.

Raising a small number to a high power will eventually give

you zero (to machine precision). If you calculate the nu-

merator and the denominator in SPRT separately, you will

eventually get nonsense as m gets large.

Rather than take a ratio of large products that are each going

to zero, it’s much more stable to take a product of ratios that

are all close to 1.
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Assignment hint, contd.

So, compute

(p1/p0)Tm((1− p1)/(1− p0))m−Tm (36)

rather than

[pTm1 (1− p1)m−Tm]/[pTm0 (1− p0)m−Tm]. (37)

If you want to work with the log SPR, compute

Tm log((p1/p0) + (m− Tm) log((1− p1)/(1− p0)) (38)

rather than

Tm log p1+(m−Tm) log(1−p1)−Tm log(p0)−(m−Tm) log(1−p0).

(39)
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Fisher’s exact test, Fisher’s “Lady Tasting Tea” experiment

Under what groups is the distribution of the the data invariant

in those problems?

http://statistics.berkeley.edu/~stark/SticiGui/Text/percentageTests.

htm#fisher_dependent

http://statistics.berkeley.edu/~stark/Teach/S240/Notes/ch3.

htm
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General test based on group invariance

Follow Romano (1990).

Data X ∼ P takes values in X .

G is a finite group of transformations from X to X . #G = G.

Want to test null hypothesis H0 : P ∈ Ω0.

Suppose H0 implies that P is invariant under G:

∀g ∈ G, X ∼ gX. (40)

The orbit of x (under G) is {gx : g ∈ G}. (Does the orbit of x

always contain G points?)
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Test statistic T

Let T : X → < be a test statistic.

We want to test H0 at significance level α.

For each fixed x, let T (k)(x) be the kth smallest element of

the multiset

[T (gx) : g ∈ G]. (41)

These are the G (not necessarily distinct) values T takes on

the orbit of x.
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Finding the rejection region

Let

r ≡ G− bαGc. (42)

Define

G+(x) ≡#{g ∈ G : T (gx) > T (r)(x)} (43)

and

Gr(x) ≡#{g ∈ G : T (gx) = T (r)(x)} (44)
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Finding the rejection region, contd.

Let

a(x) ≡
αG−G+(x)

Gr(x)
. (45)

Define

φ(x) ≡


1, T (x) > T (r)(x),

a(x), T (x) = T (r)(x),

0, T (x) < T (r)(x)

(46)

To test the hypothesis, generate U ∼ U [0,1] independent of

X.

Reject H0 if φ(x) ≥ U . (Randomized test.)
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Test has level α unconditionally

For each x ∈ X ,∑
g∈G

φ(gx) = G+(x) + a(x)Gr(x) = αG. (47)

So if X ∼ gX ∼ P for all g ∈ G,

α = IEP
1

G

∑
g∈G

φ(gX)

=
1

G

∑
g∈G

IEPφ(X)

= IEPφ(X). (48)

The unconditional chance of a Type I error is exactly α.
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Tests for the mean of a symmetric distribution

Data X = (Xj)
N
j=1 ∈ X = <n.

{Xj} iid P ; IEXj = µ.

Suppose P is symmetric. Examples?

82



Reflection group

Let Gµ be the group of reflections of coordinates about µ.

Let x ∈ <n. Each g ∈ Gµ is of the form

g(x) = (µ+ (−1)γj(xj − µ))nj=1 (49)

for some γ = (γj)
n
j=1 ∈ {0,1}

n.

Is Gµ really a group?

What’s the identity element? What’s the inverse of g? What

γ corresponds to g1g2?

What is G, the number of elements of Gµ?
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What is the orbit of a point x under Gµ? Are there always 2n

distinct elements of the orbit?

Test statistic

T (X) = |X̄ − µ0| =

∣∣∣∣∣∣1n
n∑

j=1

Xj − µ0

∣∣∣∣∣∣ . (50)

If IEXj = µ0, this is expected to be small—but how large a

value would be surprising?
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If the expected value of Xj is µ and P is symmetric (i.e., if

H0 is true), the 2n potential data

{gX : g ∈ Gµ} (51)

in the orbit of X under G are equally likely.

Hence, the values in the multiset

[T (gx) : g ∈ Gµ] (52)

are equally likely, conditional on the event that X is in the

orbit of x.
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How to test H0: µ = µ0?

We observe X = x.

If fewer than αG values in [T (gx) : g ∈ Gµ0] are greater than

or equal to T (x), reject. If more than αG values are greater

than T (x), don’t reject. Otherwise, randomize.
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If n is big . . .

How can we sample at random from the orbit?

Toss fair coin n times in sequence, independently. Take γj =

1 if the jth toss gives heads; γj = 0 if tails.

Amounts to sampling with replacement from the orbit of x.
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Other test statistics?

Could use t-statistic, but calibrate critical value using the

permutation distribution.

Could use a measure of dispersion around the hypothesized

mean (the true mean minimizes expected RMS difference,

assuming variance is finite).

What about counting the number of values that are above

µ0?

Define

T (x) ≡
n∑

j=1

1x≥µ0
. (53)
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Sign test for the median

We are assuming P is symmetric, so the expected value and
median are equal.

To avoid unhelpful complexity, suppose P is continuous. Then

Pr{Xj ≥ µ} = 1/2, (54)

{1Xj≥µ}
n
j=1 are iid Bernoulli(1/2), (55)

and

T (X) ∼ Binomial(n,1/2). (56)

This leads to the sign test: Reject the hypothesis that the
median is µ0 if T (X) is too large or too small. Thresh-
olds set to get level α test, using the fact that T (X) ∼
Binomial(n,1/2).
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Is the sign test equivalent to the permutation test for the

same test statistic?

Suppose we are using the test statistic T (x) =
∑n
j=1 1x≥µ0

.

Do the permutation test and the sign test reject for the same

values of x ∈ X?

Suppose no component of x is equal to µ0. According to the

sign test, the chance that T (x) = k is
(
n
k

)
2−n if the null is

true.

What’s the chance that T (x) = k according to the permuta-

tion test? There are G = 2n points in the orbit of x under

G. If the null is true, all have equal probability 2−n. Of

these points,
(
n
k

)
have k components with positive deviations

from µ0. Hence, for the permutation test, the chance that

T (x) = k is also
(
nk

)
2−n: The two tests are equivalent.

90



Confidence intervals for µ for symmetric P

Invert two-sided tests.
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What if P is not symmetric?

Romano [?]: the permutation test based on either the sample

mean or Studentized sample mean still have the right level

asymptotically.

Heuristic: if VarXj is finite and n is large, the sample mean

is approximately normal—and thus symmetric—even when

the distribution of Xj is not symmetric. The permutation

distribution of the sample mean or Studentized sample mean

under the null approaches a normal with mean zero and the

“right” variance.
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Assignment

Implement the two-sided, one-sample permutation test using

the sample mean as the test statistic, simulate results with

and without symmetry.

Compare the power with the t-test for a normal.

Compare power and level under symmetry with P not normal.

Compare power and level when P is asymmetric (e.g., abso-

lute value of a Normal, non-central χ2 with a small number

of degrees of freedom, triangular distribution, . . . )
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Runs test for independence

Suppose we toss a biased coin N times, independently. The

coin has chance p of landing heads in each toss and chance

1− p of landing tails in each toss. We do not know p.

Since the tosses are iid, they are exchangeable: The chance

of any particular sequence of n heads and N − n tails is

pn(1 − p)N−n. The probability distribution is invariant un-

der permutations of the trials.

For any particular observed sequence of n heads and N − n
tails, the orbit of the data under the action of the permu-

tation group consists of all
(
N
n

)
sequences of n heads (H)

and N − n tails (T). That amounts to conditioning on the

number n of heads in the (fixed) number N of tosses, but

not on whether each toss resulted in H or T.
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Runs test, contd.

A run is a sequence of H or T. The sequence HHTHTTTHTH
has 7 runs: HH, T, H, TTT, H, T and H. If the tosses are
independent, each arrangement of the n heads and m ≡ N−n
tails among the N tosses has probability 1/

(
N
n

)
; there are

1/
(
N
n

)
equally likely elements in the orbit of the observed

sequence under the permutation group. We will compute the
(conditional) probability distribution of R given n, assuming
independence of the trials.

If n = N or if n = 0, R ≡ 1. If k = 1, there are only two
possibilities: first all the heads, then all the tails, or first all
the tails, then all the heads. I.e., the sequence is either

(HH . . . HTT . . . T) or (TT . . . THH . . . H)

The probability that R = 1 is thus 2/
(
N
n

)
, if the null hypoth-

esis is true.
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Runs test, contd.

How can R be even, i.e., R = 2k? If the sequence starts with
H, we need to choose where to break the sequence of H to
insert T, then where to break that sequence of T to insert H,
etc. If the sequence starts with T, we need to choose where
to break the sequence of T to insert H, then where to break
that sequence of H to insert T, etc.

We need to break the n heads into k groups, which means
picking k − 1 breakpoints, but the first breakpoint needs to
come after the first H, and the last breakpoint needs to come
before the nth H, so there are only n − 1 places those k − 1
breakpoints can be. And we need to break the m tails into
k groups, which means picking k − 1 breakpoints, but the
first needs to be after the first T and the last needs to be
before the mth T, so there are only m− 1 places those k− 1
breakpoints can be.
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Runs test, contd.

The number of sequences with R = 2k that start with H is

thus

(n− 1

k − 1

)
×
(m− 1

k − 1

)
. (57)

The number of sequences with R = 2k that start with T

is the same (just read right-to-left instead of left-to-right).

Thus, if the tosses are independent and there are n heads in

all,

P{R = 2k} = 2×
(n− 1

k − 1

)
×
(m− 1

k − 1

)
/
(N
n

)
. (58)
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Runs test, contd.

Now consider how we can have R = 2k+ 1 (odd). Either the

sequence starts and ends with H or it starts and ends with T.

Suppose it starts with H. Then we need to break the string

of n heads in k places to form k + 1 groups using k groups

of tails formed by breaking the m tails in k− 1 places. If the

sequence starts with T, we need to break the m tails in k

places to form k + 1 groups using k groups of heads formed

by breaking the n heads in k − 1 places. Thus, if the tosses

are independent and there are n heads in all,

P{R = 2k + 1} =

(
n−1
k

)
×
(
m−1
k−1

)
+
(
n−1
k−1

)
×
(
m−1
k

)
(
N
n

) . (59)
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Runs test, contd.

Nothing in this derivation used the probability p of heads.

The conditional distribution under the null hypothesis de-

pends only on the fact that the tosses are iid, so that all

arrangements with a given number of heads are equally likely.

Note the connection with the sign test for the median and

the one-sample test for the mean of a symmetric istribu-

tion, discussed previously. There, under the null, we had

exchangeability with respect to reflections and permutations.

The alternative still had exchangeability with respect to per-

mutations, but not reflections.

Here, under the null we have exchangeability with respect to

permutations. Under the alternative, we don’t.
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Runs test, contd.

The runs test is also connected to Fisher’s Exact Test—in

both, we condition on the number of “successes” and look at

whether those successes are distributed in the way we would

expect if the null held.
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Runs test, contd.

Let Ij be the indicator of the event that the outcome of

the j + 1st toss differs from the outcome of the jth toss,

j = 1, . . . , N − 1. Then

R = 1 +
N−1∑
j=1

Ij. (60)
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Runs test, contd.

Under the null, conditional on n,

P{Ij = 1} = P{Ij = 1|jth toss lands H, n} ×
P{jth toss lands H|n}+

P{Ij = 1|jth toss lands T, n} ×
P{ jth toss lands T|n}

= P{j + 1st toss lands T |jth toss lands H, n} ×
P{jth toss lands H|n}+

P{j + 1st toss lands H|jth toss lands T, n} ×
P{jth toss lands T|n}

= [m/(N − 1)]× [n/N ] + [n/(N − 1)]× [m/N ]

= 2nm/[N(N − 1)]. (61)
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Runs test, contd.

The indicators Ij are identically distributed under the null

hypothesis, so if the null holds,

IER = IE[1 +
N−1∑
j=1

Ij]

= 1 + (N − 1)× 2nm/[N(N − 1)]

= 1 + 2nm/N. (62)
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Example of Runs test

Air temperature is measured at noon in a climate-controlled

room for 20 days in a row. We want to test the null hypoth-

esis that temperatures on different days are independent and

identically distributed.

Let Tj be the temperature on day j, j = 1, . . . ,20. If the

measurements were iid, whether each day’s temperature is

above or below a given temperature t is like a toss of a pos-

sibly biased coin, with tosses on different days independent

of each other. We could consider a temperature above t to

be a head and a temperature below t to be a tail.
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Example, contd.

Take t to be the median of the 20 measurements. In this

example, n=10, m=10, N=20. We will suppose that there

are no ties among the measured temperatures. Under the

null hypothesis, the expected number of runs is

IER = 1 + 2mn/N = 11. (63)

The minimum possible number of runs is 2 and the maximum

is 20. Since we expect temperature on successive days to

have positive serial correlation (think about it!), we might

expect to see fewer runs than we would if temperatures on

different days were independent. So, let’s do a one-sided test

that rejects if there are too few runs. We will aim for a test

at significance level 5%.
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Example, contd.

P{R = 2} =
2(
20
10

) = 1.082509e− 05. (64)

P{R = 3} = 2×

(
9
1

)(
9
0

)
(

20
10

) = 9.74258e− 05. (65)

P{R = 4} = 2×

(
9
1

)(
9
1

)
(

20
10

) = 8.768321e− 04. (66)
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Example, contd.

P{R = 5} = 2×

(
9
2

)(
9
1

)
(

20
10

) = 0.003507329. (67)

P{R = 6} = 2×

(
9
2

)(
9
2

)
(

20
10

) = 0.01402931. (68)

P{R = 7} = 2×

(
9
3

)(
9
2

)
(

20
10

) = 0.03273507. (69)

P{R ≤ 6} = 2×
2 + 9 + 81 + 324 + 1296(

20
10

) ≈ 0.0185. (70)

107



Example, contd.

So, we should reject the null hypothesis if R ≤ 6, which

gives a significance level of 1.9%. Including R = 7 in the

rejection region would make the significance level slightly too

big: 5.1%.
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Normal approximation to the null distribution of runs

When N , n and m are large, the combinatorics can be diffi-

cult to evaluate numerically. There are at least two options:

asymptotic approximation and simulation. There is a normal

approximation to the null distribution of R. As n and m→∞
and m/n→ γ,

[R− 2m/(1 + γ)]/
√

4γm/(1 + γ)3 → N(0,1) (71)

in distribution.

109



Code for runs test

Here is an R function to simulate the null distribution of the

number R of runs, and evaluate the P -value of the observed

value of R conditional on n, for a one-sided test against the

alternative that the distribution produces fewer runs than in-

dependent trials would tend to produce. The input is a vec-

tor of length N ; each element is equal to either “1” (heads)

or “-1” (tails). The test statistic is calculated by finding

1 +
∑N−1
j=1 Ij, as we did above in finding IER.
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simRunTest <- function(x, iter) {

N <- length(x);

ts <- 1 + sum(x != c(x[2:N],x[N]));

# test statistic: count transitions I_j.

sum(replicate(iter, {

xp <- sample(x);

((1 + sum(xp != c(xp[2:N],xp[N]))) <= ts)

}

)

)/iter

}
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Numerical example

Suppose the observed sequence is x = (−1,−1,1,1,1,−1,1),

for which N = 7, n = 4, m = 3 and R = 4. In one trial with

iter = 10,000, the simulated P -value using simRunTest was

0.5449. Exact calculation gives

P0(R ≤ 4) = (2 + 5 + 12)/35 = 19/35 ≈ 0.5429. (72)

The standard error of the estimated probability is thus

SE = [(19/35× 16/35)/10000]1/2 ≈ 0.005. (73)

The simulation was off by about

(0.5449− 0.5429)/0.005 ≈ 0.41SE. (74)
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Two-sample Tests

We observe {Xj}nj=1 iid FX and {Yj}mj=1 iid FY .

Want to test the strong null hypothesis H0 : FX = FY .

Let N = n+m, X = (Xj, . . . , Xn, Y1, . . . , Ym) ∈ <N .

Let π = (πj)
N
j=1 be a permutation of {1, . . . , N}. Let G be

the permutation group on <N . Note that G = #G = N !.

Under the null, the probability distribution of X is invariant

under G. The distribution of X and gX is the same: For any

permutation π, we are just as likely to observe X = gx =

(xπj)
N
j=1 as we are to observe X = x.
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Permutation group

G = #G = N ! (75)

#{gx : g ∈ G} ≤ N ! (76)

(less than N ! if x has repeated components).

#{T (gx) : g ∈ G} ≤#{gx : g ∈ G} ≤ N ! (77)

will be much less than
(
N
n

)
if T only cares about sets assigned

to the first n components and to the last m components, not

the ordering within those sets.
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“Impartial” use of the data: Arrangements

An “arrangement” of the data is a partition of it into two
sets, n considered to be from the first (X) population and
m considered to be from the second (Y ) population. In an
arrangement, the order of the values within each of those
two sets does not matter.

Some statisticians require the test statistic to be “impartial”:
Since {Xj} are iid and {Yj} are iid, statistic shouldn’t privilege
some Xj or Yj over others. The labeling is considered to be
arbitrary.

Not compelling for sequential methods, where the labeling
could indicate the order in which the observations were made.

For the test statistics we consider, only the arrangement mat-
ters: They are impartial.
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Unbiased tests

A test is unbiased if the chance it rejects the null is never

smaller when the null is false than when the null is true.
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Testing whether IEFX = IEFY

FX = FY implies IEFX = IEFY , but not vice versa. Weaker

hypothesis.

Start with strong null that FX = FY , but want test to be sen-

sitive to differences between IEFX and IEFY . We are testing

the strong null, but we want power against the alternative

IEFX 6= IEFY .

Test statistic. Let X̄ ≡ 1
n

∑n
j=1Xj and Ȳ ≡ 1

m

∑m
j=1 Yj.

Tn,m(X) = Tn,m(X1, . . . , Xn, Y1, . . . , Ym) ≡ n1/2(X̄ − Ȳ ) (78)

To test, if we observe X = x, look at the values of {Tn,m(gx) :

g ∈ G}. We reject if T (x) is “extreme” compared with those

values.
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Distribution of Tn,m without invariance

Romano [?] shows that if IEFX = IEFY = µ, if FX and FY
have finite variances, and if m/N → λ ∈ (0,1) as n→∞, then

the asymptotic distribution of Tn,m is normal with mean zero

and variance

σ2
p = λ−1/2(λVarFY + (1− λ)VarFX). (79)

The permutation distribution and unconditional asymptotic

distributions are equal only if VarFX = VarFY or λ = 1/2.

Hence, whether the test is asymptotically valid for the “weak”

null hypothesis depends on the relative sample sizes.
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Pitman’s papers

[?, ?, ?]

Paper 1: Two-sample test for equality of two distribution

based on sample mean. This is what we just looked at.

Paper 2: correlation by permutation. Exchangeability re-

quired. Issues for time series in particular.

Paper 3: ANOVA by permutation.
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Permutation test for association

Observe {(Xj, Yj)}nj=1. {Xj}nj=1 are iid and {Yj}nj=1 are iid.

The pairs are independent of each other; the question is

whether, within pairs, X and Y are independent.

If they were, the joint distribution of {(Xj, Yj)}nj=1 would be

the same as the joint distribution of {(Xj, Yπj)}nj=1 for ev-

ery permutation π of {1, . . . , n}. The joint distribution of

{(Xj, Yj)}nj=1 would be invariant under the group of permu-

tations of the indices of the Y variables.

The Y s would be exchangeable given the Xs. Exchangeability

involves not just the independence of X and Y , but also the

fact that the Y s are iid. If they had different distributions or

were dependent, exchangeability would not hold.
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Test Statistic

Testing the null hypothesis that {Yj} are exchangeable given

{Xj}, which is implied by the assumption that {Yj} are iid,

combined with the null that {Xj} are independent of {Yj}.

Can treat either {Xj} or {Yj} as fixed numbers—not neces-

sarily random. For instance, {Xj} could index deterministic

locations at which the observations {Yj} were made.

The issue is whether, conditional on one of the variables, all

pairings with the other variable are equally likely.

We want to be sensitive to violations of the null for which

there is dependence within pairs. One statistic that is sensi-
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tive to linear association is the “ordinary” Pearson correlation

coefficient:

rXY ≡
1

n

n∑
j=1

(Xj − X̄)(Yj − Ȳ )

SD(X)SD(Y )
, (80)

where SD(X) ≡ (
∑n
j=1(Xj−X̄)2/n)1/2, and SD(Y ) is defined

analogously.



Example: acclamations and coinage symbols

Example from Norena [?].

Roman emperors were “acclaimed” with various honors dur-

ing their reigns. Coins minted in their reigns have a variety

of symbols, one of which is Victoria (symbolizing military

victory). (Coins recovered from various caches; assumed to

be a representative sample—which is not entirely plausible.)

Look at emperors from the year 96 to 218.
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Imperatorial acclamations and Victoria coinage

Emperor relative frequency imperatorial
of Victoria coins acclamations

Nerva 0 2
Trajan 35 13
Hadrian 14 1
Antoninus Pius 3 0
Marcus Aurelius 16 10
Commodus 11 8
Septimius Severus 28 11
Caracalla 15 3
Macrinus 1 0

Correlation coefficient is r = 0.844.
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Permutation test P -value

iter <- 10^6; # iterations used in simulation

simPermuTest <- function(x, y, iter) { # simulated permutation

distribution

ts <- abs(cor(x,y)) # test statistic

sum(replicate(iter, (abs(cor(x,sample(y))) >= ts)))/iter

}

x <- c(0, 35, 14, 3, 16, 11, 28, 15, 1);

y <- c(2, 13, 1, 0, 10, 8, 11, 3, 0);

cor(x11, y11) # 0.844

simPermuTest(x11, y11, iter) # 0.003

The P -value is 0.003. Tests on four other symbols and ac-
clamations gave P -values ranging from 0.011 to 0.048.

124



Spearman’s Rank Correlation

Test statistic: replace each Xj by its rank and each Yj by

its rank. Test statistic is the correlation coefficient of those

ranks. This is Spearman’s rank correlation coefficient, de-

noted rS(X,Y ).

Significance level from the distribution of the statistic under

permutations, as above.

Can use midranks to deal with tied observations.
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What if {Yj} are dependent or have different distributions?

In time series context where j indexes time, typical that {Yj}
have different distributions and are dependent.

Trends, cycles, etc., correspond to different means at differ-

ent times. Variances can depend on time, too. So can other

aspects of the distribution.
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Failure of exchangeability: serial correlation

The next few examples are from Walther [?, ?].

Suppose {Xj}100
j=1 and {Yj}100

j=1 are iid N(0,1) and independent

of each other. Let

Sk ≡
k∑

j=1

Xj and Tk ≡
k∑

j=1

Yj. (81)

Then

P (rS(S, T ) > c0.01) ≈ 0.67, (82)

where c0.01 is the critical value for a one-sided level 0.01 test

against the alternative of positive association.
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Serial correlation, contd.

Even though {Sj} and {Tj} are independent, the probability

that their Spearman rank correlation coefficient exceeds the

0.01 critical value for the test is over 2/3.

That is because the two series S and T each have serial

correlation: not all pairings (Sj, Tπj) are equally likely—even

though the two series are independent. The series are not

conditionally exchangeable even though they are indepen-

dent, because neither series is iid.
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Failure of exchangeability: difference in variances

Serial correlation is not the only way that exchangeability can

fail. For example, if the mean or the noise level varies with

time, that violates the null hypothesis.

Take X = (1,2,3,4) fixed. Let (Y1, Y2, Y3, Y4) be indepen-

dent, jointly Gaussian with zero mean, σ(Yj) = 1, j = 1,2,3,

and σ(Y4) = 2. If {Yj} were exchangeable—which they are

not—then

P0(rS(X,Y ) = 1) = 1/4! = 1/24 ≈ 4.17%. (83)

(rS = 1 whenever Y1 < Y2 < Y3 < Y4.) Simulation shows that

P (rS(X,Y ) = 1) ≈ 7%:
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Simulation estimate of chance rS = 1 for non-exchangeable

data

iter <- 10000;

s <- c(1,1,1,4);

sum(replicate(iter, {

x <- rnorm(length(s), sd=s);

!is.unsorted(x) # r_S=1 if x is ordered

}

)

)/iter
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Failure of exchangeability: difference in variances

Take X = (1,2,3,4,5) fixed, let (Y1, Y2, Y3, Y4, Y5) be inde-

pendent, jointly Gaussian with zero mean and standard devi-

ations 1, 1, 1, 3, and 5, respectively.

Under the (false) null hypothesis that all pairings {(Xj, Yπj)}
are equally likely,

P0rS(X,Y ) = 1 = 1/5! ≈ 0.83%, (84)

Simulation shows that the actual probability is about 2.1%.

In these examples, the null hypothesis is false, but not be-

cause {Xj} and {Yj} are dependent. It is false because not

all pairings {(Xj, Yπj) are equally likely. The “identically dis-

tributed” part of the null hypothesis fails.
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Failure of exchangeability: difference in means

Xj = j, ... [FIX ME!]
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Permutation F -test

We have m batches of n subjects, not necessarily a sample

from any larger population.

In each batch, the n subjects are assigned to n treatments

at random. Let rjk be the response of the subject in batch j

who was assigned to treatment k, j = 1, . . . ,m, k = 1, . . . , n.

Linear model:

rjk = Bj + Tk + ejk. (85)

Bj is a “batch effect” that is the same for all subjects in batch

j. Tk is the effect of treatment k. ejk is an observational error

for the individual in batch j assigned to treatment k.

Want to test the null hypothesis that T1 = T2 = . . . = Tn.
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ANOVA

Decompose total sum of squares:

S = SB + ST + Se, (86)

where SB is independent of the treatments, ST is independent

of the batches, and Se is the residual sum of squares, and is

independent of batches and of treatments.

Test statistic

F =
ST

ST + Se
. (87)

Large if the “within-batch” variation can be accounted for

primarily by an additive treatment effect.

In usual F -test, assume that {ejk} are iid normal with mean

zero, common variance σ2.
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ANOVA “ticket model”

Each individual is represented by a ticket with n numbers
on it. The kth number on ticket m is the response that
individual m would have if assigned to treatment k. We as-
sume non-interference: each individual’s potential responses
are summarized by those n numbers; they do not depend on
which treatment any other subjects are given.

If treatment has no effect whatsoever, then, individual m’s
n numbers are all equal. That is, within each batch, the
treatment label is arbitrary. Responses should be invariant
under permutations of the treatment labels.

Let πj be a permutation of {1, . . . , n}, for j = 1, . . . ,m. If we
observe {rjk} and the null is true, we might just as well have
observed {r

jπ
j
k

}

Keep batches together, but permute the treatment labels
within batches.
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Permutation distribution

Condition on the event that the data are in the orbit of the

observed data under the action of the permutation group.

Then all points in that orbit are equally likely.

Find the P -value by comparing the observed value of F with

the distribution of values in the orbit of the observed data un-

der the group that permutes the labelings within each batch.

Reject the null hypothesis if the observed value of F is sur-

prisingly large.

If the space of permutations is too big, can use randomly

selected permutations.
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How strong is the usual null for the F -test?

The permutation test just described tests the strong null that

the n numbers on individual m’s ticket are equal. A weaker

null that might be of interest is whether the n means of

the mn potential responses to each of the n treatments are

equal—that is, whether on average there is any difference

among the treatments.

Does the usual F -test test this weaker null? What hypothesis

does the F -test actually address?
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F -test null hypothesis

For F to have an F -distribution, the “noise” terms {ejk}
have to be iid normal random variables with mean zero (that
makes it the ratio of two chi-square variables if the treatment
effects are equal). The distribution of {ejk} cannot depend
on which batch the subject is in nor which treatment the
subject receives.

Why should each ejk have expected value zero? Why should
ejk be independent of the assignment to treatment? Why
should ejk have the same distribution for all individuals?

Why should the effect of a given treatment be the same for
every individual?

Why is there no interaction between treatment and batch?

Why is the “batch effect” the same for all members of a
batch?
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Sharpening the description

To study whether different treatments have different effects,

need to consider hypothetical counterfactuals.

What would the response of the individual in batch j assigned

to treatment k have been, if the individual instead had been

assigned to treatment ` 6= k?

The model

rjk = Bj + Tk + ejk (88)

doesn’t say. We need a “response schedule” [?].
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Response schedule

Think of the subjects within batches before they are assigned

to treatment. The response schedule says that if subject `

in batch j is assigned to treatment k, his response will be

r` = Bj + Tk + e`. (89)

If he is assigned to treatment k′, his response will be

r` = Bj + Tk′ + e`. (90)

How is e` generated? Would e` be the same if subject ` were

assigned to treatment k′ instead of treatment k?
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Two visions of {e`}: Vision 1

The errors {e`} are generated (iid Normal, mean zero) before

the subjects are assigned to treatments. Once generated,

{e`} are intrinsic properties of the individuals—unaffected by

assignment to treatment. And the assignment to treatment

does not depend on {e`}.

If this is true, then if the treatment effects {Tk} are all equal,

that implies more than the strong null: Within each batch,

each individual’s responses would be the same no matter

which treatment was assigned—the n numbers on each in-

dividual’s ticket are equal, just as in the strong null. But in

addition, the expected responses of all subjects in each batch

are equal.
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Two visions of {e`}: Vision 2

{e`} are generated after the assignment to batch and treat-

ment, but their distribution does not depend on that assign-

ment. If the assignment had been different, {e`} might have

been different—but it is always Normal with zero mean and

the same variance, and never depends on the assignment of

that subject or any other subject.

If this is true, then the null that the treatment effects {Tk} are

all equal implies a weakening of the null: Within each batch,

each individual’s responses are the same in expectation no

matter which treatment is assigned, but a given individual

might have n different numbers on his ticket.
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Two visions of {e`}: Vision 2, contd.

However, the hypothesis says more than that: Within each

batch, every subject’s expected response is the same—the

same as the expected response of all the other subjects, no

matter which treatment is assigned to each of them.

This seems rather stronger than the “strong null” that the

permutation test tests, since the strong null does not require

different subjects to have the same expected responses.

Note that in neither vision 1 nor vision 2 is the null the “natu-

ral” weak null that the average of the responses (across sub-

jects) for each treatment are equal, even though the numbers

are not necessarily equal subject by subject.
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Other test statistics

The F statistic makes sense for testing against the omnibus
alternative that there is a difference among the treatment
effects.

If there is more structure to the alternative, can devise tests
with more power against the alternative.

For instance, if, under the alternative, the treatment effects
are ordered, can use a test statistic that is sensitive to the
order. Suppose that the treatments are ordered so if the
alternative is true, T1 ≤ T2 ≤ · · · ≤ Tn.

Pitman correlation

S ≡
n∑

k=1

f(k)
m∑
j=1

rjk (91)

where f is a monotone increasing function.
144



Most powerful permutation tests

How should we select the rejection region?

If we have a simple null and a simple alternative, most pow-

erful test is likelihood ratio test.

If the null completely specifies the chance of outcomes in the

orbit of the data and the alternative does too, can find the

likelihood ratio for each point in the orbit.

Problem: The orbits might not be the same under the null

and under the alternative. If they were the same, the chance

of each outcome in the orbit would be the same under the

two hypotheses, since the elements of the orbit are equally

likely.
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Example: incompatible orbits

6 subjects; 3 assigned to treatment and 3 to control, at

random.

Null: treatment has no effect at all.

Alternative: treatment increases the response by 1 unit.

Data: responses to control {1,2,3}. Responses to treatment

{2,3.5,4}.

Under the null, the orbit consists of the 20 ways of partition-

ing {1,2,2,3,3.5,4} into two groups of 3; equivalently, the 6!

permutations of {1,2,2,3,3.5,4}.

146



Example: incompatible orbits, contd.

Under the alternative, the orbit consists of 20 points, but

they are generated differently: Find the responses that would

have been observed if none had been assigned to treatment

by subtracting the hypothesized treatment effect. That gives

{1,1,2,2.5,3,3}.

Take {1,1,2,2.5,3,3} and partition it into two groups of 3;

add 1 to each element of the second group. Equivalently,

take each of the 6! permutations of {1,1,2,2.5,3,3} and add

1 to the last 3 elements.
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Example: incompatible orbits, contd.

Under the null, one element of the orbit is (1,2,2,3,3.5,4).

That point is not in the orbit under the alternative.

Under the alternative, one element of the orbit is (1,1,2,3.5,4,4).

That point is not in the orbit under the null.

Most powerful test would have in its rejection region those

points that are in the orbit under the null but not in the orbit

under the alternative, since for those points, the likelihood

ratio is infinite. Hot helpful.

What are we conditioning on? If we condition on the event

that the data are in the orbit of the observed data, can’t do

much.
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Most Powerful Permutation Tests

See Lehmann and Romano [?], pp. 177ff. [FIX ME!]
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The Population Model

We’ve been taking N subjects as given; the assignment to

treatment or control was random.

Now consider instead the N subjects to be random samples

from two populations.

Observe {Xj}nj=1 iid FX and {Yj}mj=1 iid FY .

Want to test the hypothesis FX = FY .
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Many scenarios give rise to the same conditional null distri-

bution for the permutation test:

• Randomization model for comparing two treatments. N

subjects are given and fixed; n are assigned at random to

treatment and m = N − n to control.

• Population model for comparing two treatments. N sub-

jects are a drawn as a simple random sample from a much

larger population; n are assigned at random to treatment

and m = N − n to control.
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• Comparing two sub-populations using a sample from each.

A simple random sample of n subjects is drawn from one

much larger population with many more than N members,

and a simple random sample of m subjects is drawn from

another population with many more than m members.

• Comparing two sub-populations using a sample from the

pooled population. A simple random sample of N sub-

jects is drawn from the pooled population, giving random

samples from the two populations with random sample

sizes. Condition on the sample sizes n and m.

• Comparing two sets of measurements. Independent sets

of n and m measurements come from two sources. Test

hypothesis that the two sources have the same distribu-

tion.
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In all those scenarios, if the null hypothesis is true the data

are exchangeable—the distribution is invariant under permu-

tations.

Hence, a test with the right (conditional) level for one sce-

nario can be applied in all the others.
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Aside: stochastic ordering

Suppose X and Y are real-valued random variables. X is

stochastically larger than Y , written Y � X, if

Pr{X ≥ x} ≥ Pr{Y ≥ x} ∀x ∈ <. (92)

Exercise: Show that Y � X if and only if for every mono-

tonically increasing function u, IEu(Y ) ≤ IEu(X).
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Example of a power estimate: stochastic ordering

Observe {Xj}nj=1 iid FX and {Yj}mj=1 iid FY .

Under the null, FX = FY .

Under the alternative FX is stochastically than FY .

Test at level α using the sample mean as the test statistic.

What’s the chance of rejecting the null if the alternative is

true?
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Aside: the Probability Transform

Let X be a real-valued random variable with continuous cdf

F .

Then F (X) ∼ U [0,1].

Proof: Note that F (X) ∈ [0,1]. If F is continuous, for

p ∈ (0,1) there is a unique value xp ∈ < such that F (xp) = p.

(That is, F has an inverse function F−1 on (0,1).)

For any p ∈ (0,1),

Pr{F (X) ≤ p} = Pr{X ≤ xp} = p. (93)

But this is exactly what it means to have a uniform distribu-

tion.

Patch for non-necessarily continuous F? See below.
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Aside: a useful stochastic ordering lemma (From [?]; see

also [?].)

X is stochastically larger than Y iff there is a random variable

W and monotone nondecreasing functions f and g such that

g(x) ≤ f(x) for all x, g(W ) ∼ Y and f(W ) ∼ X.

Proof: Suppose Y � X. Let FX be the cdf of X and let FY
be the cdf of Y . Define

f(p) ≡ inf{x : FX(x) ≥ p} and g(p) ≡ inf{x : FY (x) ≥ p}.
(94)

Then f and g are nondecreasing functions on [0,1]. Since

FY (x) ≤ FX(x), it follows that g(p) ≤ f(p).
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Proof of lemma, contd.

(a) If p ≤ FX(x), then f(p) ≤ f(FX(x)) ≤ x. (The first
inequality follows from the monotonicity of f ; the second
from the fact that FX is nondecreasing but can be flat on
some intervals. Hence, the smallest y for which FX(y) ≥
FX(x) can be smaller than x.)

(b) If f(p) ≤ x then FX(f(p)) ≤ FX(x), and hence p ≤ FX(x).
(The first inequality follows from the monotonicity of F ; the
second from the fact that f is the infimum.)

Let W ∼ U [0,1]. By (a),

FX(x) = Pr{W ≤ FX(x)} ≤ Pr{f(W ) ≤ x}. (95)

By (b),

Pr{f(W ) ≤ x} ≤ Pr{W ≤ FX(x)} = FX(x). (96)

Hence Pr{f(W ) ≤ x} = FX(x): f(W ) ∼ FX. Similarly,
g(W ) ∼ FY .
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Proof of lemma, contd.

In the other direction, suppose there is a random variable

W and monotone nondecreasing functions f and g such that

g(x) ≤ f(x) for all x, g(W ) ∼ Y and f(W ) ∼ X.

Then

Pr{X ≥ x} = Pr{f(W ) ≥ x} ≥ Pr{g(W ) ≥ x} = Pr{Y ≥ x}.
(97)
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Consequence of the lemma

Let {Xj}nj=1 iid with cdf FX and {Yj}mj=1 iid with cdf FY , with
FX and FY continuous. Let N = n+m.

Let X = (X1, . . . , Xn, Y1, . . . , Ym) ∈ <N . Let φ : <N → [0,1].
Suppose that φ satisfies two constraints:

(a) If FX = FY then

IEφ(X) = α, (98)

so that φ is the test function for a level α test of the hypoth-
esis FX = FY .

(b) If xj ≤ x′j, j = 1, . . . , n, then

φ(x1, . . . , xn, y1, . . . , ym) ≤ φ(x′1, . . . , x
′
n, y1, . . . , ym). (99)

Then IEφ ≥ α whenever FY � FX.
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Proof of consequence

By the lemma, there are nondecreasing functions g ≤ f and iid

random variables {Wj}Nj=1 such that f(Wj) ∼ FX and g(Wj) ∼
FY .

By (a),

IEφ(g(W1), . . . , g(Wn), g(Wn+1), . . . , g(WN)) = α. (100)

By (b),

IEφ(f(W1), . . . , f(Wn), g(Wn+1), . . . , g(WN)) = β ≥ α. (101)
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The permutation test based on the sample mean is unbiased

under the alternative of stochastic dominance

Suppose {Xj}nj=1 are iid with cdf FX and {Yj}mj=1 are iid

with cdf FY . Define the test function φ so that φ(X) =

1 iff
∑n
j=1Xj (or 1

n

∑n
j=1Xj) is greater than the sum (or

mean, respectively) of the first n elements of αN ! of the N !

(not necessarily distinguishable) permutations of the multiset

[X1, . . . , Xn, Y1, . . . , Ym].

Define the power function

β(FX , FY ) = IEφ(X1, . . . , Xn, Y1, . . . , Ym). (102)

Then β(FX , FX) = α and β(FX , FY ) ≥ α for all pairs of distri-

butions for which FX is stochastically larger than FY .
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Proof.

We have already proved that β(FX , FX) = α: The permuta-

tion test is exact (possibly requiring randomization, depend-

ing on α).

To show that β(FX , FY ) > α, suppose that the observed value

of Xj is xj, the observed value of Yj is yj, and let w =

(x1, . . . , xn, y1, . . . , ym) ∈ <N .

φ = 1 if
∑n
j=1wj is sufficiently large compared with

∑n
j=1wπj

for enough permutations π.

Want to show that Pr{φ = 1} is larger when FY � FX than

when FY = FX.
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By the lemma, suffices to show that if xj ≤ x′j, j = 1, . . . , n,

then

φ(x1, . . . , xn, y1, . . . , ym) ≤ φ(x′1, . . . , x
′
n, y1, . . . , ym). (103)

I.e., suffices to show that if we would reject the null for data

w = (x1, . . . , xn, y1, . . . , ym), (104)

we would also reject it for data

w′ = (x′1, . . . , x
′
n, y1, . . . , ym). (105)

Suppose φ(w) = 1. Then
∑n
j=1wj >

∑n
j=1wπj for at least

αN ! of the permutations π of {1, . . . , N}. Let π be one such

permutation.
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Suppose that r of the first n elements of π are not between
1 and n; that is, the permutation replaces r of the first n
components of w with later components of w.

Let {`k}rk=1 be the components that are moved out of the
first n components by permutation π (the components that
are “lost”) and let {fk}rk=1 be the components that are
moved in (the components that are “found”). Then

0 <
n∑

j=1

wj −
n∑

j=1

wπj

=
r∑

k=1

w`k −
r∑

k=1

wfk

≤
r∑

k=1

w′`k −
r∑

k=1

wfk

=
n∑

j=1

w′j −
n∑

j=1

w′πj ,

so φ(w′) = 1. Hence φ(w′) ≥ φ(w).
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Estimating shifts:

If you know that FX(x) = FY (x − d), can construct a confi-

dence interval for the shift d.

How?

Invert hypothesis tests.
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Exercise:

By simulation, estimate the power of the level α = 0.05 two-

sample test based on the sample mean against the alternative

that FY � FX when

1. Y ∼ N(0,1) and X ∼ N(µ,1), µ = 0.5,1,1.5. Compare

with the power of the usual t test.

2. Y ∼ Exponential(1) and X ∼ Exponential(λ), with 1/λ =

1.5,2,2.5. Compare with the power of a likelihood ratio

test.

3. Y ∼ Chi-square(2) and X ∼ Chi-square(b), with b =

3,4,5. Compare with the power of a likelihood ratio test.
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Exercise, contd.

Use sample sizes n = 10,50,100 and m = n/2, n, and 2n.

Justify your choice of the number of replications to use in

each simulation. Note: this involves 81 simulations. Please

tabulate the results in some readable format.

For each of the scenarios above, pretend that FX(x) = FY (x−
d) for some shift d that could be positive or negative. (This

is true in the first scenario where the data are normal with

different means, but not in the second and third, where the

distributions have different shapes.) Invert two-sided tests

to find 95% confidence intervals for d, which would be the

difference in means if the shift model were true. By simu-

lation, estimate the probability that the confidence intervals

cover the true difference in means in the 81 cases. Justify

your choice of the number of replications to use in each sim-

ulation. Discuss the results.
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Smirnov Test

Consider a two-sample test against the omnibus alternative

that there is any difference at all between the two groups.

We want a test statistic that is sensitive to differences other

than differences in the means.

The Smirnov test is based on the difference between the em-

pirical cumulative distribution function (cdf) of the treatment

responses and the empirical cdf of the control responses. It

has some power against all kinds of violations of the strong

null hypothesis.
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Smirnov Test, contd. Let FX,n denote the empirical cdf of

the treatment responses:

FX,n(x) ≡#{xj : xj ≤ x}/n, (106)

and define FY,m analogously as the empirical cdf of the control

responses. If there are no ties within the treatment group,

FX,n jumps by 1/n at each treatment response value. If there

are no ties within the control group, FY,m jumps by 1/m at

each control response value. If k of the treatment responses

are tied and equal to x0, then FX,n jumps by k/n at x0.
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Smirnov Test, contd.

The Smirnov test statistic is

Dm,n ≡ sup
x
|FX,n(x)− FY,m(x)|. (107)

It is easy to see that the supremum is attained at one of the

data values. We can also see that the supremum depends

only on the ranks of the data, because the order of the jumps

matters, but the precise values of x at which the jumps occur

do not matter. Therefore, the test

Reject null if Dm,n > c, (108)

for an appropriately chosen value of c, is a nonparametric test

of the strong null hypothesis.
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Smirnov Test, contd.

Null distribution of Dm,n for n = 3, m = 2. There are(
5
3

)
= 10 possible assignments of 3 of the subjects to treat-

ment, each of which has probability 1/10 under the strong
null hypothesis. Assume that the 5 data are distinct (no ties).
Then the possible values of Dm,n are

treatment ranks control ranks Dm,n
1,2,3 4,5 1
1,2,4 3,5 2/3
1,2,5 3,4 2/3
1,3,4 2,5 1/2
1,3,5 2,4 1/3
1,4,5 2,3 2/3
2,3,4 1,5 1/2
2,3,5 1,4 1/2
2,4,5 1,3 2/3
3,4,5 1,2 1
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Smirnov Test, contd.

The null probability distribution of Dm,n is

d Pr{D2,3 = d}
1/3 1/10
1/2 3/10
2/3 4/10

1 2/10

Thus a Smirnov test (against the omnibus alternative) with

significance level 0.2 would reject the strong null hypothesis

when D2,3 = 1; smaller significance levels are not attainable

when n and m are so small.
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Smirnov Test, contd.

Critical values can be calculated analytically fairly easily when

n = m (when the treatment and control groups are the same

size) and the significance level is an integer multiple a of

1/n. Let k = bn/ac. Then, under the strong null hypothesis,

provided there are no ties,

Pr{Dm,n > a/n} =
(( 2n

n− a

)
−
( 2n

n− 2a

)
+

+
( 2n

n− 3a

)
− · · ·+ (−1)k−1

( 2n

n− ka

))
×

×
(

2
(2n
n

))−1
. (109)
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Smirnov Test, contd.

When there are ties, Dm,n tends to be smaller, so tail prob-

abilities from this expression still give conservative tests. (If

both members of a tie are assigned to the same group (treat-

ment or control) the tie does not change the value of Dm,n
from the value it would have had if the pair differed slightly.

If one member of a tie is assigned to treatment and one to

control, the tie can decrease the value of Dm,n from the value

it would have had if the observations differed slightly. Thus

Dm,n is stochastically smaller when there are ties.
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simSmirnovTest <- function(x, y, iter) {

# P.B. Stark, statistics.berkeley.edu/~stark 9/8/2006

ts <- smirnov(x,y)

z <- c(x, y) # pooled responses

sum(replicate(iter, {

zp <- sample(z);

(smirnov(zp[1:length(x)],zp[(length(x)+1):length(z)]) >= ts)

}

)

)/iter

}
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We can also estimate the power of the Smirnov statistic

against a shift alternative by simulation. Suppose that the

effect of treatment is to increase each subject’s response by

d, no matter what the response would have been in con-

trol. (Remember, this is a very restrictive assumption, but

the results might be suggestive anyway.) Then the responses

x = (xj)
n
j=1 of the treated subjects would have been

x− d = (x1 − d, . . . , xn − d) (110)

had they been in the control group, and the responses y of

the control group would have been y + d had they been in

the treatment group.

See old lecture notes, chapter 4.
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Multidimensional analogues?

Test statistics: sample mean versus ...

Multidimensional analogue of the runs test: deleting edges

from minimal spanning tree. Depends on metric.

Bickel [?] probability of lower-left quadrants.

Friedman and Rafsky [?] generalized “runs” test based in

minimal spanning trees.

Ferger [?] change point at known point.

Hall and Tajvidi [?] inter-point differences to each point.
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Baringhaus and Franz [?] sum of interpoint differences across
samples minus half the sums of interpoint differences within
samples.

Multidimensional analogues of the Smirnov test: VC classes,
Romano’s work.

Gretton et al. [?] generalizes from indicator functions of sets
to expectation of more general functions (e.g., elements of a
universal reproducing kernel Hilbert space). Good properties
if the star of the set of functions is dense in C0 in the L∞
norm.

Median versus mean.

Testing the hypothesis of symmetry.

Testing exchangeability: earthquake aftershocks.



The two-sample problem

We observe {Xj}nj=1 iid P and {Yj}mj=1 iid Q.

P and Q are measures on a common sigma-algebra A.

Want to test the hypothesis P = Q.

(Recall that the math is essentially the same whether the two

samples are random samples from two populations, measure-

ments on a single group randomly divided into treatment and

control, or—conditional on the sample sizes—a single ran-

dom sample from a population with two types of elements.)
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The two-sample problem in IRp

For x ∈ IRp, define the lower left quadrant w.r.t. x:

Lx ≡ {y ∈ IRp : yj ≤ xj, j = 1, . . . , p. (111)

Let

δ(P,Q) ≡ sup
x∈IRp

|P (Lx)−Q(Lx)| (112)

Bickel [?] shows that the permutation principle applied to

the test statistic δ(P̂ , Q̂) gives a test with exact level α and

asymptotic power 1 against every fixed alternative.
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Generalizing “runs” test: Minimal spanning trees. Friedman

and Rafsky [?]

Graph: nodes, pairs of nodes called “edges.” An edge con-

nects two nodes if it contains those two nodes. Directed

graph: the edges are ordered pairs, not just pairs. Edge-

weighted graph: edges are triples—a pair of nodes and a real

number, the edge weight. A graph is complete if every pair

of nodes has an edge that connects them. Degree of a node:

number of edges that include it. Subgraph: graph with all

nodes and edges among those in a given graph. If two sub-

graphs have no nodes in common, they are disjoint. If two

subgraphs have no edges in common, they are orthogonal.

Spanning subgraph: subgraph that contains all nodes in the

graph.
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Path between two nodes: alternating sequence of nodes and

edges so that each edge includes the nodes that surround

it; nodes must be distinct except possibly the first and last.

Connected graph: path between every distinct pair of nodes.

Cycle: path that starts and ends with the same node. Tree:

connected graph with no cycles. Connected subgraph of a

tree is also a tree, called a subtree.

Spanning tree is a spanning subgraph that is also a tree. The

(first) minimal spanning tree (MST) of an edge-weighted

graph is a spanning tree that minimizes the sum of the edge

weights. The second MST is the spanning tree with minimal

total weight that is orthogonal to the MST. The kth MST is

the spanning tree with minimum total weight that is orthog-

onal to the 1st through k − 1st MSTs. The MST connects

very few close points; basing test on 1st through kth can

improve power.
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Eccentricity of a node: number of edges in a path with great-

est length starting at that node. Antipode of a node: the

node at the other end of a path with greatest length. Diame-

ter of a graph: eccentricity of node with largest eccentricity.

Center of a graph: node with minimal eccentricity.

Rooted tree: one node is designated “root.” Parent of a

node in a rooted tree: next-to-last node in a path from

the root to the node. All nodes but the root have parents.

Daughter of a node: all nodes connected to a node, except

the node’s parent. Ancestor of a node: node on the path

that connects it to the root. Descendant of a node: all nodes

for which that node is an ancestor. Depth of a node: depth

of root is zero; depth of other nodes is number of edges on

path that connects it to the root. Height of rooted graph:

maximum depth of any node.
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For data, think of the edge weight as a measure of dissimilar-

ity, such as Euclidean distance. Every pair of data connected

by an edge.

Two important facts:

(i) The MST has as a subgraph the “nearest neighbor graph”

that links each point to its closest point. (ii) If an edge is

deleted from a MST, creates two disjoint subgraphs.

The deleted edge has the smallest weight of all edges that

could connect those two subgraphs.

Univariate runs test: Form MST of data. Delete all edges

that connect points of different groups. Count disjoint sub-

graphs that remain. Those disjoint subgraphs are runs.

Multivariate analog: identical.
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Null distribution of R

Recall that n is number of data in one group, m is the number

in the other, and N = n+m. Complete edge-weighted graph

for the pooled data has
(

N
2=N(N−1)/2

)
edges. If there are no

ties among the N(N−)/2 distances, the kth MST is unique.

MST has N − 1 edges connecting the N nodes.

Number those edges arbitrarily from 1 to N−1. Let Zj = 1 if

the jth edge connects nodes from different samples; Zj = 0

if not.

The number of runs is R ≡ 1 +
∑N−1
j=1 Zj.
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Null distribution of R, contd.

What’s the chance the jth edge connects nodes from dif-

ferent samples? Under the null, the points that the edge

connects are a random sample of size 2 from the N points;

the number of X points in that sample is hypergeometric.

The chance that sample contains one X and one Y is

Pr{Zj = 1} =

(
n
1

)(
m
1

)
(
N
2

) =
2nm

N(N − 1)
. (113)

Hence, under the null,

IER = IE(1 +
N−1∑
j=1

Zj) = 1 +
2nm

N
, (114)

just as we found for the univariate runs test. Calculating the

variance is a bit harder; the covariance of Zi and Zj depends

on whether they share a node.
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In any event, can condition on the edge weights and simu-

late the distribution of R under the null by making random

permutations.



Combining orthogonal MSTs

As N increases, MST includes a smaller and smaller fraction

of the N(N−1)/2 edges in the complete graph. Many “close”

pairs of points are not linked by the MST: potential loss of

power.

Proposal: Use all edges contained in the first k MSTs. Can

approximate null distribution of R by simulation—random

permutations.
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MST analogue of the Smirnov test: ranking by MST

Root the MST at a node with maximum eccentricity. Height-

directed pre-order (HDP) traversal of the tree: Recursive

definition.

1. visit the root

2. HDP in ascending order of height the subtrees rooted at

the daughters of the root. Break height ties by starting

with the daughters closest (in edge weight) to the root.

“Rank” the nodes in the order visited by the HDP. Apply the

Smirnov test to those ranks.
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Univariate analogue is the sorted list of data: standard Smirnov

test. Like standard Smirnov test, not very sensitive to differ-

ences in scale.

Can get analogue of the Siegel-Tukey by rooting at a center

node and ranking according to node depth.



Tests based 2 by 2 contingency tables

Idea: label the nodes in some (binary) way that does not

depend on the sample they come from. Under the null, the

number of X nodes with that label should be hypergeometric.

MST connects the nodes. Each node has some degree. Pro-

posed test statistic: number of X nodes with degree 1. Tends

to be large if the X nodes are on the “periphery” of the tree.

Why not something like the sum of the degrees of the X

nodes?
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Tests based on inter-point distances

Hall and Tajvidi [?], Baringhaus and Franz [?].

Hall an Tajvidi use “distance” measure D(x, y) on the out-
come space X . D is nonnegative and symmetric but doesn’t
necessarily satisfy triangle inequality.

Let Z be the pooled sample.

For 1 ≤ i ≤ m, let Ni(j) be the number of Xs among the set
of Zs for which D(Yi, Zk) is no larger than its jth smallest
value for all m+ n− 1 of the Zs other than Yi.

Define Mi(j) analogously. Under the null,

IE{Ni(j)|{Zj}} =
nj

m+ n− 1
and IE{Mi(j)|{Zj}} =

mj

m+ n− 1
.

(115)
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Test statistic combines |Mi(j)− IEMi(j)| and |Ni(j)− IENi(j)|,
for instance a weighted average of powers of them:

T =
1

n

n∑
i=1

m∑
j=1

|Mi(j)−IEMi(j)|γw1(j)+
1

m

m∑
i=1

n∑
j=1

|Ni(j)−IENi(j)|γw2(j).
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Generalizing KS distance

Probability measures P and Q defined on common sigma-

algebra A.

Class V of sets, elements of A.

δV(P,Q) ≡ sup
V ∈V
|P (V )−Q(V )|. (117)

Class F of A-measurable functions.

δF(P,Q) ≡ sup
f∈F
|IEX∼Pf(X)− IEX∼Q(f(X))|. (118)

191



Special case: F consists of indicator functions of elements of

V.

If X = IR and F is the set of functions with variation bounded

by 1, δF is the KS distance.
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δ is a pseudo-metric on probability distributions on X

Need to show that it is positive semi-definite and satisfies the

triangle inequality.

Positive semi-definiteness and symmetry are immediate (from

absolute value).

Triangle inequality: For probabilities P,Q, S,
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δF(P,Q) + δF(Q,S) = sup
f∈F
|IEX∼Pf(X)− IEX∼Q(f(X))|

+ sup
g∈F
|IEX∼Qf(X)− IEX∼S(f(X))|

≤ sup
f∈F

(
|IEX∼Pf(X)− IEX∼Q(f(X))|

+ |IEX∼Qf(X)− IEX∼S(f(X))|
)

≤ sup
f∈F
|IEX∼Pf(X)− IEX∼S(f(X))|

= δF(P, S). (119)



δ is a metric for suitable F

The cone or star of a subset F of a linear vector space is the

set {αf : f ∈ F , α ∈ [0,1)}.

If the cone of F is dense in C(X ) in L∞(X ), then δF is a metric

on probability distributions. (Need to show that δF(P,Q) = 0

iff P = Q.)

(The cone generated by the rational numbers between −1

and 1 is dense in the reals in absolute-value distance, for

example.)
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Finding δ is easy if F is the unit RKHS ball

In a RKHS H. Let the point-evaluator at x be kx, so f(x) =

〈f, kx〉. The kernel is K(x, y) = 〈kx, ky〉, which is kx viewed as

a function of x and of its argument.

Let

µP ≡ IEX∼PkX = IEX∼PK(X, y). (120)

Then

IEX∼Pf(X) = IEX∼P 〈kx, f〉 = 〈µP , f〉. (121)

(The function f is deterministic; we are averaging its values

when its argument X is drawn at random according to P .)
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Finding δ, contd. We are taking F = {f ∈ H : ‖f‖H ≤ 1}.

δF(P,Q) = sup
f :‖f‖H≤1

|〈µP , f〉 − 〈µQ, f〉|

= sup
f :‖f‖H≤1

〈µP − µQ, f〉

= ‖µP − µQ‖. (122)

The last step follows from the equivalence of the operator

norm and the Hilbert-space norm, since H is reflexive (self-

dual).
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Finding δ, contd. Maximizing a continuous function over the

closed unit ball in H:

f∗(y) ≡ arg max
f :‖f‖H≤1

〈µP − µQ, f〉 = (µP − µQ)/‖µP − µQ‖

=
IEX∼PK(X, y)− IEX∼QK(X, y)

‖IEX∼PK(X, y)− IEX∼QK(X, y)‖
.(123)

The plug-in estimate is

f̂∗(y) ≡
1

n

n∑
j=1

K(Xj, y)−
1

m

m∑
j=1

K(Yj, y). (124)

It is biased, but I’m not convinced that matters.
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Gretton et al. [?] propose test statistic: Pick F, a set of

functions whose star is dense in C(X ) wrt L∞(X ). They use

the unit ball in a universal RKHS.

Test statistic is a variant of δF(P̂ , Q̂):

MMD(F , P,Q) = IEX,Y∼PK(X,Y )−2IEX∼P,Y∼QK(X,Y )+IEX,Y∼QK(X,Y ).

(125)
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They calibrate by bootstrap. Why not calibrate by permuta-

tion?
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Tests and Confidence Sets for percentiles of a continuous

distribution

Test statistic?

Under what group is the distribution of the the test statistic

invariant if the null is true?

How can we generate the orbit of the data under that group?

How big is the orbit?

How can we sample at random from the orbit?
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Abstract permutation tests

See old lecture notes, chapter 8.

Earthquake catalog declustering: see PSU talk.
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Nonparametric Combinations of Tests (NPC)

Setting: multidimensional data, typically mixed types (some

variables continuous, some [possibly ordered] categorical ,

etc.)

Use k > 1 partial tests.

Notation will follow [?]. Have C samples of V -dimensional

data (each sample might correspond to a different treatment,

e.g.). Sample space for each observation is X . Samples may

have unequal sizes.
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NPC: Notation

Data

X = {Xj}Cj=1 = {Xji}
nj
i=1

C
j=1 = {Xhji}

nj
i=1

C
j=1

V
h=1. (126)

n ≡
C∑
j=1

nj. (127)

For each j, {Xji}
nj
i=1 are iid Pj ∈ P. Known class P of distri-

butions on a common sigma algebra on X .

Null hypothesis H0: Pj are all equal.

Then have exchangeability w.r.t. C groups.
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NPC: Notation, contd.

H0 might be broken into sub-hypotheses {H0i}ki=1, such that

H0 = ∩ki=1H0i. (128)

H0 is the overall null.

Alternative can be broken into

H1 = ∪ki=1H1k. (129)

H1 is overall alternative.

k-dimensional vector of test statistics T(X)
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Randomized experiment

There are N subjects.

The subjects are given; they are not necessarily a sample

from some larger population.

Assign a simple random sample of size n of the N subjects to

treatment, and the remaining m = N −n subjects to control.

For each subject, we observe a (univariate) quantitative re-

sponse. (More on multivariate responses later.)

No assumption about the values of that quantitative re-

sponse; they need not follow any particular distribution.

The null hypothesis is that treatment “makes no difference.”
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What’s the relevant group?

Under what group is the distribution of the data invariant if

the null is true?

How can we generate the orbit of the data under that group?

How big is the orbit?

How can we sample at random from the orbit?
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Alternative hypotheses

Many alternatives are interesting. The most common are the

shift alternative, the dispersion alternative, and the omnibus

alternative.

The shift alternative is that treatment changes the mean

response. (There are left-sided, right-sided and two-sided

versions of the shift alternative.)

The dispersion alternative is that treatment changes the scat-

ter of the responses.

The omnibus alternative is that treatment changes the re-

sponse in some way—any way whatsoever.
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Testing

The deliberate randomization makes it possible to test rig-

orously whether whether treatment affects response in the

group of N subjects.

Up to sampling error—which can be quantified—differences

between the responses of the treatment and control groups

must be due to the effect of treatment: randomization tends

to balance other factors that affect the responses, and that

otherwise would lead to confounding.

However, conclusions about the effect of treatment among

the N subjects cannot be extrapolated to any other popula-

tion, because we do not know where the subjects came from

(how they came to be part of the experiment).
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The Neyman Model

We model the experiment as follows: Each of the N subjects
is represented by a ticket with two numbers on it, a left and
a right number.

The left number is the response the subject would have if as-
signed to the control group; the right number is the response
the subject would have if assigned to the treatment group.

These numbers are written on the tickets before the exper-
iment starts. Assigning the subject to treatment or control
only determines whether we observe the left or the right num-
ber for that subject.

Let uj be the left number on the jth ticket and let vj be the
right number on the jth ticket.

The experiment reveals either uj (if subject j is assigned to
treatment) or vj (if subject j is assigned to control).
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Non-interference

There are only two numbers on each ticket.

Whether uj or vj is revealed depends only on whether subject
j is assigned to treatment or to control.

Let Xj be the indicator of whether subject j was treated.
That is, Xj = 0 if subject j is in the control group, and
Xj = 1 if subject j is in the treatment group.

If Xj = 0, uj is revealed. If Xj = 1, vj is revealed.

More generally, the observed response of subject j could de-
pend on all the assignments {Xj}nj=1.

In the Neyman model, it depends only on Xj. This is the
hypothesis of non-interference.
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Strong Null Hypotheses

The strong null hypothesis is

uj = vj, j = 1,2, . . . , N. (130)

That is, the strong null hypothesis is that the left and right

numbers on each ticket are equal. Subject by subject, treat-

ment makes no difference at all. The N observed responses

will be the same, no matter which subjects are assigned to

treatment.
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Weak Null Hypotheses

The weak null hypothesis is that the average of the left num-

bers equals the average of the right numbers:

N∑
j=1

uj =
N∑
j=1

vj. (131)

In the weak null hypothesis, treatment makes no difference

on average: treatment might increase the responses for some

individuals, provided it decreases the responses of other indi-

viduals by a balancing amount.
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Extending the Neyman Model to random responses

Generalize ticket model from two responses (one under treat-

ment, the other under control) to two random variables.

Instead of thinking of subject j’s (potential) responses as a

fixed pair of numbers {(uj, vj)}Nj=1, think of them as a pair

of random variables (Uj, Vj).

A realization of Uj will be observed if subject j is assigned to

control (i.e., if Xj = 0)

A realization of Vj will be observed if subject j is assigned to

treatment (i.e., if Xj = 1)

The joint probability distributions of Uj and Vj are fixed before

the randomization (but are unknown).
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Assumption of no confounding

{Xj} are in general dependent (e.g., if m subjects are selected

for treatment at random).

But {Xj} don’t depend on characteristics of the subjects (in-

cluding {(Uj, Vj)}).

The set {Xj}nj=1 is independent of the set {(Uj, Vj)}nj=1.
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Assumption of Non-Interference

The random pairs

{(Uj, Vj)}Nj=1 (132)

are independent across j. That is, if we knew the values of

any subset of the pairs, it wouldn’t tell us anything about the

values of the rest of the pairs.

(Within each pair, Uj and Vj can be dependent.)

Nothing about subject j’s potential responses depends on any

other subjects.
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Fine points

Think of the realizations of {(Uj, Vj)} as being generated

before {Xj} are generated.

Once {(Uj, Vj)} are generated, they are intrinsic properties of

subject j.

216



Null hypotheses

• For each j, Uj ∼ Vj

• For each j, IEUj = IEVj

• IE
∑N
j=1Uj = IE

∑N
j=1 Vj

• qth quantile of Uj equals qth quantile of Vj (e.g., for

survival time)

• what else?
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Special case: Binary responses

{die, live}, {don’t improve, improve}, {not harmed, harmed}.

Code responses as {0, 1}.

Then subject j is characterized by 4 numbers that specify

joint distribution of (Uj, Vj).

pj = Pr{Uj = 0 and Vj = 0}
qj = Pr{Uj = 0 and Vj = 1}
rj = Pr{Uj = 1 and Vj = 0}
sj = Pr{Uj = 1 and Vj = 1} (133)

pj, qj, rj, sj ≥ 0 and pj + qj + rj + sj = 1.
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Causal inference

Think of treatment as exposure to something that might

cause harm (e.g., a potential carcinogen).

A response of 1 means the subject was “harmed” (e.g., got

cancer). A response of 0 means the subject was not harmed.

E.g., if Xj = 1 and Vj = 1, subject j was exposed and suffered

harm. If Xj = 0 and Uj = 1, subject j was not exposed, but

suffered harm.

In general, does exposure cause harm?

Would exposure cause harm to subject j?

If Xj = 1 and Vj = 1, did exposure harm subject j?
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Relative risk

Generally, data are from epidemiological studies, not random-
ized experiments: confounding is a major concern.

Pretend we have controlled, randomized, double-blind exper-
iment.

Recall that n =
∑
jXj is the number of exposed (treated)

subjects and m = N − n =
∑
j(1 − Xj) is the number of

unexposed (control) subjects.

Common test for causation is based on relative risk (RR):

RR =
1
n

∑
XjVj

1
m

∑
(1−Xj)Uj

. (134)

Numerator is the rate of harm in the treated group; denom-
inator is the rate of harm in the control group.
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General and specific causation in the law

Plaintiff was exposed to something, was harmed, and sues

the party responsible for his exposure.

To win, plaintiff must show by a preponderance of the evi-

dence (i.e., that more likely than not):

General causation: exposure can cause harm

Specific causation: the exposure caused that individual’s

harm
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Relative risk and specific causation

Common legal test for specific causation: RR > 2.

Claim: if RR > 2, “more likely than not” the exposure caused

plaintiff’s harm.
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Thought experiment

2000 subjects. 1000 subjects selected at random and ex-

posed; 1000 left unexposed.

Among unexposed, 2 are harmed. Among exposed, 20 are

harmed. Then RR = 10.

Heuristic argument: but for the exposure, there would only

have been 2 harmed among the exposed, so 18 of the 20 in-

juries were caused by the exposure.

223



Is the plaintiff selected at random?

Pick a subject at random from the 20 who were exposed and

harmed.

Pr{ that subject’s harm was caused by exposure } = 18/20

= 90%

= 1−
1

RR
> 50%.

If the RR had been 4, the chance would have been 75%.

If RR had been 2, the chance would have been 50%: the

threshold for “more likely than not.”
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Hypothetical Counterfactuals and Causation

Suppose Xj = 1 and Vj = 1 (subject j was exposed and

harmed).

Exposure caused the harm if Uj = 0: But for the exposure,

subject j would not have been harmed.

Involves counterfactual: Subject j was in fact exposed!

(If Uj = 1, subject would have been harmed whether or not

the exposure happened: The exposure did not cause the

harm.)
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Probability that exposure causes harm

Chance subject j would be harmed if unexposed

βj = Pr{Uj = 1} = rj + sj. (135)

Chance subject j would be harmed if exposed

γj = Pr{Vj = 1} = qj + sj. (136)

βj and γj are identifiable, but (pj, qj, rj, sj) are not separately

identifiable.

Even if βj and γj are known, cannot determine qj.
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Overall rate of harm caused by exposure

Overall expected rate of harm if no subjects were exposed

β =
1

N

N∑
j=1

Pr{Uj = 1} =
1

N

N∑
j=1

(rj + sj). (137)

Overall expected rate of harm if all subjects were exposed

γ =
1

N

N∑
j=1

Pr{Vj = 1} =
1

N

N∑
j=1

(qj + sj). (138)

Difference in expected rate of harm if all were exposed versus

if none were exposed

γ − β. (139)

This is average causal effect of exposure on harm (among

the N subjects in the study group).
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Estimating rate of harm caused by exposure

γ, β, γ − β are estimable:

γ = IE
1

n

N∑
j=1

XjVj (140)

β =
1

m

N∑
j=1

(1−Xj)Uj. (141)
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Focus on the algebra, not the statistics

Take γ and β to be known, with

0 < β < γ (142)

(so exposure does, on average, cause harm: RR = γ/β > 1)

and

β + γ < 1 (143)

(the rate of harm, even with exposure, is not too large).
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Probability of specific causation

Exposure and response are independent, so

Pr{Uj = 0|Vj = 1, Xj = 1} = Pr{Uj = 0|Vj = 1}. (144)

Conditional chance that exposure caused subject j’s harm is

πj = Pr{Uj = 0|Vj = 1} = qj/γj = qj/(qj + sj). (145)

Define πj = 0 if γj = 0.

πj is conditional probability that subject j would not have

been harmed if left unexposed, given that subject j was ex-

posed and injured.
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Probability of specific causation, cont.

“More likely than not,” exposure caused the harm if πj > 1/2.

Since qj is not identifiable, πj is not identifiable. Cannot

answer the question using epidemiological data.

To estimate πj requires additional assumptions; generally not

testable.
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Average probability of causation: helpful lemmas

π̄ ≡
1

N

N∑
j=1

πj, (146)

q̄ ≡
1

N

N∑
j=1

qj. (147)

q̄ ≤
1

N

N∑
j=1

(qj + sj) = γ; q̄ = γ iff sj = 0 ∀j. (148)

q̄ ≥ γ − β; q̄ = γ − β iff rj = 0 ∀j. (149)

(Proof: q̄ = γ − β + r̄.)
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Average probability of causation: lower bound

inf π̄ = γ − β. (150)

Proof.

π̄ =
1

N

N∑
j=1

πj ≥
1

N

N∑
j=1

(qj + sj)πj =
1

N

N∑
j=1

qj = q̄ ≥ γ − β.

(151)

Equality holds if rj = 0 for all subjects, and qj = 0 unless

qj + sj = 1.

For instance, suppose there are two types of subjects: for one

type, exposure does not change the chance of harm, while

for the other, there is harm only if the subject is exposed.
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Average probability of causation: upper bound

sup π̄ = 1. (152)

Proof. Take sj ≡ 0, rj ≡ β, qj ≡ γ, and pj ≡ 1−β−γ for all j.
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Example: πj = π̄ = 1

pj = 0.95, qj = 0.04, rj = 0.01, sj = 0. Then

πj = qj/(qj + sj) = 0.04/(0.04 + 0) = 1, ∀j. (153)

Note that

β = r̄ + s̄ = 0.01 < q̄ + s̄ = γ = 0.04 (154)

and β + γ = 0.05 < 1.
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Example: πj = π̄ = 3/4

pj = 0.96, qj = 0.03, rj = 0, sj = 0.01. Then

πj = qj/(qj + sj) = 0.03/(0.03 + 0.01) = 3/4, ∀j. (155)

Note that

β = r̄ + s̄ = 0.01 < q̄ + s̄ = γ = 0.04 (156)

and β + γ = 0.05 < 1.
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Example: πj = π̄ = 0.03

For 97% of subjects, pj = 96/97, qj = rj = 0, sj = 1/97.

For 3% of subjects, pj = 0, qj = 1, rj = sj = 0.

For the first group,

πj = qj/(qj + sj) = 0/(0 + 1/97) = 0. (157)

For the second group,

πj = qj/(qj + sj) = 1/(1 + 0) = 1. (158)

Hence

π̄ = 0.97× 0 + 0.03× 1 = 0.03. (159)

Again β = 0.01, γ = 0.04.

All three examples have the same values of p̄, q̄, r̄, and s̄—
and hence of β and γ—but the values of π̄ are 1, 3/4, and
0.03.

237



Epidemiological studies can (at best) determine β and γ.

The claim that RR > 2 means causation is “more likely than

not” ties to example 2.
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Probability of specific causation: random selection

Plaintiff was exposed and harmed. What is the chance that

exposure caused the harm?

Arguments generally assume plaintiff was chosen at random

from the study group. But how?

1. Pick subject at random; condition that subject was ex-

posed and harmed.

2. Divide subjects into 2 groups, exposed and not. Condition

that at least one exposed was harmed. Pick one subject at

random from the exposed and harmed.

3. Pick a subject at random; condition that subject was ex-

posed and harmed and that subject sues.
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In all three, n of N are assigned at random to exposure,

exposure Xj is independent of response pair (Uj, Vj), and

{(Uj, Vj)}Nj=1 are independent random pairs.



Probability of specific causation: scenario 1

η is a random integer between 1 and N . Condition that

Xη = Vη = 1.

Then

Pr{Uη = 0|Xη = 1, Vη = 1} ≥ 1−
1

RR
. (160)

Can be as high as 1.
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Probability of specific causation: scenario 2

X are the exposed; R ⊂ X are the exposed and harmed. ρ

uniform on R when R is nonempty.

Then Uρ = 0 means that exposure caused harm to subject ρ,

who was selected at random from the exposed, harmed.

Let J be a typical nonempty R; |J | is the cardinality of J ,

so 1 ≤ |J | ≤ n.

Then

Pr{Uρ = 0|R 6= ∅} =

∑
J

1
|J |

∑
j∈J πj Pr{R = J}∑
J Pr{R = J}

(161)
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Comparing scenarios 1 and 2

N = 3, n = 2.

Scenario 1:

(q1 + q2 + q3)/(γ1 + γ2 + γ3). (162)

Weighted average of π1, π2, π3 with weights γ1, γ2, γ3.

Scenario 2 also weighted average of π1, π2, π3, but weights

are

γ1(2−3γ/2+γ1/2), γ2(2−3γ/2+γ2/2), γ3((2−3γ/2+γ3/2).

(163)
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Scenario 3

Your mileage may vary.

Suppose propensity to sue depends on individual characteris-
tics. E.g., we also have {Yj}Nj=1. If Xj = Vj = Yj = 1, subject
j was exposed, harmed, and sues. Suppose qj + sj > 0 ∀j.

Suppose

Pr{Yj = 1|Xj = Vj = 1} =
λ

qj + sj
. (164)

Healthier subjects are more likely to sue.

Then

Pr{Uη = 0|Xη = Vη = Yη = 1} = π̄. (165)

Average probability of causation, rather than relative risk,
controls things in this scenario.
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