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1.1 The Bootstrap

The setting for the next few lectures is that we observe an iid sample of size n, {Xj}n
j=1 iid F . Each

observation is real-valued. We wish to estimate some parameter of the distribution of F that can be

written as a functional of F , T (F ). Examples include the mean, T (F ) =
∫

xdF (x), other moments,

etc.

The (unpenalized) nonparametric maximum likelihood estimator of F from the data {Xj} is

just the empirical distribution F̂n, which assigns mass 1/n to each observation:

arg max
probability distributions G

IPG{Xj = xj, j = 1, . . . , n} = F̂n. (1)

(Note, however, that the MLE of F is not generally consistent in problems with an infinite number

of parameters, such as estimating a density or a distribution function.)

Using the general principle that the maximum likelihood estimator of a function of a parameter

is that function of the maximum likelihood estimator of the parameter, we might be led to consider

T (F̂n) as an estimator of T (F ).

That is exactly what the sample mean does, as an estimator of the mean:

T (F̂n) =
∫

xdF̂n(x) =
n∑

j=1

1

n
Xj =

1

n

∑
j

Xj. (2)

Similarly, the maximum likelihood estimator of

Var(X) = T (F ) =
∫ (

x−
∫

xdF
)2

dF (3)

is

T (F̂n) =
∫ (

x−
∫

xdF̂n

)2

dF̂n =
1

n

∑
j

(
Xj −

1

n

∑
k

Xk

)2

. (4)

In these cases, we get analytically tractable expressions for T (F̂n).

What is often more interesting is to estimate a property of the sampling distribution of the

estimator T (F̂n), for example the variance of the estimator T (F̂n). The bootstrap approximates

the sampling distribution of T (F̂n) by the sampling distribution of T (F̂ ∗
n), where F̂ ∗

n is a size-n iid

random sample drawn from F̂n. That is, the bootstrap approximates the sampling distribution of an

estimator applied to the empirical distribution F̂n of a random sample of size n from a distribution

F by the sampling distribution of that estimator applied to a random sample F̂ ∗
n of size n from a

particular realization F̂n of the empirical distribution of a sample of size n from F .
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When T is the mean
∫

xdF , so T (F̂n) is the sample mean, we could obtain the variance of the

distribution of T (F̂ ∗
n) analytically: Let {X∗

j }n
j=1 be an iid sample of size n from F̂n. Then

VarF̂n

1

n

n∑
j=1

X∗
j =

1

n2

n∑
j=1

(Xj − X̄)2, (5)

where {Xj} are the original data and X̄ is their mean. When we do not get a tractable espression

for the variance of an estimator under resampling from the empirical distribution, we could still

approximate the distribution of T (F̂n) by generating a large number of size-n iid F̂n data sets

(drawing samples of size n with replacement from {xj}n
j=1), and applying T to each of those sets.

The idea of the bootstrap is to approximate the distribution (under F ) of an estimator T (F̂n)

by the distribution of the estimator under F̂n, and to approximate that distribution by using a

computer to take a large number of pseudo-random samples of size n from F̂n.

This basic idea is quite flexible, and can be applied to a wide variety of testing and estimation

problems, including finding confidence sets for functional parameters. (It is not a panacea, though:

we will see later how delicate it can be.) It is related to some other “resampling” schemes in which

one re-weights the data to form other distributions. Before doing more theory with the bootstrap,

let’s examine the jackknife.

1.2 The Jackknife

The idea behind the jackknife, which is originally due to Tukey and Quenouille, is to form from the

data {Xj}n
j=1, n sets of n−1 data, leaving each datum out in turn. The “distribution” of T applied

to these n sets is used to approximate the distribution of T (F̂n). Let F̂(i) denote the empirical

distribution of the data set with the ith value deleted; T(i) = T (F̂(i)) is the corresponding estimate

of T (F ). An estimate of the expected value of T (F̂n) is

T̂(·) =
1

n

n∑
i=1

T (F̂(i)). (6)

Consider the bias of T (F̂n):

EF T (F̂n)− T (F ). (7)

Quenouille’s jackknife estimate of the bias is

B̂IAS = (n− 1)(T̂(·) − T (F̂n)). (8)
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It can be shown that if the bias of T has a homogeneous polynomial expansion in n−1 whose

coefficients do not depend on n, then the bias of the bias-corrected estimate

T̃ = nT (F̂n)− (n− 1)T(·) (9)

is O(n−2) instead of O(n−1).

Applying the jackknife estimate of bias to correct the plug-in estimate of variance reproduces

the formula for the sample variance (with 1/(n− 1)) from the formula with 1/n: Define

X̄ =
1

n

n∑
j=1

Xj, (10)

X̄(i) =
1

n− 1

∑
j 6=i

Xj, (11)

T (F̂n) = σ̂2 =
1

n

n∑
j=1

(Xj − X̄)2, (12)

T (F̂(i)) =
1

n− 1

∑
j 6=i

(Xj − X̄(i))
2, (13)

T (F̂(·)) =
1

n

n∑
i=1

T (F̂(i)). (14)

Now

X̄(i) =
nX̄ −Xi

n− 1
= X̄ +

1

n− 1
(X̄ −Xi), (15)

so

(Xj − X̄(i))
2 =

(
Xj − X̄ − 1

n− 1
(X̄ −Xi)

)2

= (Xj − X̄)2 +
2

n− 1
(Xj − X̄)(Xi − X̄) +

1

(n− 1)2
(Xi − X̄)2. (16)

Note also that ∑
j 6=i

(Xj − X̄(i))
2 =

n∑
j=1

(Xj − X̄(i))
2 − (Xi − X̄(i))

2. (17)

Thus

n∑
i=1

∑
j 6=i

(Xj − X̄(i))
2 =

1

n− 1

n∑
i=1

 n∑
j=1

[
(Xj − X̄)2 +

2

n− 1
(Xj − X̄)(Xi − X̄) +

+
1

(n− 1)2
(Xi − X̄)2

]
− (Xi − X̄)2−

− 2

n− 1
(Xi − X̄)2 − 1

(n− 1)2
(Xi − X̄)2

]
. (18)
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The last three terms all are multiples of (Xi − X̄)2; the sum of the coefficients is

1 + 2/(n− 1) + 1/(n− 1)2 = n2/(n− 1)2. (19)

The middle term of the inner sum is a constant times (Xj − X̄), which sums to zero over j.

Simplifying the previous displayed equation yields

n∑
i=1

∑
j 6=i

(Xj − X̄(i))
2 =

1

n− 1

n∑
i=1

(
nσ̂2 +

n

(n− 1)2
(Xi − X̄)2 − n2

(n− 1)2
(Xi − X̄)2

)

=
1

n− 1

n∑
i=1

(nσ̂2 − n

n− 1
(Xi − X̄)2)

=
1

n− 1

[
n2σ̂2 − n2

n− 1
σ̂2

]

=
n(n− 2)

(n− 1)2
σ̂2. (20)

The jackknife bias estimate is thus

B̂IAS = (n− 1)
(
T (F̂(·))− T (F̂n)

)
= σ̂2n(n− 2)− (n− 1)2

n− 1
=

−σ̂2

n− 1
. (21)

The bias-corrected MLE variance estimate is therefore

σ̂2
(
1− 1

n− 1

)
= σ̂2 n

n− 1
=

1

n− 1

n∑
j=1

(Xj − X̄)2 = S2, (22)

the usual sample variance.

The jackknife also can be used to estimate other properties of an estimator, such as its variance.

The jackknife estimate of the variance of T (F̂n) is

V̂ar(T ) =
n− 1

n

n∑
j=1

(T(j) − T(·))
2. (23)

It is convenient to think of distributions on data sets to compare the jackknife and the bootstrap.

We shall follow the notation in Efron (1982). We condition on (Xi = xi) and treat the data as fixed

in what follows. Let Sn be the n-dimensional simplex

Sn ≡ {IP∗ = (P ∗
i )n

i=1 ∈ IRn : P ∗
i ≥ 0 and

n∑
i=1

P ∗
i = 1}. (24)

A resampling vector IP∗ = (P ∗
k )n

k=1 is any element of Sn; i.e., an n-dimensional discrete probability

vector. To each IP∗ = (P ∗
k ) ∈ Sn there corresponds a re-weighted empirical measure F̂ (IP∗) which

puts mass P ∗
k on xk, and a value of the estimator T ∗ = T (F̂ (IP∗)) = T (IP∗). The resampling vector
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IP0 = (1/n)n
j=1 corresponds to the empirical distribution F̂n (each datum xj has the same mass).

The resampling vector

IP(i) =
1

n− 1
(1, 1, . . . , 0, 1, . . . , 1), (25)

which has the zero in the ith place, is one of the n resampling vectors the jackknife visits; denote the

corresponding value of the estimator T by T(i). The bootstrap visits all resampling vectors whose

components are multiples of 1/n.

The bootstrap estimate of variance tends to be better than the jackknife estimate of variance

for nonlinear estimators because of the distance between the empirical measure and the resampled

measures:

‖IP∗ − IP0‖ = OP (n−1/2), (26)

while

‖IP(k) − IP0‖ = O(n−1). (27)

To see the former, recall that the difference between the empirical distribution and the true distri-

bution is OP (n−1/2): For any two probability distributions IP1, IP2, on IR, define the Kolmogorov-

Smirnov distance

dKS(IP1, IP2) ≡ ‖IP1 − IP2‖KS ≡ sup
x∈IR

|IP1{(−∞, x]} − IP2{(−∞, x]}|. (28)

There exist universal constants χn(α) so that for every continuous (w.r.t. Lebesgue measure)

distribution F ,

IPF

{
‖F − F̂n‖KS ≥ χn(α)

}
= α. (29)

This is the Dvoretzky-Kiefer-Wolfowitz inequality. Massart (Ann. Prob., 18, 1269–1283, 1990)

showed that the constant

χn(α) ≤

√
ln 2

α

2n
(30)

is tight. Thinking of the bootstrap distribution (the empirical distribution F̂n) as the true cdf and

the resamples from it as the data gives the result that the distance between the cdf of the bootstrap

resample and the empirical cdf of the original data is OP (n−1/2).

To see that the cdfs of the jackknife samples are O(n−1) from the empirical cdf F̂n, note that

for univariate real-valued data, the difference between F̂n and the cdf of the jackknife data set that

leaves out the jth ranked observation X(j) is largest either at X(j−1) or at X(j). For j = 1 or j = n,

the jackknife samples that omit the smallest or largest observation, the L1 distance between the
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jackknife measure and the empirical distribution is exactly 1/n. Consider the jackknife cdf F̂n,(j),

the cdf of the sample without X(j), 1 < j < n.

F̂n,(j)(X(j)) = (j − 1)/(n− 1), (31)

while F̂n((X(j)) = j/n; the difference is

j

n
− j − 1

n− 1
=

j(n− 1)− n(j − 1)

n(n− 1)
=

n− j

n(n− 1)
=

1

n− 1
− j

n(n− 1)
. (32)

On the other hand,

F̂n,(j)(X(j−1)) = (j − 1)/(n− 1), (33)

while F̂n((X(j−1)) = (j − 1)/n; the difference is

j − 1

n− 1
− j − 1

n
=

n(j − 1)− (n− 1)(j − 1)

n(n− 1)
=

j − 1

n(n− 1)
. (34)

Thus

‖F̂n,(j) − F̂n‖ =
1

n(n− 1)
max{n− j, j − 1}. (35)

But n/2 ≤ max{n− j, j − 1} ≤ n− 1, so

‖F̂n,(j) − F̂n‖ = O(n−1). (36)

The neighborhood that the bootstrap samples is larger, and is probabilistically of the right

size to correspond to the uncertainty of the empirical distribution function as an estimator of the

underlying distribution function F (recall the Kiefer-Dvoretzky-Wolfowitz inequality—a K-S ball of

radius O(n−1/2) has fixed coverage probability). For linear functionals, this does not matter, but for

strongly nonlinear functionals, the bootstrap estimate of the variability tends to be more accurate

than the jackknife estimate of the variability.

Let us have a quick look at the distribution of the K-S distance between a continuous distribution

and the empirical distribution of a sample {Xj}n
j=1 iid F . The discussion follows Feller (1971,

pp. 36ff). First we show that for continuous distributions F , the distribution of ‖F̂n − F‖KS does

not depend on F . To see this, note that F (Xj) ∼ U [0, 1]: Let xt ≡ inf{x ∈ IR : F (xt) = t}.

Continuity of F ensures that xt exists for all t ∈ [0, 1]. Now the event {Xj ≤ xt} is equivalent to

the event {F (Xj) ≤ F (xt)} up to a set of F -measure zero. Thus

t = IPF{Xj ≤ xt} = IPF{F (Xj) ≤ F (xt)} = IPF{F (Xj) ≤ t}, t ∈ [0, 1]; (37)
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i.e., {F (Xj)}n
j=1 are iid U [0, 1]. Let

Ĝn(t) ≡ #{F (Xj) ≤ t}/n = #{Xj ≤ xt}/n = F̂n(xt) (38)

be the empirical cdf of {F (Xj)}n
j=1. Note that

sup
x∈IR

|F̂n(x)− F (x)| = sup
t∈[0,1]

|F̂n(xt)− F (xt)| = sup
t∈[0,1]

|Ĝn(t)− t|. (39)

The probability distribution of Ĝn is that of the cdf of n iid U [0, 1] random variables (it does not

depend on F ), so the distribution of the K-S distance between the empirical cdf and the true cdf is

the same for every continuous distribution. It turns out that for distributions with atoms, the K-S

distance between the empirical and the true distribution functions is stochastically smaller than it

is for continuous distributions.

1.3 Bootstrap and Randomization Tests

This section is about Romano’s papers. The set-up is as follows: We observe {Xj}n
j=1 iid P , where

P is a distribution on an abstract sample space X . The distribution P ∈ Ω, where Ω is a known

collection of distributions on X . The null hypothesis is that P ∈ Ω0 ⊂ Ω. We assume that Ω0

can be characterized as a set of distributions that are invariant under a transformation on Ω: let

τ : Ω → Ω0; we assume that τ(P ) = P for all P ∈ Ω0.

Let V be a collection of subsets of a set X . For a finite set D ⊂ X , let ∆V(D) be the number

of distinct sets {V ∩D : V ∈ V}. For positive integers n, let

mV(n) = max
D⊂X :#D=n

∆V(D). (40)

Let

c(V) ≡ inf{n : mV(n) < 2n}. (41)

If c(V) < ∞, V is a Vapnik-Cervonenkis (V-C) class. That is, V is a V-C class if the maximum

number of distinct intersections of sets in V with sets containing n points grows sub-exponentially

with n. Intersections, finite unions, and Cartesian products of V-C classes are V-C classes. In IRn,

the set of all ellipsoids, the set of all half-spaces, the set of all lower-left quadrants, and the set of

all convex sets with at most p extreme points are all V-C classes.

An alternative, equivalent definition of a V-C class is based on the following definition:
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Definition 1 Suppose V is a collection of subsets of a set X , and that D is a finite subset of X .

We say D is shattered by V if every subset d ⊂ D can be written d = V ∩D for some V ∈ V.

Suppose D has n elements. Because there are 2n subsets of a set with n elements, this is

equivalent to saying that there are 2n different subsets of the form D ∩ V as V ranges over V .

A collection V is a V-C class if for some finite integer n, there exists a set D ⊂ X with n elements

that is not shattered by V .

Example. Half lines on IR. Consider a set D = {xj}n
j=1 of points on the real line. Let V =

{(−∞, y] : y ∈ IR}. How many sets are there of the form V ∩D, for V ∈ V? Just n + 1. Suppose

the points are in increasing order, so that x1 < x2 < · · · < xn. Then the possibilities for V ∩D are

{}, {x1}, {x1, x2}, . . ., {xj}n
j=1. Thus mV(n) = n + 1, and c(V) ≡ inf{n : mV(n) < 2n} = 2 (for

n = 0, we have 0 + 1 = 20, and for n = 1, we have 1 + 1 = 21, but for n = 2, we have 2 + 1 < 22).

Example. Closed intervals {[y, z]: y < z} on IR. For finite sets D as discussed above, the

possibilities for V ∩D include all sets of adjacent values, such as {x1}, {x2}, {x3}, {x1, x2}, {x2, x3},

and {x1, x2, x3}, but not, for example, {x1, x3}. Clearly, mV(2) = 4 but mV(3) = 7, so c(V) = 3.

(The general rule is
(

mV (n)=1+n+n
2

)
. Why?)

Suppose that V and W are V-C classes on a common set X . Then V ∪W is also a V-C class,

as is V ∩W .

Exercise. Show that intersections and finite unions of V-C classes are V-C classes. Show by

example that a countable union of V-C classes need not be a V-C class.

We return now to the approach Romano advocates for testing hypotheses. Let V be a VC class

of subsets of S. Define the pseudo-metric

δ : Ω× Ω → IR+

(P, Q) → sup
V ∈V

|P (V )−Q(V )|. (42)

This is a generalization of the Kolmogorov-Smirnov distance for distributions on the line. In that

case, the sets in V are the half-lines {(−∞, y] : y ∈ IR} (which comprise a V-C class).

Assume that V and τ have been selected such that δ(P, τP ) = 0 iff P ∈ Ω0. Romano proposes

using the test statistic

Tn = n1/2δ(P̂n, τ P̂n), (43)

where P̂n is the empirical measure of {Xj}n
j=1. One rejects the hypothesis when τ P̂n is far from P̂n;

i.e., when Tn is sufficiently large.
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But how large? One way to obtain a critical value for the test is with the bootstrap: resample

from τ(P̂n), tabulate the distribution of the distance between the empirical distribution of the

bootstrap samples and τ applied to them, use the 1− α quantile of that distribution as the critical

value for an approximate level α test. (We have to resample from τ(P̂n) rather than P̂n because

the significance level is computed under the assumption that the null hypothesis is true. The null

hypothesis is true for τ(P̂n) but not necessarily for P̂n.)

Suppose that there is a (known) group Gn of transformations of the sample space Sn such that

under the null hypothesis, P is invariant under Gn. Then we can also construct a randomization

test of the hypothesis H0. For simplicity, suppose that Gn is finite, with Mn elements {gnj}Mn
j=1.

Under the null hypothesis, conditional on X = x, the values {gnjx}Mn
j=1 are equally likely.1 Compute

the test statistic for each gnjx in the orbit of x. Reject the null hypothesis if the statistic for x

exceeds the 1− α quantile of the test statistic for the set of values obtained from the orbit; do not

reject if it is less; reject with a given probability if the statistic equals the 1− α quantile, in such a

way as to get a level α test. This is a randomization test. Because the level of the randomization

test is α, conditional on the data, integrating over the distribution of the data shows that it is α

unconditionally.

1.3.1 Examples of hypotheses and functions τ

Examples Romano gives include testing for independence of the components of each Xj, testing for

exchangeability of the components of each Xj, testing for spherical symmetry of the distribution of

Xj, testing for homogeneity among the Xj, and testing for a change point.

In the example of testing for independence, the mapping τ takes the marginal distributions of

the joint distribution, then constructs a joint distribution that is the product of the marginals. For

distributions with independent components, this is the identity; otherwise, it maps a distribution

into one with the same marginals, but whose components are independent. For testing for spherical

symmetry, τ maps a distribution into one with the same mass at every distance from the origin,

but that is uniform on spherical shells. For testing for exchangability, Romano proposes looking at

the largest difference between P and a permutation of the coordinates of P , over all permutations

of the coordinates. See his paper for more details.

1The orbit of an point x in a space S acted on by a group G is the set of all elements of S that can be obtained

by applying elements of G to x. That is, it is the set {g(x) : g ∈ G}. For example, consider points in the plane and

the group of rotations about the origin. Then the orbit of a point x is the circle with radius ‖x‖.
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Romano shows that these tests are consistent against all alternatives, and that the critical

values given by the bootstrap and by randomization are asymptotically equal with probability one.

Because the randomization tests are exact level α tests, they might be preferred. Romano also

briefly discusses how to implement the tests computationally.

Let’s consider the implementation in more detail, for two hypotheses: independence of the

components of a k-variate distribution, and rotational invariance of a bivariate distribution.

1.3.2 Independence

We observe {Xj}n
j=1 iid P , where each Xj = (Xij)

k
i=1 takes values in IRk. Under the null hypothesis,

P is invariant under the mapping τ that takes the k marginal distributions of P and multiplies

them together to give a probability on IRk with independent components. Let P̂n be the empirical

measure; let the V-C class V be the set of lower left quadrants {Q(x) : x ∈ IRk} where

Q(x) ≡ {y ∈ IRk : yi ≤ xi, i = 1, . . . , k}. (44)

Then

P̂n(Q(x)) =
1

n
#{Xj : Xij ≤ xi, i = 1, . . . , k}, (45)

and

τ P̂n(Q(x)) =
k∏

i=1

1

n
#{Xj : Xij ≤ xi}. (46)

The maximum difference in the probability of a lower left quadrant Q(x) occurs when x is one of

the points of support of τ P̂n:

sup
V ∈V

|P̂n(V )− τ P̂n(V )| = sup
x∈IRk

|P̂n(Q(x))− τ P̂n(Q(x))|

= max
x∈IRk

:xi∈{Xij}n
j=1, i=1,...,k

|P̂n(Q(x))− τ P̂n(Q(x))|. (47)

The probability of a lower left quadrant is straightforward to compute for P̂n and for τ P̂n; here

is Matlab code. Let X be an n by k matrix whose rows are the observations {Xj}n
j=1, and let

x = (xi)
k
i=1 be a row vector.

temp = X <= (ones(n,1)*x);

phatn = sum(prod(temp, 2))/n;

tauphatn = prod(sum(temp))/(n^k);
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We can simulate a sample of size n iid τ P̂n in Matlab as follows:

[n k] = size(X);

tausam = zeros(size(X));

for i=1:k,

tausam(:,i) = X(ceil(n*rand(n,1)),i);

end;

To test the null hypothesis of independence, we would compute

T (X) = max
x∈IRk

:xi∈{Xij}n
j=1, i=1,...,k

|P̂n(Q(x))− τ P̂n(Q(x))| (48)

from the data X, then repeatedly draw iid samples X∗ of size n from τ P̂n, computing

T (X∗) = max
x∈IRk

:xi∈{X∗
ij}

n
j=1, i=1,...,k

|P̂ ∗
n(Q(x))− τ P̂ ∗

n(Q(x))| (49)

for each. We would reject the null hypothesis that the components of P are independent (at

approximate significance level α) if T (X) exceeds the 1 − α quantile of the simulated distribution

of T (X∗).

1.3.3 Rotational invariance in IR2

We observe {Xj}n
j=1 iid P , where each Xj = (X1j, X2j) takes values in IR2. For y ∈ IR2, define

|y| ≡
√

y2
1 + y2

2 to be the distance from y to the origin. Except at the origin, the mapping from

Cartesian coordinates (x1, x2) to polar coordinates (r, θ) is one-to-one; identify the origin with

the polar coordinates (0, 0). Under the null hypothesis, P is invariant under the mapping τ that

produces a distribution with the same marginal distribution of |X| but that is uniform on θ for each

possible value of |X|.

As before, let P̂n be the empirical measure; let the V-C class V be the set of lower left quadrants

{Q(x) : x ∈ IR2} where

Q(x) ≡ {y ∈ IRk : yi ≤ xi, i = 1, 2}. (50)

Then

P̂n(Q(x)) =
1

n
#{Xj : Xij ≤ xi, i = 1, 2}. (51)

To proceed, we need to find the probability of lower left quadrants Q(x) for the distribution τ P̂n.

Consider the contribution from each Xj separately. Let Rj = |Xj| =
√

X2
1j + X2

2j. The contribution
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of Xj to τ P̂n(Q(x)) is 1/n times the fraction of the circle {y ∈ IR2 : |y| = Rj} that is in the quadrant

Q(x). There eight cases to consider:

1. x2
1 +x2

2 > R2
j , x1, x2 < 0 or x1 < −Rj or x2 < −Rj. The contribution is 0: the quadrant does

not intersect the circle |y| = Rj.

2. x1, x2 > Rj. The contribution is 1/n: the quadrant contains the entire circle |y| = Rj.

3. x2
1 + x2

2 ≤ R2
j . The quadrant includes an arc that is at most half the circle. Let the points

at which the quadrant boundary intersects the circle be (x′1, x2) and (x1, x
′
2). Then x′1 is the

negative root of x
′2
1 = R2

j − x2
2 and x′2 is the negative root of x

′2
2 = R2

j − x2
1. The fraction of

the circle included in Q(x) is

1

π
sin−1 1√

2

1 +
x1

Rj

√√√√1− x2
2

R2
j

+
x2

Rj

√√√√1− x2
1

R2
j

1/2

. (52)

4. x2
1 + x2

2 > R2
j , −Rj < x1 ≤ 0, x2 ≥ 0. The fraction of the circle within Q(x) is

q(x1) ≡
1

π
sin−1 1√

2

(
1− x2

1

R2
j

)1/2

. (53)

5. x2
1 + x2

2 > R2
j , 0 ≤ x1 < Rj, x2 ≥ Rj. The fraction of the circle within Q(x) is 1− q(x1).

6. x2
1 + x2

2 > R2
j , x1 ≥ 0, −Rj < x2 < 0. The fraction of the circle within Q(x) is q(x2).

7. x2
1 + x2

2 > R2
j , x1 ≥ Rj, 0 ≤ x2 < Rj. The fraction of the circle within Q(x) is 1− q(x2).

8. x2
1 + x2

2 > R2
j , 0 ≤ x1 < Rj, 0 ≤ x2 < Rj. The fraction of the circle within Q(x) is

1− q(x1)− q(x2).

At which points x should we evaluate the discrepancy D(x) = |P̂n(Q(x)) − τ P̂n(Q(x))|? Let

R = maxj Rj. Then for x1, x2 > R, D(x) = 0. Similarly, for x1, x2 < −R, D(x) = 0. We might

take x on a fine grid in the square [−R,R] × [−R,R], but this is wasteful. Some thought shows

that the maximum discrepancy occurs when some datum is just included in Q(x), which makes P̂n

relatively large compared with τ P̂n, or when some datum is just excluded from Q(x), which makes

τ P̂n relatively large compared with P̂n. The possible points of maximum discrepancy are x of the

form (X1j − sε,X2k − sε) with 1 ≤ j, k ≤ n, s ∈ {0, 1}, and ε small, together with the points

(X1j − sε, R) and (R,X2j − sε). This is a large (2n2 + 4n) but finite number of points. Denote this

set by X ({Xj}, ε).
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To draw an iid sample of size n from τ P̂n, we draw n values iid uniform on {rj}n
j=1 and draw n

iid U [0, 2π] random variables, and treat these as the polar coordinates (r, θ) of n points in IR2.

To test the null hypothesis of rotational invariance, we would compute

T (X) = max
x∈IRk

:x∈X ({Xj},ε)
|P̂n(Q(x))− τ P̂n(Q(x))| (54)

from the data X, then repeatedly draw iid samples {X∗
j } of size n from τ P̂n, computing

T (X∗) = max
x∈IRk

:x∈X ({X∗
j },ε)

|P̂ ∗
n(Q(x))− τ P̂ ∗

n(Q(x))| (55)

for each. We would reject the null hypothesis that P is rotationally invariant (at approximate

significance level α) if T (X) exceeds the 1− α quantile of the simulated distribution of T (X∗).

Under the null hypothesis, the distribution of the data is invariant under the action of the

rotation group. This is not a finite group, so we cannot exhaust the set of transformations on a

computer. However, we might consider the subgroup of rotations by multiples of 2π/M for some

large integer M . We could get an alternative approximate level α test of the hypothesis of rotational

invariance by comparing T (X) with the 1−α quantile of T over all such rotations of the data—the

orbit of the data under this finite subgroup.

1.4 Bootstrap Confidence Sets

Let U be an index set (not necessarily countable). Recall that a collection {Iu}u∈U of confidence

intervals for parameters {θu}u∈U has simultaneous 1− α coverage probability if

IPθ {∩u∈U{Iu 3 θu}} ≥ 1− α. (56)

If IP{Iu 3 θu} does not depend on u, the confidence intervals are said to be balanced.

Many of the procedures for forming joint confidence sets we have seen depend on pivots, which are

functions of the data and the parameter(s) whose distribution is known (even though the parameter

and the parent distribution are not). For example, the Scheffé method relies on the fact that (for

samples from a multivariate Gaussian with independent components) the sum of squared differences

between the data and the corresponding parameters, divided by the variance estimate, has an F

distribution, regardless of the parameter values. Similarly, Tukey’s maximum modulus method

relies on the fact that (again, for independent Gaussian data) the distribution of the maximum of

the studentized absolute differences between the data and the corresponding parameters does not
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depend on the parameters. Both of those examples are parametric, but the idea is more general: the

procedure we looked at for finding bounds on the density function subject to shape restrictions just

relied on the fact that there are uniform bounds on the probability that the K-S distance between

the empirical distribution and the true distribution exceeds some threshold.

Even in cases where there is no known exact pivot, one can sometimes show that some func-

tion of the data and parameters is asymptotically a pivot. Working out the distributions of the

functions involved is not typically straightforward, and a general method of constructing (possibly

simultaneous) confidence sets would be nice.

Efron gives several methods of basing confidence sets on the bootstrap. Those methods are

substantially improved (in theory, and in my experience) by Beran’s pre-pivoting approach, which

leads to iterating the bootstrap.

Let Xn denote a sample of size n from F . Let Rn(θ) = Rn(Xn, θ) have cdf Hn, and let H−1
n (α)

be the largest α quantile of the distribution of Rn. Then

{γ ∈ Θ : Rn(γ) ≤ H−1
n (1− α)} (57)

is a 1− α confidence set for θ.

1.4.1 The Percentile Method

The idea of the percentile method is to use the empirical bootstrap percentiles of some quantity

to approximate the true percentiles. Consider constructing a confidence interval for a single real

parameter θ = T (F ). We will estimate θ by θ̂ = T (F̂n). We would like to know the distribution

function Hn = Hn(·, F ) of Dn(θ) = T (F̂n) − θ. Suppose we did. Let H−1
n (·) = H−1

n (·, F ) be the

inverse cdf of Dn. Then

IPF{H−1
n (α/2) ≤ T (F̂n)− θ ≤ H−1

n (1− α/2)} = 1− α, (58)

so

IPF{θ ≤ T (F̂n)−H−1
n (α/2) and θ ≥ T (F̂n)−H−1

n (1− α/2)} = 1− α, (59)

or, equivalently,

IPF{[T (F̂n)−H−1
n (1− α/2), T (F̂n)−H−1

n (α/2)] 3 θ} = 1− α, (60)

so the interval [T (F̂n)−H−1
n (1− α/2), T (F̂n)−H−1

n (α/2)] would be a 1− α confidence interval for

θ.
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The idea behind the percentile method is to approximate Hn(·, F ) by Ĥn = Hn(·, F̂n), the

distribution of Dn under resampling from F̂n rather than F . An alternative approach would be to

take Dn(θ) = |T (F̂n)− θ|; then

IPF{|T (F̂n)− θ| ≤ H−1
n (1− α)} = 1− α, (61)

so

IPF{[T (F̂n −H−1
n (1− α), T (F̂n + H−1

n (1− α)] 3 θ} = 1− α. (62)

In either case, the “raw” bootstrap approach is to approximate Hn by resampling under F̂n.

Beran proves a variety of results under the following condition:

Condition 1. (Beran, 1987) For any sequence {Fn} that converges to F in a metric d on cdfs,

Hn(·, Fn) converges weakly to a continuous cdf H = H(·, F ) that depends only on F , and not the

sequence {Fn}.

Suppose Condition 1 holds. Then because F̂n is consistent for F , the estimate Ĥn converges in

probability to H in sup norm; moreover, the distribution of Ĥn(Rn(θ)) converges to U [0, 1].

Instead of Dn, consider Rn(θ) = |T (F̂n) − θ| or some other (approximate) pivot. Let Ĥn(·, F̂n)

be the bootstrap estimate of the cdf of Rn; The set

Bn = {γ ∈ Θ : Ĥn(Rn(γ)) ≤ 1− α}

= {γ ∈ Θ : Rn(γ) ≤ Ĥ−1
n (1− α)} (63)

is (asymptotically) a 1− α confidence set for θ.

The level of this set for finite samples tends to be inaccurate. It can be improved in the following

way, due to Beran.

The original root, Rn(θ), whose limiting distribution depends on F , was transformed into a

new root Rn,1(θ) = Ĥn(Rn(θ)), whose limiting distribution is U [0, 1]. The distribution of Rn,1

depends less strongly on F than does that of Rn; Beran calls mapping Rn into Rn,1 prepivoting.

The confidence set 63 acts as if the distribution of Rn,1 really is uniform, which is not generally

true. One could instead treat Rn,1 itself as a root, and pivot to reduce the dependence on F .

Let Hn,1 = Hn,1(·, F ) be the cdf of the new root Rn,1(θ), estimate Hn,1 by Ĥn,1 = Hn,1(·, F̂n),

and define

Bn,1 = {γ ∈ Θ : Ĥn,1(Rn,1(γ)) ≤ 1− α}

= {γ ∈ Θ : Ĥn,1(Ĥn(Rn(γ))) ≤ 1− α}

= {γ ∈ Θ : Rn(γ) ≤ Ĥ−1
n (Ĥ−1

n,1(1− α)))}. (64)
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Beran shows that this confidence set tends to have smaller error in its level than does Bn. The

transformation can be iterated further, typically resulting in additional reductions in the level error.

1.5 Approximating Bn,1 by Monte Carlo

I’ll follow Beran’s (1987) notation (mostly).

Let xn denote the “real” sample of size n. Let x∗n be a bootstrap sample of size n drawn from

the empirical cdf F̂n. The components of x∗n are conditionally iid given xn. Let F̂ ∗
n denote the

“empirical” cdf of the bootstrap sample x∗n. Let x∗∗n denote a sample of size n drawn from F̂ ∗
n ; the

components of x∗∗n are conditionally iid given xn and x∗n. Let θ̂n = T (F̂n), and θ̂∗n = T (F̂ ∗
n). Then

Hn(s, F ) = IPF{Rn(xn, θ) ≤ s}, (65)

and

Hn,1(s, F ) = IPF

{
IPF̂n

{Rn(x∗n, θ̂n) < Rn(xn, θ)} ≤ s
}

. (66)

The bootstrap estimates of these cdfs are

Ĥn(s) = Hn(s, F̂n) = IPF̂n
{Rn(x∗n, θ̂n) ≤ s}, (67)

and

Ĥn,1(s) = Hn,1(s, F̂n) = IPF̂n

{
IPF̂ ∗

n
{Rn(x∗∗n , θ̂∗n) < Rn(x∗n, θ̂n)} ≤ s

}
. (68)

The Monte Carlo approach is as follows:

1. Draw {y∗k}M
k=1 bootstrap samples of size n from F̂n. The ecdf of {Rn(y∗k, θ̂n)}M

k=1 is an approx-

imation to Ĥn.

2. For k = 1, · · · , M , let {y∗∗k`}N
`=1 be N size n bootstrap samples from the ecdf of y∗k. Let

θ̂∗n,k = T (F̂ ∗
n,k). Let Zk be the fraction of the values

{Rn(y∗∗k,`, θ̂
∗
n,k)}N

`=1 (69)

that are less than or equal to Rn(y∗k, θ̂n). The ecdf of {Zk} is an approximation to Ĥn,1 that

improves (in probability) as M and N grow.

Note that this approach is extremely general. Beran gives examples for confidence sets for

directions, etc. The pivot can in principle be a function of any number of parameters, which can

yield simultaneous confidence sets for parameters of any dimension.
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1.6 Other approaches to improving coverage probability

There are other ways of iterating the bootstrap to improve the level accuracy of bootstrap confidence

sets. Efron suggests trying to attain a different coverage probability so that the coverage attained

in the second generation samples is the nominal coverage probability. That is, if one wants a 95%

confidence set, one tries different percentiles so that in resampling from the sample, the attained

coverage probability is 95%. Typically, the percentile one uses in the second generation will be

higher than 95%. Here is a sketch of the Monte-Carlo approach:

• Set a value of α∗ (initially taking α∗ = α is reasonable)

• From the sample, draw M size-n samples that are each iid F̂n. Denote the ecdfs of the samples

by {F̂ ∗
n,j}.

• For each j = 1, . . . ,M , apply the percentile method to make a (nominal) level 1−α∗ confidence

interval for T (F̂n). This gives M confidence intervals; a fraction 1 − α′ will cover T (F̂n).

Typically, 1− α′ 6= 1− α.

• If 1− α′ < 1− α, decrease α∗ and return to the previous step. If 1− α′ > 1− α, increase α∗

and return to the previous step. If 1− α′ ≈ 1− α to the desired level of precision, go to the

next step.

• Report as a 1− α confidence interval for T (F ) the (first generation) bootstrap quantile con-

fidence interval that has nominal 1− α∗ coverage probability.

An alternative approach to increasing coverage probability by iterating the bootstrap is to use

the same root, but to use a quantile (among second-generation bootstrap samples) of its 1 − α

quantile rather than the quantile observed in the first generation. The heuristic justification is

that we would ideally like to know the 1 − α quantile of the pivot under sampling from the true

distribution F . We don’t. The percentile method estimates the 1 − α quantile of the pivot under

F by the 1 − α quantile of the pivot under F̂n, but this is subject to sampling variability. To try

to be conservative, we could use the bootstrap a second time find an (approximate) upper 1 − α∗

confidence interval for the 1− α quantile of the pivot.

Here is a sketch of the Monte-Carlo approach:

• Pick a value α∗ ∈ (0, 1/2) (e.g., α∗ = α). This is a tuning parameter.
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• From the sample, draw M size-n samples that are each iid F̂n. Denote the ecdfs of the samples

by {F̂ ∗
n,j}.

• For each j = 1, . . . ,M , draw N size-n samples, each iid F̂n,j. Find the 1 − α quantile of the

pivot. This gives M values of the 1−α quantile. Let c be the 1−α∗ quantile of the M 1−α

quantiles.

• Report as a 1 − α confidence interval for T (F ) the interval one gets by taking c to be the

estimate of the 1− α quantile of the pivot.

In a variety of simulations, this tends to be more conservative than Beran’s method, and more often

attains at least the nominal coverage probability.

Exercise. Consider forming a two-sided 95% confidence interval for the mean θ of a distribution F

based on the sample mean, using |X̄ − θ| as a pivot. Implement the three “double-bootstrap” ap-

proaches to finding a confidence interval (Beran’s pre-pivoting, Efron’s calibrated target percentile,

and the percentile-of-percentile). Generate 100 synthetic samples of size 100 from the following

distributions: normal, lognormal, Cauchy, mixtures of normals with the same mean but quite dif-

ferent variances (try different mixture coefficients), and mixtures of normals with different means

and different variances (the means should differ enough that the result is bimodal). Apply the

three double bootstrap methods to each, resampling 1000 times from each of 1000 first-generation

bootstrap samples. Which method on the average has the lowest level error? Which method tends

to be most conservative? Try to provide some intuition about the circumstances under which each

method fails, and the circumstances under which each method would be expected to perform well.

How do you interpret coverage for the Cauchy? Warning: You might need to be clever in how

you implement this to make it a feasible calculation in S or Matlab. If you try to store all the

intermediate results, the memory requirement is huge. On the other hand, if you use too many

loops, the execution time will be long.

1.7 Bootstrap confidence sets based on Stein (shrinkage) estimates

Beran (1995) discusses finding a confidence region for the mean vector θ ∈ IRq, q ≥ 3, from data

X ∼ N(θ, I). This is an example illustrating that what one bootstraps is important, and that naive

plug-in bootstrapping doesn’t always work.
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The sets are spheres centered at the shrinkage estimate

θ̂S =

(
1− q − 2

‖X‖2

)
X, (70)

with random diameter d̂. That is, the confidence sets C are of the form

C(θ̂S, d̂) =
{
γ ∈ IRq : ‖θ̂S − γ‖ ≤ d̂

}
. (71)

The problem is how to find d̂ = d̂(X; α) such that

IPγ{C(θ̂S, d̂) 3 γ} ≥ 1− α (72)

whatever be γ ∈ IRq.

This problem is parametric: F is known up to the q-dimensional mean vector θ. We can thus

use a “parametric bootstrap” to generate data that are approximately from F , instead of drawing

directly from F̂n: if we have an estimate θ̂ of θ, we can generate artificial data distributed as N(θ̂, I).

If θ̂ is a good estimator, the artificial data will be distributed nearly as F . The issue is in what

sense θ̂ needs to be good.

Beran shows (somewhat surprisingly) that resampling from N(θ̂S, I) or from N(X, I) do not

tend to work well in calibrating d̂. The crucial thing in using the bootstrap to calibrate the radius

of the confidence sphere seems to be to estimate ‖θ‖ well.

Definition 2 The geometrical risk of a confidence set C for the parameter θ ∈ IRq is

Gq(C, θ) ≡ q−1/2Eθ sup
γ∈C

‖γ − θ‖. (73)

That is, the geometrical risk is the expected distance to the parameter from the most distant point

in the confidence set.

For confidence spheres

C = C(θ̂, d̂) = {γ ∈ IRq : ‖γ − θ̂‖ ≤ d̂}, (74)

the geometrical risk can be decomposed further: the distance from θ to the most distant point in

the confidence set is the distance from θ to the center of the sphere, plus the radius of the sphere,

so

Gq(C(θ̂, r̂), θ) = q−1/2Eθ

(
‖θ̂ − θ‖+ d̂

)
= q−1/2Eθ‖θ̂ − θ‖+ q−1/2Eθd̂. (75)
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Lemma 1 (Beran, 1995, Lemma 4.1). Define

Wq(X, γ) ≡ (q−1/2(‖X − γ‖2 − q), q−1/2γ′(X − γ). (76)

Suppose {γq ∈ IRq} is any sequence such that

‖γq‖2

q
→ a < ∞ as q →∞. (77)

Then

Wq(X, γq) →

W

(
√

2Z1,
√

aZ2) (78)

under IPγq , where Z1 and Z2 are iid standard normal random variables. (The symbol →

W

denotes

weak convergence of distributions.)

Proof. Under IPγq , the distribution of X − γ is rotationally invariant, so the distribution of the

components of Wq depend on γ only through ‖γ‖. Wlog, we may take each component of γq to be

q−1/2‖γq‖. The distribution of the first component of Wq is then that of the sum of squares of q iid

standard normals (a chi-square rv with q df), minus the expected value of that sum, times q−1/2.

The standard deviation of a chi-square random variable with q df is
√

2q, so the first component

of Wq is
√

2 times a standardized variable whose distribution is asymptotically (in q) normal. The

second component of Wq is a linear combination of iid standard normals; by symmetry (as argued

above), its distribution is that of

q−1/2
q∑

j=1

q−1/2‖γq‖Zj = ‖γq‖
q∑

j=1

Zj

→ a1/2Z2. (79)

Recall that the squared-error risk (normalized by q−1/2) of the James-Stein estimator is 1 −

q−1Eθ{(q − 2)2/‖X‖2} < 1. The difference between the loss of θ̂S and an unbiased estimate of its

risk is

Dq(X, θ) = q−1/2{‖θ̂S − θ‖2 − [q − (q − 2)2/‖X‖2]}. (80)
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By rotational invariance, the distribution of this quantity depends on θ only through ‖θ‖; Beran

writes the distribution as Hq(‖θ‖2/q). Beran shows that if {γq ∈ IRq} satisfies 77, then

Hq(‖γq‖2/q) →

W

N(0, σ2(a)), (81)

where

σ2(t) ≡ 2− 4t/(1 + t)2 ≥ 1. (82)

Define

θ̂CL = [1− (q − 2)/‖X‖2]
1/2
+ X. (83)

Theorem 1 (Beran, 1995, Theorem 3.1) Suppose {γq ∈ IRq} satisfies 77. Then

Hq(‖θ̂CL‖
2/q) →

W

N(0, σ2(a)), (84)

Hq(‖X‖2/q) →

W

N(0, σ2(1 + a)), (85)

and

Hq(‖θ̂S‖2/q) → N(0, σ2(a2/(1 + a))), (86)

all in Pγq probability.

It follows that to estimate Hq by the bootstrap consistently, one should use

ĤB = Hq(‖θ̂CL‖
2/q) (87)

rather than estimating using either the norm of X or the norm of the James-Stein estimate θ̂S of θ.

Proof. Lemma 1 implies that under the conditions of the theorem, ‖θ̂CL‖
2/q → a, ‖X‖2/q → 1+a,

and ‖θ̂S‖2/q → a2/(1 + a).
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