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Ninth Set of Notes

1 Multiplicity

For references, see J. Shaffer (1995) Multiple Hypothesis Testing, Ann. Rev. Psychol., 46,

561-584; J. Hsu (1996) Multiple Comparisons: Theory and Methods, Chapman and Hall,

London.

It is often the case that one wishes to test not just one, but several or many hypotheses.

For example, one might be evaluating a collection of drugs, and want to test the family of

null hypotheses that each is not effective. Suppose one tests each of these null hypotheses

at level α. This level is called the “per-comparison error rate” (PCER). Clearly, the chance

of making at least one Type I error is at least α, and is typically larger. Let {Hj}mj=1 (m for

multiplicity) be the family of null hypotheses to be tested, and let H = ∩jHj be the “grand

null hypothesis.” If H is true, the expected number of rejections is αm. The “familywise

error rate” (FWER) is the probability of one or more incorrect rejections:

FWER = P{ reject one or more true Hj }. (1)

Strong control of the FWER at level α means that the probability of one or more incorrect

rejections is at most α, whichever of the hypotheses {Hj} happen to be true. Weak control
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of the FWER at level α means that the probability of one or more incorrect rejections when

the “grand null hypothesis” H is true is at most α:

PH{ reject one or more Hj } ≤ α. (2)

Typically, the FWER is much larger than the significance level at which the individual

hypotheses are tested. This “multiplicity problem” is quite commonly ignored, which tends

to lead to an overstatement of the significance of results (i.e., the true significance level of

the overall test is larger than the reported significance level, so more results are reported

to be significant than should be). One situation in which the problem is evident is in

the bias towards publishing only results that are statistically significant, so the many tests

performed in search of a significant one are not reported. The rejection of a null hypothesis

is sometimes called a “statistical discovery,” and the fraction of rejected null hypotheses that

are incorrectly rejected (that are in fact true) is called the “false discovery rate” (FDR).

We’ll use the notation in Benjamini and Hochberg, 1995, Controlling the False Discovery

Rate: a Practical and Powerful Approach to Multiple Testing, JRSS B, 57, 289-300.

Declared non-significant Declared significant Total

True null hypotheses U V m0

False null hypotheses T S m−m0

Total m−R R m

The number m is the number of hypotheses tested; this is known. The number m0 is the

number of null hypotheses that are true; m0 is not known. The random variable R is the

total number of rejected null hypotheses; R is observable. The random variables U , V , T ,

and S are not observable.

If each hypothesis is tested individually at level α, then the PCER is E(V/m) ≤ α.

The same multiplicity issues arise in computing confidence intervals: If {Ij}mj=1 are indi-

vidually level 1− α confidence intervals for a set of parameters {µj}mj=1, so that

P{Ij 3 µj} = 1− α, j = 1, . . . ,m, (3)

then the event

A = ∩mj=1{Ij 3 µj} (4)

typically has probability much less than 1− α.
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2 Controlling the FWER

2.1 Bonferroni Procedures

Bonferroni’s inequality says that for any collection of events {Aj}, P{∪jAj} ≤
∑
j PAj.

Thus the chance of one or more type I errors in an arbitrary collection of tests is at most the

sum of their separate chances of type I errors. Thus if the hypotheses are tested individually

at level α/m, the FWER is P{V ≥ 1} ≤ α.

Holm’s Sequentially Rejective Bonferroni Method is based on the ordered p-values p1 ≤ p2 ≤

. . . ≤ pm of the m hypotheses tested; the hypotheses are assumed to be similarly ordered

(the p-value of H1 is p1, etc.). Holm’s test is

Reject Hi if pk ≤ α/(m− k + 1) for all k ≤ i.

Do not reject the other hypotheses.

Theorem 1 Holm’s method controls the FWER at level α.

Proof. Let m0 be the number of true null hypotheses. If m0 = m, there is an incorrect

rejection only if p1 ≤ α/m, which has probability α. If m0 = m − 1, there is an incorrect

rejection if either H1 is one of the true null hypotheses and p1 ≤ α/n, or if H1 is false,

p1 ≤ α/m, and p2 ≤ α/(m− 1). Let p′j be the jth smallest p-value among the m0 true null

hypotheses. There can only be an incorrect rejection if p′1 ≤ α/(m− 1) (but that condition

is not sufficient for an incorrect rejection). Thus the chance of an incorrect rejection is at

most α. One can proceed similarly for m0 = m−2, . . . , 1, arguing that an incorrect rejection

can only occur (but does not necessarily occur) if p′1 ≤ α/m0; in each case, the chance is at

most α. Obviously, if m0 = 0, there can be no incorrect rejection.

Holm’s method is an example of a step-down procedure. The schematic of a step-down

procedure is that one looks at the smallest p-value first. If that is larger than some threshold,

no hypothesis is rejected. If not, the corresponding hypothesis is rejected, and one goes on to

the second-smallest p-value. As soon as one reaches the point that the jth smallest p-value

is larger than the jth threshold, no more hypotheses are rejected.

In a step-up procedure, one looks first at the largest p-value. If that is sufficiently small,

all the hypotheses are rejected. If not, the corresponding hypothesis is not rejected, and one

goes on to the second largest p-value. As soon as one reaches the point that the jth largest

p-value is smaller than the jth threshold, all the remaining hypotheses are rejected.

3



2.2 Independent Test Statistics

Suppose we wish to test with FWER not exceeding α the family of hypotheses {Hi}mi=1 using

independent test statistics {Ti}mi=1. Suppose we test each hypothesis at level β. Then the

probability of one or more incorrect rejections (the FWER) is 1− (1−β)m. To have FWER

equal to α requires

α = 1− (1− β)m

(1− α)1/m = 1− β

β = 1− (1− α)1/m. (5)

Thus if we test the hypotheses individually at level 1− (1− α)1/m, the FWER is at most α.

2.2.1 Simes’ inequality.

See R.J. Simes (1986) An improved Bonferroni procedure for multiple tests of significance,

Biometrika, 73, 751-754.

Suppose we are testing m null hypotheses {Hj} using independent test statistics Tj. Let

Pj be the jth smallest p-value among the m p-values. Simes’ method is

reject the grand null hypothesis if for some j, Pj ≤ jα/m.

Simes’ method has FWER at most α.

Theorem 2 (Simes, 1986). Let Pj be the jth order statistic of m iid U(0, 1) random vari-

ables. Then for α ∈ [0, 1],

Am(α) = P{Pj > jα/m; j = 1, . . . ,m} = 1− α. (6)

Proof. The proof is by induction on m. Clearly, the statement is true for m = 1. For

m > 1, {P1/Pm, P2/Pm, . . . , Pm−1/Pm} are distributed as the order statistics of m − 1 iid

U(0, 1) random variables, independent of Pm. Thus, for p ≥ α,

P{Pj >
jα

m
; j = 1, . . . ,m− 1|Pm = p} = P{Pj/p >

jα(m− 1)

m(m− 1)p
; j = 1, . . . ,m− 1|Pm = p}

= P{Pj >
j (m−1)α

pm

m− 1
; j = 1, . . . ,m− 1|Pm = p}

= Am−1

(
(m− 1)α

pm

)
. (7)

4



The distribution function of Pm is pm, p ∈ [0, 1], so the density of Pm is mpm−1. Suppose

Am−1(α) = 1− α, α ∈ [0, 1].

Am(α) =
∫ 1

α
Am−1

(
(m− 1)α

pm

)
mpm−1dp

=
∫ 1

α
(1− (m− 1)α

pm
)mpm−1dp

= pm|1α − αpm−1
∣∣∣1
α

= 1− αm − α + αm

= 1− α. (8)

Note that jα/m is at least as large as α/(m− j + 1), so the grand null is rejected more

frequently using this test than using Holm’s Bonferroni-based test.

Simes’ result has recently been generalized to positively regression dependent test statis-

tics. Two random variables X and Y are positively regression dependent if for x0 < x1, a

random variable that has the conditional distribution of Y given X = x1 is stochastically

larger than that of one with the conditional distribution of Y given X = x0 (Y tends to

be larger when X is larger). Positively correlated normal random variables have positive

regression dependence.

2.3 Chebychev’s Other Inequality

Theorem 3 (J. Hsu, 1996, Multiple Comparisons: Theory and Methods, Chapman and

Hall, London. Theorem A.1.1.) Let X be an n-dimensional random variable. Suppose the

functions f, g : Rn → R satisfy

[f(x2)− f(x1)][g(x2)− g(x1)] ≥ 0 (9)

for all x1, x2 in the support of the distribution on X. Then, provided the expectations exist,

E[f(X)g(X)] ≥ E[f(X)]E[g(x)]. (10)

I.e., f(X) and g(X) are positively correlated.

Proof. Let X, X1 and X2 be iid. Then

0 ≤ E [(f(X2)− f(X1))(g(X2)− g(X1))]

= E [(f(X2)g(X2) + f(X1)g(X1))− (f(X1)g(X2) + f(X2)g(X1))]

= 2 [E[f(X)g(X)]− E[f(X)]E[g(X)]] . (11)
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Corollary 1 (Kimball’s inequality; Hsu, Corollary A.1.1.) Let V be a univariate random

variable. If {gj}mj=1 are bounded, nonnegative real functions, monotone in the same direction,

then

E
[
Πm
j=1gj(V )

]
≥ Πm

j=1Egj(V ). (12)

Proof. Use induction from two functions to m functions in the Theorem, taking n = 1.

2.4 Application to the one-way model

Suppose we are interested in the one-way model. We observe

Xia = µi + εia, i = 1, . . . ,m; a = 1, . . . , ni. (13)

This is a model for making ni observations of the response to treatment i for m different

treatments, under the assumption that the response is a mean response plus a random effect.

Assume that the errors εia are iid N(0, σ2), σ2 unknown. Let µ̂i = X̄i = 1
ni

∑ni
a=1Xia. Let

ν =
∑m
i=1(ni − 1), and define

σ̂2 =
1

ν

m∑
i=1

ni∑
a=1

(Xia − X̄i)
2. (14)

The estimators {µ̂i} are independent normals with means {µi} and variances {σ2/ni}, inde-

pendent of σ̂2, and νσ̂2/σ2 ∼ χ2
ν . For future use, define

µ̂ = (µ̂j)
m
j=1. (15)

and

σ̂2
B =

1

m

m∑
i=1

ni

(
µ̂i −

1

m

m∑
i=1

µ̂i

)2

. (16)

Suppose we wish to find simultaneous confidence intervals for the set of parameters {µi}.

Define the Studentized test statistics

Ti =
µ̂i − µi
σ̂/
√
ni
, i = 1, . . . ,m. (17)

These test statistics are dependent, because of the common divisor σ̂. If they were not, the

intervals

[µ̂i − σ̂t1−(1−(1−α/2)1/m)/2, µ̂i + σ̂t1−(1−(1−α/2)1/m)/2], i = 1, . . . ,m (18)

would be exact 1− α simultaneous confidence intervals for {µi}.
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Kimball’s inequality lets one show that these intervals are in fact conservative as a result

of the dependence on σ̂. Let Ai be the event that the ith interval covers. Consider the

function gi(σ̂) = P{Ai|σ̂}. These functions all increase monotonically with σ̂. Recall that

{µ̂i} are independent of each other and of σ̂. Thus

P {∩mi=1Ai} = E1∩mi=1Ai

= EΠm
i=11Ai

= Eσ̂E(Πm
i=11Ai

|σ̂)

= Eσ̂Πm
i=1P{Ai|σ̂}

≥ Πm
i=1Eσ̂P{Ai|σ̂}

= Πm
i=1P{Ai}

= 1− α, (19)

where Kimball’s inequality was used in the penultimate step.

2.5 Comparisons and Constrasts

We specialize to the case that we are interested in a collection of m parameters {µi}mi=1.

Let µ = (µi)
m
i=1. The hypotheses we wish to test involve comparing the parameters or

linear combinations of the parameters. For example, we might be interested in the family

of hypotheses {Hij : µi = µj}i=1,...,m−1;j=i+1,...,m (all pairwise comparisons). For I a subset

of {1, . . . ,m}, let HI denote the hypothesis that all {µi}i∈I are equal (perhaps a better

notation would be that #{µi}i∈I = 1). We might be interested in the family of hypotheses

{HI}I∈I , where I is a collection of subsets of {1, . . . ,m}.

A contrast is a linear combination
∑m
i=1 ciµi = c · µ, with the restriction that

∑m
i=1 ci =

c · 1 = 0. A pairwise comparison is a constrast with ci = 1 for some i, cj = −1 for some

j 6= i, and all other components of c equal to zero.

We are going to assume that we are in a one-way model with and equal number N of

observations of each of the m treatments. We again assume that the observational errors are

iid N(0, σ2), with σ2 unknown. The rest of the notation is as in section 2.4.

The “cost” in terms of reduced power tends to increase with the number of hypotheses

tested; if one is not interested in testing all possible contrasts, one can have more power

testing the limited set. Some major divisions of families of hypotheses tested in the one-way
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model include, in decreasing order of complexity, ACC (all contrasts comparison), MCA

(all pairwise comparisons), MCB (multiple comparisons with the [sample] best), and MCC

(multiple comparisons with control). MCC involves the fewest comparisons: m − 1 sample

values are compared with the mth, which is the control. In MCB, there are also only m− 1

comparisons, but the measured effect µ̂i that the other m− 1 are compared with is that one

observed to be best; under the grand null, that is equally likely to be any of the µ̂i. In MCA,

there are (m2 −m)/2 hypotheses tested, and in ACC, an infinite number are tested.

2.5.1 The Scheffé Method

The Scheffé method controls the FWER for all possible contrasts (ACC). The “grand null”

in this case is that all the µi are equal, so all contrasts are zero.

Recall that if Y has a chi-square distribution with k degrees of freedom and Y ′ has a

chi-square distribution with ` degrees of freedom, and Y and Y ′ are independent, then

Y/k

Y ′/`
(20)

has an F distribution with k and ` degrees of freedom, denoted Fk,`. Let Fk,`,α denote the

α critical value of Fk,`. It is a standard result in the analysis of variance that under the

one-way normal model, (m− 1)σ̂2
B/σ

2 ∼ χ2
m−1 and νσ̂2/σ2 ∼ χ2

ν are independent, so

σ̂2
B

σ̂2
∼ Fm−1,ν . (21)

The variables {√ni(µ̂i−µi)/σ} are iid N(0, 1), and σ−2
∑m
i=1 ni(µ̂i−µi)2 has a chi-square

distribution with m degrees of freedom, and is independent of σ̂2, so whatever be {µi}mi=1,

P

{∑m
i=1 ni|µ̂i − µi|2

mσ̂2
≤ Fm,ν,α

}
= 1− α. (22)

Equivalently,

P{
m∑
i=1

ni|µ̂i − µi|2 ≤ mσ̂2Fm,ν,α} = 1− α. (23)

In the case all ni = N , this becomes

P{‖µ̂− µ‖2 ≤ m

N
σ̂2Fm,ν,α} = 1− α. (24)

That is, the chance is at least 1− α that µ̂ ∈ Rm is in a ball centered at µ of radius

rα =
m

N
σ̂

√
mFm,ν,α
N

. (25)
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The unit ball in Rm can be characterized as

{β ∈ Rm : |c · β| ≤ ‖c‖}, (26)

so

P{|c · µ̂− c · µ| ≤ ‖c‖rα ∀c ∈ Rm} = 1− α. (27)

This gives simultaneous confidence intervals for c · µ (whether or not c is a “contrast”) as

Ic = [c · µ̂− ‖c‖rα, c · µ̂+ ‖c‖rα]. (28)

For testing contrasts, one rejects the hypothesis that c · µ = 0 if |c · µ̂| > ‖c‖rα, and one

rejects the grand null hypothesis if ‖µ̂‖ ≥ rα. Any number of contrasts can be tested this

way, with FWER strongly controlled at level α.

Note that if one uses Scheffé’s method to produce confidence intervals only for the effects

{µi}, it is unnecessarily conservative: it amounts to projecting a ball onto the coordinate

axes, which is equivalent to taking the corresponding hyperrectangle as the confidence set

for µ. That hyperrectangle strictly contains the ball, so it has higher coverage probability

than the ball. If we were interested only in simultaneous confidence intervals for {µi}, we

could get shorter confidence intervals by starting with a hyperrectangular confidence region

for µ (with faces aligned with the axes), and projecting that set. This is more or less what

Tukey’s maximum modulus method does.

2.5.2 Tukey’s Maximum Modulus Method

Tukey’s method was originally introduced for all pairwise comparisons, but can be modified

for ACC. Again, let’s take ni = N . Define c∗(α) to satisfy

P

 |µ̂i − µ̂j − (µi − µj)|
σ̂
√

2/N
≤ c∗(α)∀j < i

 = 1− α. (29)

Values of c∗(α) can be found by numerical integration. Then

Iij = [µ̂i − µ̂j − c∗(α)σ̂
√

2/N, µ̂i − µ̂j − c∗(α)σ̂
√

2/N ], j < i (30)

are simultaneous level 1−α confidence intervals for the (m2−m) pairwise difference µi−µj,

j < i. By construction, the tests

reject Hij : µi = µj if |µ̂i − µ̂j| > c∗(α)σ̂
√

2/N

control the FWER for all pairwise comparisons at level α.
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3 The False Discovery Rate

See Benjamini and Hochberg (1995) for the development of this idea. It’s quite new, and

quite promising in a variety of settings, including nonparametric function estimation, where

the hypotheses tested are that individual coefficients of the unknown function in some basis

expansion are zero.

Let Q = V/(V + S) be the fraction of rejected hypotheses that are rejected incorrectly.

Define Q = 0 if V +S = 0 (no hypothesis could have been rejected incorrectly if no hypothesis

was rejected).

The FDR is Qe = EQ = E{V/(V + S)}, the expected fraction of rejected hypotheses

that are incorrectly rejected. Note that

1. If all null hypotheses are true, the FDR is the same as the FWER: P{V ≥ 1|m0 =

m} = E(Q). Controlling the FDR thus controls the FWER in a weak sense.

2. When the number m0 of true null hypotheses is less than the total number m of

hypotheses, FDR ≤ FWER. Thus controlling the FWER controls the FDR.

3.1 A procedure that controls the FDR

Let P(1), P(2), . . . , P(m) be the ordered p-values of the m hypotheses. Let H(i) be the hypoth-

esis corresponding to the p-value P(i). Define

K(q∗) ≡ max{i : P(i) ≤
i

m
q∗}. (31)

Consider the procedure “reject all H(i) : i ≤ K(q∗).”

Theorem 4 Benjamini and Hochberg, 1995, Theorem 1. If the test statistics are indepen-

dent, then for any configuration of false null hypotheses, this procedure controls the FDR at

level q∗.

The proof relies on the following lemma:

Lemma 1 Benjamini and Hochberg, 1995, Lemma. Let the number of true null hypotheses

be m0, 0 ≤ m0 ≤ m. Order the hypotheses such that the first m0 are the true ones. Let
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m1 = m −m0 be the number of false null hypotheses. If the test statistics of the true null

hypotheses are independent, for the procedure just given,

E(Q|Pm0+1 = p1, . . . , Pm = pm1) ≤
m0

m
q∗. (32)

Proof of Lemma. Benjamini and Hochberg prove the lemma by induction. Suppose m = 1.

Then the procedure rejects H1 if P1 ≤ q∗. If m0 = 0, no incorrect rejection can occur, so

E(Q|P1 = p1) = 0 ≤ 0

1
q∗. (33)

If m0 = 1, an incorrect rejection occurs if P1 ≤ q∗. There is no Pm0+1, so

E(Q|Pm0+1 = p1, . . . , Pm = pm1) = E(Q) = P{P1 ≤ q∗} = q∗ ≤ 1

1
q∗. (34)

Suppose that the lemma is true for all m′ ≤ m; we shall show that it is then true for

m′ = m + 1. If m0 = 0, the null hypotheses are all false, so Q is identically zero, and the

conditional expectation of Q, and so

E(Q|P1 = p1, . . . , Pm = pm) = 0 ≤ m0

m+ 1
q∗. (35)

Suppose m0 > 0. Let P ′i , i = 1, . . . ,m0 be the p-values corresponding to the true null

hypotheses. Let P ′(m0)
be the largest of the P ′i . Note that {P ′i}

m0
i=1 are iid U [0, 1], so the

density of P ′(m0)
is f(u) = m0u

m0−1. Let {pj}m1
j=1 be the p-values of the false null hypotheses,

so that p1 ≤ p2 ≤ · · · ≤ pm1 . Define

j0 ≡ max{j : pj ≤
m0 + j

m+ 1
q∗}, (36)

and

p0 =
m0 + j0
m+ 1

q∗. (37)

Note that pj0 ≤ p0. Calculate the expectation, conditioning on the value of P ′(m0)
:

E(Q|Pm0+1 = p1, . . . , Pm = pm1) =
∫ p0

0
E(Q|P ′(m0)

= u, Pm0+1 = p1, . . . , Pm = pm1)f(u)du+

+
∫ 1

p0
E(Q|P ′(m0)

= u, Pm0+1 = p1, . . . , Pm = pm1)f(u)du(38)

In the first integral, u ≤ p0, so all the null hypotheses are rejected, and Q = m0

m0+j0
. Recall

that p0 = m0+j0
m+1

q∗. Thus∫ p0

0
E(Q|P ′(m0)

= u, Pm0+1 = p1, . . . , Pm = pm1)f(u)du =
∫ p0

0
E(

m0

m0 + j0
|P ′(m0)

= u, Pm0+1 = p1, . . . , Pm = pm1)f(u)du
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=
∫ p0

0

m0

m0 + j0
m0u

m0−1du

=
m0

m0 + j0
pm0
0

=
m0

m0 + j0

m0 + j0
m+ 1

q∗pm0−1
0

=
m0

m+ 1
q∗pm0−1

0 . (39)

Consider the second integral. On the domain of the second integral, P ′(m0)
= u ≥ p0 ≥ pj0 .

Here, at least the true null hypothesis with the largest p-value will not be rejected, and

possibly others as well. Suppose j > j0 so that pj+1 ≥ pj ≥ pj0 . Recall that pj0 ≤ p0. Break

the domain of integration into the intervals pj ≤ u ≤ pj+1, j = j0 + 1, . . . ,m1 − 1, together

with p0 ≤ u ≤ pj0+1 and pm1 ≤ u ≤ 1. Because u, pj+1, . . . , pm1 are all greater than the

threshold value p0, their values cannot result in any hypothesis being rejected.

Let {H(i)}mi=1 denote the entire set of m hypotheses, ordered by their p-values. In the

second integral, the p-values of the true null hypotheses are all no larger than u (by definition

of u—it’s the largest p-value among the true null hypotheses). Recall that the rejection

procedure is to reject all hypotheses with smaller p-values than p0, so the rejection of H(i)

implies that there must be some k, i ≤ k ≤ m0 + j − 1 for which

p(k) ≤
k

m+ 1
q∗. (40)

This is equivalent to
p(k)
u
≤ k

m0 + j − 1

m0 + j − 1

(m+ 1)u
q∗. (41)

The proof is now similar to that of Simes’ inequality: conditional on P ′(m0)
= u, {P ′i/u}i<m0

are iid U(0, 1) random variables; {pi/u}ji=1 are some numbers between 0 and 1 corresponding

to false null hypotheses. We are testing m0 + j − 1 = m′ < m hypotheses using a different

value of q∗, namely m0+j−1
(m+1)p

q∗. The induction hypothesis gives This is like testing the m′ =

m0 + j − 1 ≤ m using the threshold m0+j−1
(m+1)p

q∗. Because m′ ≤ m, we can apply the induction

hypothesis:

E(Q|P ′(m0)
= u, Pm0+1 = p1, . . . , Pm = pm1) ≤

m0 − 1

(m+ 1)u
q∗. (42)

This bound does not depend on pj or pj+1, so∫ 1

p0
E(Q|P ′(m0)

= u, Pm0+1 = p1, . . . , Pm = pm1)fP(m0)
(u)du ≤

∫ 1

p0

m0 − 1

(m+ 1)u
q∗m0u

m0−1du

=
m0

m+ 1
q∗
∫ 1

p0
(m0 − 1)um0−2du
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=
m0

m+ 1
q∗(1− pm0−1

0 ). (43)

Adding this to the bound on the first integral proves the Lemma.

Proof of Theorem 4. Whatever be the joint distribution of Pm0+1, · · · , Pm corresponding

to the false null hypotheses, integrating the inequality in the Lemma gives

E(Q) = E(E(Q|Pm0+1, · · · , Pm) ≤ m0

m
q∗ ≤ q∗. (44)

The FDR-controlling procedure is equivalent to picking α a posteriori to maximize the

number r(α) of rejections at that level, subject to the constraint

αm/r(α) ≤ q∗. (45)

That is, we reject as many hypotheses as possible, subject to the constraint that the expected

number of incorrect rejections is at most the FDR times the number of hypotheses actually

rejected. The expected number of incorrect rejections is E(V ) ≤ αm, so Qe = EQ ≤

αm/r(α) ≤ q∗.

One complaint about this FDR-controlling procedure (see the review article by Shaffer)

is that because Q is defined to be zero when no rejection occurs, the conditional FDR given

that some rejection does occur exceeds q∗.
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