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Third Set of Notes

1 More on Equivariant Con�dence Sets

De�nition 1 Equivariant Con�dence Set. Suppose that the set of distributions P� on X is

preserved under the group G, and let �G be the group of transformations on � induced by the

action of G on X . Suppose that the action of �G on the component � (�) of the more general

parameter � depends only on � (�); that is, � (�g(�)) = � (�g()) if � (�) = � (). For each g 2 G,

let ~gS = f� (�g(�)) : � (�) 2 Sg. If S(x) is such that

~gS(x) = S(gx) 8x 2 X ; g 2 G; (1)

we say S is equivariant under G.

Lehmann (TSH, Ch. 6.11) gives several examples of equivariant con�dence sets; the

following is taken from there.

Example. Suppose X = (X1;X2) has independent, unit variance, normally distributed

components with mean � = (�1; �2). Let G be the group of rigid motions of the plane
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(translations and rotations, but not \distortions"). That is

P� = f bivariate normal distributions with independent, unit variance components, and mean � 2 R2g;

(2)

and � = R2. The sample space is X = R2 as well. The transformation �g 2 �G on  =

(1; 2) 2 � induced by the action of g 2 G on x = (x1; x2) 2 X is just g itself. One

equivariant family of con�dence sets for � is

S(x) = f 2 � : (x1 � 1)
2 + (x2 � 2)

2 � cg (3)

(circles centered at the data). To see this, note that for g a rigid-body transformation of the

plane,  2 S(x)() �g 2 S(gx). Thus

~gS(x) = f�g 2 R2 :  2 S(x)g

= fg :  2 S(x)g

= fg : g 2 S(gx)g

= f� : � 2 S(x)g

= S(x): (4)

De�nition 2 A family of 1 � � con�dence sets for � (�) is uniformly most accurate equiv-

ariant under G if it minimizes

P�f� () 2 S(X)g 8 2 � s.t. � () 6= � (�) (5)

among all con�dence sets S(x) that are equivariant under G.

Lemma 1 Lehmann, TSH, 6.11 Lemma 5. Suppose that for each � 2 T = � (�) there is a

group G� of transformations under which the problem of testing H : � (�) = �. Let G be the

group of transformations generated by fG�g�2T. Suppose S(x) is a 1�� con�dence procedure

that is equivariant w.r.t. G. Let A(�) = fx : � 2 S(x)g.

1. The set A(�) is the acceptance region of a level � test of H, and it is invariant under

G� for each � 2 T.
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2. If, for each �, A(�) is a UMP invariant level � test of H : � (�) = �, S(x) are con�dence

level 1� � uniformly most accurate equivariant (w.r.t. G) con�dence sets.

Thus if one has a family of tests A(�) that are UMP and invariant w.r.t. G�, and S(x) =

f� 2 T : x 2 A(�)g, then S(x) are uniformly most accurate equivariant. That is, uniformly

most accurate equivariant con�dence sets result from inverting a family of UMP invariant

tests.

However, not all problems admit uniformly most accurate equivariant con�dence sets, or

UMP invariant tests.

Example. (Lehmann, 6.12 Ex. 20.) Suppose X = (X1; � � � ;Xn) is an i.i.d. sample from a

univariate normal distribution, with parameter � = (�; �2) 2 R�R+ unknown. We want to

estimate � (�) = �2. This problem is invariant under the group G whose elements translate

of all of the components of X by the same constant a. The statistic S2 =
P

j(Xj � �X)2 is

su�cient for �2, and is invariant under G. The problem of �nding a con�dence set for �2 is

invariant under positive scale changes: Xj 7! bXj, S 7! bS, � 7! b�, for b > 0. If �2 2 C(S2)

(note change of con�dence set to C to keep the traditional de�nition of S) is an equivariant

family of con�dence sets, we need b2C(S2) = C(b2S2), which gives

�2 2 C(S2), �2=S2 2 1=S2C(S2) = C(1): (6)

Thus for a con�dence set to be equivariant, it must be of the form

�2=S2 2 C(1); (7)

where

P(�;1)fS
�2 2 C(1)g = 1� �: (8)

This family of con�dence sets does not contain one that minimizes the false coverage

probability.

Assignment 2. Show that there is no uniformly most accurate con�dence set among the

collection of con�dence sets that satisfy 6 and 8.

This leads one to consider other loss functions for con�dence regions (such as the expected

volume, which you explored using the Ghosh-Pratt identity in the last assignment).
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Lehmann (TSH, 6.12) discusses some optimality measures to use in conjunction with the

restriction to equivariant con�dence sets, for example, minimizing the measure

Z
C(1)

d� (9)

(with � Lebesgue measure on R), or minimizing the scale-invariant measure

Z
C(1)

��1d�: (10)

This measure has the advantage that if the optimal con�dence interval for � is (��; �+),

then the optimal con�dence interval for �r is (�r
�
; �r+).

Even when there is no group structure to the problem, considering similar measures of the

size of a con�dence set can lead to practical con�dence sets. For example, consider estimating

the mean � of a univariate, unit-variance normal from the observation X � N(�; 1). We have

� = R and X = R. Suppose we want to minimize among all con�dence intervals S(X)

the maximum expected length of the interval, whatever be �. That is, de�ne R(�; S) =

EP�
jS(X)j, where jSj is the diameter of S. The minimax procedure S� minimizes

sup
�2�

R(�; S) (11)

among allP�-measurable mappings fromX = R to intervals ofR, which wemight parametrize

by the two (measurable) functions `, u that map x to S(x) = (`(x); u(x)). Then one way to

pick a con�dence interval procedure is to minimize

sup
�2�

R(�; S) = sup
�2�

EP�ju(X)� `(X)j; (12)

subject to

inf
�2�

P�f(`(X); u(X)) 3 �g: (13)

If we let A(�) = (�� z�=2; �+ z�=2), the smallest possible range of observations will be in the

acceptance region of each �, among level � tests. On inverting the tests to get con�dence

intervals, we would get `(x) = x� z�=2 and u(x) = x+ z�=2. If we had chosen the acceptance

region di�erently for some � (for example, picking the region to be an asymmetric interval

about � subject to the level � restriction), the acceptance region would have \reached" to
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more distant observations, and there would have been some values of x that produced longer

con�dence intervals. If the set on which we chose asymmetrical intervals had strictly positive

measure, this would result in a larger value of the expected length for some value of �. (For

other values, we might have ended up with expected length less than 2z�=2, but we are

interested in the maximum expected length.) This is not a proof, but it suggests one.

The \moral," if there is one, is that a quite di�erent consideration from group equivari-

ance or accuracy leads again to the same natural con�dence interval. However, this approach

through optimization extends quite generally to situations in which there is no group struc-

ture, in which � is restricted in unusual ways, and in which there is no most powerful test

to exploit. The direction this leads is to restrict the class of procedures (con�dence sets)

through their functional dependence on the data. For example, one might restrict atten-

tion to con�dence sets that are intervals whose endpoints are a�ne functionals of the data:

`(x) = a+ bx, u(x) = c+ dx, or even to intervals `(x) = �a+ bx, u(x) = a+ bx.

In general, the restriction to such procedures can cost a lot, in that the minimax risk

over a�ne procedures might be much larger than the minimax risk over all measurable

procedures. However, in some problems, it is possible to bound the \ine�ciency" of a�ne

procedures relative to more general nonlinear ones.

Consider, for example, the problem of estimating the mean � of a unit-variance normal

from a single observation X � N(�; 1), when � is known to lie in the interval � = [�c; c].

This is called the \bounded normal mean" problem. This problem is a cartoon of many

inference problems in science in which there are extrinsic physical constraints on the pa-

rameter of interest. For example, a spectral absorption coe�cient must be between zero

and one, and energies must be nonnegative, and can sometimes be bounded above using

physical arguments. Donoho (1994, Ann. Stat., 22, 238-270) shows how to reduce some in-

ference problems about functionals of an in�nite-dimensional parameter to questions about

the bounded normal mean; we shall visit his work more extensively later.

For the moment, let's consider point estimates that minimize mean-squared error rather,

than interval estimates. We seek the estimator �̂� that minimizes

sup
�2�

E�(�̂(X) � �)2 (14)
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among all P�-measurable estimators �̂, where E� is shorthand for EP�
.

The natural estimator ignoring the constraint � 2 � = [�c; c] has maximum risk 1 over

�. The \truncation" estimate

�̂t(x) �

8>>>>><
>>>>>:

x; jxj � c

c; x > c

�c; x < �c

(15)

has maximum risk for � = 0, for which the risk isZ c

x=�c
x2�(x)dx+ 2c2�(�c); (16)

where �(x) is the standard normal density and �(x) is the standard normal cdf.

The minimax a�ne estimate has risk

RA = min
a;b

max
�2�

E�jaX + b� �j2

= min
a;b

max
�2�

E�jaX + b� �j2

= min
a;b

max
�2�

E�ja(X � �) + (1� a)� + bj2

= min
a;b

max
�2�

fa2Var(X) + ((1� a)� + b)2g: (17)

We have Var(X) = 1. The risk is quadratic in � with a positive leading coe�cient, so the

maximum will be attained at either �c or c:

max
�2[�c;c]

a2 + ((1� a)� + b)2 = a2 +max
n
((1 � a)c+ b)2; (�(1� a)c+ b)2

o
� a2 + ((1 � a)c)2; (18)

so the optimal value of b = 0. Stationarity then gives the optimal a as the solution to

2a� 2c2(1� a) = 0 ) a =
c2

1 + c2
; (19)

and thus

min
a

max
�2�

E�jaX � �j2 =

"
c2

1 + c2

#2
+

"
1�

c2

1 + c2

#2
c2

=

"
c2

1 + c2

#2
+
�

1

1 + c2

�2
c2

= c2
1 + c2

(1 + c2)2

=
c2

1 + c2
: (20)
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Donoho, Liu, and McGibbon (1990, Ann. Stat., 18, 1416-1437) show that for this problem

the minimax a�ne risk is no larger than 5/4 of the minimax nonlinear risk.

Let's consider con�dence intervals. Suppose we restrict attention to �xed-length con�-

dence intervals. That is, we consider intervals of the form

I(x) = I(�; �) = [�(x)� �; �(x) + �]; (21)

where � does not depend on the data. To guarantee 1 � � coverage probability over �, we

need

inf
�2�

P�fI 3 �g � 1 � �: (22)

The risk is �. The minimax risk is

�N;�(c) = inf
� measurable

�
� : inf

�2�
P�fI 3 �g � 1� �

�
; (23)

and the a�ne minimax risk is

�A;�(c) = min
a;b

�
� : inf

�2�
P�f[aX + b� �; aX + b+ �] 3 �g � 1� �

�
: (24)

Because the loss (the half-length of the con�dence interval)is not random, the loss is the

same as the risk. Clearly �N;�(c) � �A;�(c). Because picking a = 0, b = 0, allows one to

take � = c, �A;�(c) � c. Furthermore, taking a = 1, b = 0 allows one to take � = z�=2, so

�A;�(c) � z�=2. Thus

�N;�(c) � �A;�(c) � min(c; z�=2): (25)

Suppose c < z�. Then clearly, �N;�(c) � �A;�(c) � z�, because the interval [�z�; z�] always

covers. However, when the constraint is this restrictive, there is nothing better one can do

than pick [�z�; z�].

To see this, �rst note that it su�ces to consider �(x) monotone in x and symmetric about

x = 0 (�(�x) = ��(x)). (Why?) Suppose the optimal (nonlinear) �N;� = � < c < z�. Then

there would be no loss in assuming �(x) � c � �, x � c � �, �(x) � �c + �, x � �c. In

order to have coverage probability 1 � � when � = �c, the interval must be centered at

some value of x < �� c < 0 whenever z� � c > 0, which is a contradiction, because of the

monotonicity and symmetry requirements. The linear rule �(x) = 0 can be used with � = c
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to get 100% coverage, so �N;�(c) = �A;�(c) = c, c < z�. Furthermore, as the constraint

c!1, � becomes less informative, and �A;�(c) and �N;�(c)! z�=2; Both the minimax and

a�ne minimax risks are clearly monotone in c. Thus for c < z�, �N;�(c) = �A;�(c), and for

c � z�,

z� � �N;�(c) � �A;�(c) � z�=2; (26)

which implies
�A;�(c)

�N;�(c)
�

z�=2
z�

: (27)

For � = 0:05, this ratio is about 1:96=1:645 = 1:19. Thus in this problem, the minimax

a�ne �xed-length 95% con�dence interval is at most about 20% longer than the minimax

�xed-length 95% con�dence interval.

Problem. (not assigned) Show that it indeed su�ces to consider monotone, symmetric rules

�(x) at which to center a �xed-length con�dence interval for the bounded normal mean.

It is a rather unsatisfactory property of the minimax �xed-length interval in this problem

that if the prior information is su�ciently strong (e.g., if c < z�), the optimal procedure

ignores the data and just returns the prior information. This is an artifact of looking only

at the worst-case behavior.

In contrast, one might consider intervals whose lengths depend on the data, for example,

the truncation interval

It(x) = [x� z�=2; x+ z�=2] \ [�c; c]: (28)

This interval has random length, but the half-length never exceeds minfc; z�=2. A di�erent

criterion of optimality one might consider (rather than the �xed-length) is

R+(I) � sup
�2�

E�jI(X)j: (29)

This is the largest expected length of the con�dence interval.

Assignment 3. Find R+(It) for � = 0:05, c = 1=2; 1; 2; 5; 10. Compare with R+(a�ne minimax �xed-lengt

Note that the risk of the a�ne minimax procedure is just its �xed length, whether measured

by R+ or by the loss function for which it was derived. Hint. For what value of � 2 � is the

maximum expected length attained?
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2 Bayesian Credible Regions

The Bayesian analogue of a con�dence set is a credible region. To construct a credible region,

one must think of the parameter � (�) as itself being a random variable. Denote its (prior)

distribution, which is assumed to be known completely, by Pr.

De�nition 3 A level 1 � � credible region for the parameter � (�) is a set S(x) such that

Prf� (�) 2 S(x)jX = xg � 1 � �: (30)

That is, S is a set such that the posterior probability that S contains � , given the data, is at

least 1� �.

Note that there is not a unique S with this property; a criterion often used to obtain a

unique S is to take S to be a level set of the posterior distribution of �. Another is to introduce

a loss function associated with a measure of the \size" or \volume" of the con�dence set (as

we have been discussing in a frequentist context), and to �nd the region that minimizes that

loss (or the risk) subject to the posterior coverage constraint.

Assignment 4: Bounded Normal Mean Suppose P� = fN(; 1) :  2 [�a; a]g, X �

N(�; 1), � = [�a; a], � � U [�a; a]. Let D be the set of Lebesgue-measurable subsets of R.

Let L(�; d) = �(d), where �(d) is the Lebesgue measure of the set d. (1) Characterize (give

equations that determine it) a 1 � � credible region d for � that minimizes L given X = x.

(2) Is it su�cient to assume that d is an interval? (3) Does this approach also minimize the

risk EPrL = EPr�(d)? (4) Find the credible region explicitly for a = 1, x = 0; 0:5; 1; 2; 10.

(5) For a = 1, �nd explicitly or estimate by simulation the risk EPrL = EPr�(d) of this

procedure.
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