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1 Resampling Methods

For references, see Beran, R., 1995. Stein confidence sets and the bootstrap, Stat. Sinica,

5, 109–127; Beran, R., 1990. Calibrating predictions regions, J. Amer. Stat. Assoc., 85,

715–723; Beran, R., 1990. Refining bootstrap simultaneous confidence sets, J. Amer. Stat.

Assoc., 85, 417–426; Beran, R., 1987. Prepivoting to reduce level error of confidence sets,

Biometrika, 74, 457–468; Feller, W., 1971. An introduction to probability theory and its

applications, V. II , 2nd edition, John Wiley and Sons, Inc., New York; Lehmann, E.L.,

1975. Nonparametrics, Holden-Day, Oakland; Efron, B., 1982. The Jackknife, the bootstrap,

and other resampling plans, SIAM, Philadelphia; Romano, J.P., 1988. A bootstrap revival

of some nonparametric distance tests, J. Amer. Stat. Assoc., 83, 698–708; Romano, J.P.,

1989. Bootstrap and randomization tests of some nonparametric hypotheses, Ann. Stat.,

17, 141–159.

1.1 Permutation Tests

Suppose we wish to test the efficacy of a purported cold remedy. We select n = nc + nt

individuals for an experiment. From these n, we randomly select nt to receive the remedy,
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and nc to receive a placebo. The selection is done in such a way that every subset of nt of

the n subjects is equally likely to be the treatment group. There are




n

nt


 such subsets.

We infect everyone with the cold virus. Once they show symptoms, we give the remedy or

placebo. Assume that everyone eventually recovers from a cold: we record the time interval

from the onset of symptoms to the complete remission of symptoms. Let {Xj}nc

j=1 be the

times for the control individuals, and let {Yj}nt

j=1 be the times for the treated individuals.

Let X̄ = 1
nc

∑
j Xj and Ȳ = 1

nt

∑
j Yj.

Let the null hypothesis be that the remedy does not work. If that be true, it is as if

every individual’s response were determined before the random assignment to treatment or

control. There would be (at most)




n

nt


 =




n

nc


 (1)

possible pairs of values (X̄, Ȳ ), and so at most that many values of the difference X̄ − Ȳ .

We would want to reject the null hypothesis if X̄ is sufficiently larger than Ȳ (if the time-

to-health with the treatment is shorter than the time-to-health with the placebo).

Because, under the null hypothesis, the assignment to treatment is random but individu-

als’ responses are not, we can obtain a critical value for testing {H0 : treatment has no effect}

at level α by finding a value c such that X̄ − Ȳ > c for at most a fraction α of the




n

nt




partitions of the subjects into treatment and control. In principle, we could enumerate all

of the




n

nt


 partitions, calculate X̄ and Ȳ for each of them, and find the critical value

exactly. (Incidentally, asymptotically in n, nt and nc = n − nt this test is equivalent to the

2-sample t-test.) In practice, finding the exact critical value is unwieldy even for fairly small

values of n (but computers get faster all the time). For example, if we have 100 subjects

of whom 50 are to be assigned to treatment, there are about 1.01e29 possible assignments.

Each assignment requires on the order of 100 floating point operations to compute X̄ − Ȳ .

Using a computer that can calculate at the rate 1GFlop/s (109 floating point operations per

second), it would take about 3.2e14 years, to compute all the values of X̄ − Ȳ . The universe

is about 1.5e10 years old. (For 50 subjects with 25 assigned to treatment, the figure would

be about 0.4 years.)
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However, we might approximate a critical value for the test by randomly partitioning the

n subjects into groups of size nt and nc, computing X̄ − Ȳ for them, and using the 1 − α

quantile of the empirical distribution of those values among the random partitions. Such an

approach resamples the data: we repeatedly draw samples of size nt without replacement,

compute the average response Ȳ of those nt subjects, the average response X̄ of the nc =

n − nt not in that sample, and record X̄ − Ȳ .

1.2 The Bootstrap

The setting for the next few lectures is that we observe an iid sample of size n, {Xj}n
j=1 iid

F . Each observation is real-valued. We wish to estimate some parameter of the distribution

of F that can be written as a functional of F , T (F ). Examples include the mean, T (F ) =
∫

xdF (x), other moments, etc.

The (unpenalized) nonparametric maximum likelihood estimator of F from the data {Xj}
is just the empirical distribution F̂n, which assigns mass 1/n to each observation:

arg max
probability distributions G

PG{Xj = xj, j = 1, . . . , n} = F̂n. (2)

(Note, however, that the MLE of F is not generally consistent in problems with an infinite

number of parameters, such as estimating a density or a distribution function.)

Using the general rule that the maximum likelihood estimator of a function of a parameter

is that function of the maximum likelihood estimator of the parameter, we might be led to

consider T (F̂n) as an estimator of T (F ).

That is exactly what the sample mean does, as an estimator of the mean:

T (F̂n) =
∫

xdF̂n(x) =
n∑

j=1

1

n
Xj =

1

n

∑

j

Xj. (3)

Similarly, the maximum likelihood estimator of

Var(X) = T (F ) =
∫ (

x −
∫

xdF
)2

dF (4)

is

T (F̂n) =
∫ (

x −
∫

xdF̂
)2

dF̂n =
1

n

∑

j

(
Xj −

1

n

∑

k

Xk

)2

. (5)

In these cases, we get analytically tractable expressions for T (F̂n). What is often more

interesting is estimating a property of the distribution of T (F̂n), for example the variance of
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the estimator T (F̂n). The bootstrap approach is to approximate the distribution of T (F̂n) by

the distribution of T (F̂ ∗
n). What this notation is intended to mean is that we approximate

the distribution of an estimator applied to the empirical distribution F̂n of a random sample

of size n from a distribution F by the distribution of that estimator applied to a random

sample F̂ ∗
n of size n from a particular realization F̂n of the empirical distribution of a sample

of size n from F . In the case T is the mean, so T (F̂n) is the sample mean, we could obtain

analytically the variance of the distribution of T (F̂ ∗
n): Let {X∗

j }n
j=1 be an iid sample of size

n from F̂n. Then

VarF̂n

1

n

n∑

j=1

X∗
j =

1

n2

n∑

j=1

(Xj − X̄)2, (6)

where {Xj} are the “original” data and X̄ is their mean. Generally, we would not get an

analytically tractable espression for the variance of an estimator under resampling from the

empirical distribution, but we could still approximate the distribution of T (F̂n) by generating

size-n data sets that are iid F̂n (drawing samples of size n with replacement from {xj}n
j=1),

and applying T to each.

The idea of the bootstrap is to approximate the distribution (under F ) of an estimator

T (F̂n) by the distribution of the estimator under F̂n, and to approximate that distribution

by using a computer to take pseudo-random samples of size n from F̂n.

This basic idea is quite flexible, and can be applied to a wide variety of testing and

estimation problems, including finding confidence intervals and sets. It is related to some

other “resampling” schemes in which one re-weights the data to form other distributions.

Exercise. Recall the normal linear regression model of the previous section. Consider

resampling as follows: Let

ε̂ = Aθ̂LS − X, (7)

and let F̂n be the empirical cdf of the components of ε̂. Consider “pseudo-data” distributed

as

X∗ = Aθ̂LS + ε∗, (8)

where the components of ε∗ are iid F̂n. Consider applying least squares to the pseudo-data,

and calculating the variance of the components of θ. (If we were using Monte-Carlo, we

would generate many independent sets of pseudo-data, apply least-squares to each, and get

an empirical joint distribution for θ̂LS under ε∗ ∼ F̂n.) Give a formula for the resulting

estimate of the variance of θj.
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Before doing more theory with the bootstrap, let’s examine the jackknife.

1.3 The Jackknife

The idea behind the jackknife, which is originally due to Tukey and Quenouille, is to form

from the data {Xj}n
j=1, n sets of n− 1 data, leaving each datum out in turn. The “distribu-

tion” of T applied to these n sets is used to approximate the distribution of T F̂n. Let F̂(i)

denote the empirical distribution of the data set with the ith value deleted; T(i) = T (F̂(i)) is

the corresponding estimate of T (F ). An estimate of the expected value of T (F̂n) is

T̂(·) =
1

n

n∑

i=1

T (F̂(i)). (9)

Consider the bias of T (F̂n):

EF T (F̂n) − T (F ). (10)

Quenoille’s jackknife estimate of the bias is

B̂IAS = (n − 1)(T̂(·) − T (F̂n)). (11)

It can be shown that if the bias of T has a homogeneous polynomial expansion in n−1 whose

coefficients do not depend on n, then the bias of the bias-corrected estimate

T̃ = nT (F̂n) − (n − 1)T(·) (12)

is O(n−2) instead of O(n−1).

Applying the jackknife estimate of bias to correct the plug-in estimate of variance re-

produces the formula for the sample variance (with 1/(n − 1)) from the formula with 1/n:

Define

X̄ =
1

n

n∑

j=1

Xj, (13)

X̄(i) =
1

n − 1

∑

j 6=i

Xj, (14)

T (F̂n) = σ̂2 =
1

n

n∑

j=1

(Xj − X̄)2, (15)

T (F̂(i)) =
1

n − 1

∑

j 6=i

(Xj − X̄(i))
2, (16)

T (F̂(·) =
1

n

n∑

i=1

T (F̂(i)). (17)
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Now

X̄(i) =
nX̄ − Xi

n − 1
= X̄ +

1

n − 1
(X̄ − Xi), (18)

so

(Xj − X̄(i))
2 =

(
Xj − X̄ +

1

n − 1
(X̄ − Xi)

)2

= (Xj − X̄)2 +
2

n − 1
(Xj − X̄)(Xi − X̄) +

1

(n − 1)2
(Xi − X̄)2. (19)

Note also that
∑

j 6=i

(Xj − X̄(i))
2 =

n∑

j=1

(Xj − X̄(i))
2 − (Xi − X̄(i))

2. (20)

Thus

n∑

i=1

∑

j 6=i

(Xj − X̄(i))
2 =

1

n − 1

n∑

i=1




n∑

j=1

[
(Xj − X̄)2 +

2

n − 1
(Xj − X̄)(Xi − X̄) +

+
1

(n − 1)2
(Xi − X̄)2

]
− (Xi − X̄)2−

− 2

n − 1
(Xi − X̄)2 − 1

(n − 1)2
(Xi − X̄)2

]
. (21)

The last three terms all are multiples of (Xi − X̄)2; the sum of the coefficients is

1 + 2/(n − 1) + 1/(n − 1)2 = n2/(n − 1)2. (22)

The middle term of the inner sum is a constant times (Xj − X̄), which sums to zero over j.

Simplifying the previous displayed equation yields

n∑

i=1

∑

j 6=i

(Xj − X̄(i))
2 =

1

n − 1

n∑

i=1

(
nσ̂2 +

n

(n − 1)2
(Xi − X̄)2 − n2

(n − 1)2
(Xi − X̄)2

)

=
1

n − 1

n∑

i=1

(nσ̂2 − n

n − 1
(Xi − X̄)2)

=
1

n − 1

[
n2σ̂2 − n2

n − 1
σ̂2

]

=
n(n − 2)

(n − 1)2
σ̂2. (23)

The jackknife bias estimate is thus

B̂IAS = (n − 1)
(
T (F̂(·)) − T (F̂n)

)
= σ̂2n(n − 2) − (n − 1)2

n − 1
=

−σ̂2

n − 1
. (24)

The bias-corrected MLE variance estimate is therefore

σ̂2
(
1 − 1

n − 1

)
= σ̂2 n

n − 1
=

1

n − 1

n∑

j=1

(Xj − X̄)2 = S2, (25)
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the usual sample variance.

The jackknife also can be used to estimate other properties of an estimator, such as its

variance. The jackknife estimate of the variance of T (F̂n) is

V̂ar(T ) =
n − 1

n

n∑

j=1

(T(j) − T(·))
2. (26)

It is convenient to think of distributions on data sets to compare the jackknife and the

bootstrap. We shall follow the notation in Efron (1982). We condition on (Xi = xi) and

treat the data as fixed in what follows. Let Sn be the n-dimensional simplex

Sn ≡ {P∗ = (P ∗
i )n

i=1 ∈ Rn : P ∗
i ≥ 0 and

n∑

i=1

P ∗
i = 1}. (27)

A resampling vector P∗ = (P ∗
k )n

k=1 is any element of Sn; i.e., an n-dimensional discrete

probability vector. To each P∗ = (P ∗
k ) ∈ Sn there corresponds a re-weighted empirical

measure F̂ ∗(P∗) which puts mass P ∗
k on xk, and a value of the estimator T ∗ = T (F̂ (P∗)) =

T (P∗). The resampling vector P0 = (1/n)n
j=1 corresponds to the empirical distribution F̂n

(each datum xj has the same mass). The resampling vector

P(i) =
1

n − 1
(1, 1, . . . , 0, 1, . . . , 1), (28)

which has the zero in the ith place, is one of the n resampling vectors the jackknife visits;

denote the corresponding value of the estimator T by T(i). The bootstrap visits all resampling

vectors whose components are multiples of 1/n.

The bootstrap estimate of variance tends to be better than the jackknife estimate of

variance for nonlinear estimators because of the distance between the empirical measure and

the resampled measures:

‖P∗ − P0‖ = OP (n−1/2), (29)

while

‖P(k) − P0‖ = O(n−1). (30)

To see the former, recall that the difference between the empirical distribution and the true

distribution is OP (n−1/2): For any two probability distributions P1, P2, on R, define the

Kolmogorov-Smirnov distance

dKS(P1,P2) ≡ ‖P1 − P2‖KS ≡ sup
x∈R

|P1{(−∞, x]} − P2{(−∞, x]}|. (31)
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There exist universal constants χα so that for every continuous (w.r.t. Lebesgue measure)

distribution F ,

PF

{
‖F − F̂n‖KS ≥ χn(α)

}
= α. (32)

This is the Dvoretzky-Kiefer-Wolfowitz inequality. Massart (Ann. Prob., 18, 1269–1283,

1990; stable URL http://links.jstor.org/sici?sici=0091-1798%28199007%2918%3A3%3C1269%3ATTCITD%3E2.0.CO%3B2-

Q ) showed that the constant

χn(α) ≤
√

ln 2
α

2n
(33)

is tight. Thinking of the bootstrap distribution (the empirical distribution F̂n) as the true

cdf and the resamples from it as the data gives the result that the distance between the cdf

of the bootstrap resample and the empirical cdf of the original data is OP (n−1/2).

To see that the cdfs of the jackknife samples are O(n−1) from the empirical cdf F̂n, note

that for univariate real-valued data, the difference between F̂n and the cdf of the jackknife

data set that leaves out the jth ranked observation X(j) is largest either at X(j−1) or at X(j).

For j = 1 or j = n, the jackknife samples that omit the smallest or largest observation,

the L1 distance between the jackknife measure and the empirical distribution is exactly 1/n.

Consider the jackknife cdf F̂n,(j), the cdf of the sample without X(j), 1 < j < n.

F̂n,(j)(X(j)) = (j − 1)/(n − 1), (34)

while F̂n((X(j)) = j/n; the difference is

j

n
− j − 1

n − 1
=

j(n − 1) − n(j − 1)

n(n − 1)
=

n − j

n(n − 1)
=

1

n − 1
− j

n(n − 1)
. (35)

On the other hand,

F̂n,(j−1)(X(j−1)) = (j − 1)/(n − 1), (36)

while F̂n((X(j−1)) = (j − 1)/n; the difference is

j − 1

n − 1
− j − 1

n
=

n(j − 1) − (n − 1)(j − 1)

n(n − 1)
=

j − 1

n(n − 1)
. (37)

Thus

‖F̂n,(j) − F̂n‖ =
1

n(n − 1)
max{n − j, j − 1}. (38)

But n/2 ≤ max{n − j, j − 1} ≤ n − 1, so

‖F̂n,(j) − F̂n‖ = O(n−1). (39)
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The neighborhood that the bootstrap samples is larger, and is probabilistically of the right

size to correspond to the uncertainty of the empirical distribution function as an estimator of

the underlying distribution function F (recall the Kiefer-Dvoretzky-Wolfowitz inequality—a

K-S ball of radius O(n−1/2) has fixed coverage probability). For linear functionals, this does

not matter, but for strongly nonlinear functionals, the bootstrap estimate of the variability

tends to be more accurate than the jackknife estimate of the variability.

Let us have a quick look at the distribution of the K-S distance between a continuous

distribution and the empirical distribution of a sample {Xj}n
j=1 iid F . The discussion follows

Feller (1971, pp. 36ff). First we show that for continuous distributions F , the distribution

of ‖F̂n − F‖KS does not depend on F . To see this, note that F (Xj) ∼ U [0, 1]: Let xt ≡
inf{x ∈ R : F (xt) = t}. Continuity of F ensures that xt exists for all t ∈ [0, 1]. Now the

event {Xj ≤ xt} is equivalent to the event {F (Xj) ≤ F (xt)} up to a set of F -measure zero.

Thus

t = PF{Xj ≤ xt} = PF{F (Xj) ≤ F (xt)} = PF{F (Xj) ≤ t}, t ∈ [0, 1]. (40)

Thus {F (Xj)}n
j=1 are iid U [0, 1]. Let

Ĝn(t) = #{F (Xj) ≤ t}/n = #{Xj ≤ xt}/n = F̂n(xt) (41)

be the empirical cdf of the F (Xj)s. Note that

sup
x∈R

|F̂n(x) − F (x)| = sup
t∈[0,1]

|F̂n(xt) − F (xt)| = sup
t∈[0,1]

|Ĝn(t) − t|. (42)

The probability distribution of Ĝn is that of the cdf of n iid U [0, 1] random variables (it does

not depend on F ), so the distribution of the K-S distance between the empirical cdf and

the true cdf is the same for every continuous distribution. It turns out that for distributions

with atoms, the K-S distance between the empirical and the true distribution functions is

stochastically smaller than it is for continuous distributions.

1.4 Bootstrap and Randomization Tests

This section is about Romano’s papers. The set-up is as follows: We observe {Xj}n
j=1 iid

F , where F is a distribution on an abstract sample space S. The distribution F ∈ Ω, a

collection of distributions on S. The null hypothesis is that F ∈ Ω0 ⊂ Ω. We assume that

Ω0 can be characterized as a set of distributions that are invariant under a transformation

on Ω: let τ : Ω → Ω0; we assume that τ(G) = G for all G ∈ Ω0.

9



Let V be a collection of subsets of a set S. For a finite set D ⊂ S, let ∆V(D) be the

number of distinct sets {V ∩ D : V ∈ V}. For positive integers n, let

mV(n) = max
D⊂S:#{D}=n

∆V(D). (43)

Let

c(V) ≡ inf{n : mV(n) < 2n}. (44)

If c(V) < ∞, V is a Vapnik-Cervonenkis (V-C) class. That is, V is a V-C class if if the

maximum number of distinct intersections of sets in V with sets containing n points grows

sub-exponentially with n. Intersections, finite unions, and Cartesian products of V-C classes

are V-C classes. In Rn, the set of all ellipsoids, the set of all half-spaces, the set of all

lower-left quadrants, and the set of all convex sets with at most p extreme points are all V-C

classes.

An alternative, equivalent definition of a V-C class is based on the following

Definition 1 Suppose V is a collection of subsets of a set X , and that D is a finite subset

of X . We say D is shattered by V if every subset d ⊂ D can be written d = V ∩D for some

V ∈ V.

Because there are 2n subsets of a set with n elements, this is equivalent to saying that

there are 2n different subsets of the form D ∩ V as V ranges over V.

A collection V is a V-C class if for some finite integer n, there exists a set D ⊂ X with

n elements that is not shattered by V.

Exercise. Show that intersections and finite unions of V-C classes are V-C classes. Give a

(counter) example showing that a countable union of V-C classes need not be a V-C class.

Let V be a VC class of subsets of S. Define the pseudo-metric

δ : Ω × Ω → R+

(G, H) → sup
V ∈V

|G(V ) − H(V )|. (45)

This is a generalization of the Kolmogorov-Smirnov distance for distributions on the line. In

that case, the sets in V are the half-lines (−∞, y] (which comprise a V-C class). Consider

a set D = {xj}n
j=1 of points on the real line. How many sets are there of the form V ∩ D,

for V a half-line (−∞, y]? Just n + 1. Suppose the points are in increasing order. Then

the possibilities for V ∩ D are {}, {x1}, {x1, x2}, . . ., {xj}n
j=1. Thus mV(n) = n + 1, and
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c(V) ≡ inf{n : mV(n) < 2n} = 2 (for n = 0, we have 0 + 1 = 20, and for n = 1, we have

1 + 1 = 21, but for n = 2, we have 2 + 1 < 22).

Assume that V has been selected such that δ(G, τG) = 0 iff G ∈ Ω0. Romano proposes

using the test statistic

Tn = n1/2δ(P̂n, τ P̂n), (46)

where P̂n is the empirical measure of {Xj}n
j=1. One rejects the hypothesis when τ P̂n is far

from P̂n.

One way to obtain a critical value from the test is by the bootstrap; one resamples from

P̂n, and looks at the distribution of the distance between the empirical distribution of the

bootstrap samples and τ applied to them.

Suppose that there is a (known) group Gn of transformations of the sample space Sn

such that under the null hypothesis, F is invariant under Gn. Then we can also construct a

randomization test of the hypothesis H0. For simplicity, suppose that Gn is finite, with Mn

elements {gnj}Mn

j=1. Under the null hypothesis, conditional on X = x, the values {gnjx}Mn

j=1

are equally likely. The orbit of an point x in a space S acted on by a group G is the set of

all elements of S that can be obtained by applying elements of G to x. That is, it is the

set {g(x) : g ∈ G}. For example, consider points in the plane and the group of rotations

about the origin. Then the orbit of a point x is the circle with radius ‖x‖. Compute the

test statistic for each gnjx in the orbit of x. Reject the null hypothesis if the statistic for x

exceeds the α quantile of the test statistic for the set of values obtained from the orbit; do

not reject if it is less; reject with a given probability if the statistic equals the α quantile

in such a way as to get a level α test. This is a randomization test. Because the level of

the randomization test is α, conditional on the data, integrating over the distribution of the

data shows that it is α unconditionally.

1.4.1 Examples of hypotheses and functions τ

. Examples Romano gives include testing for independence of the components of each Xj,

testing for exchangeability of the components of each Xj, testing for spherical symmetry of

the distribution of Xj, testing for homogeneity among the Xj, and testing for a change point.

In the example of testing for independence, the mapping τ takes the marginal distribu-

tions of the joint distribution, then constructs a joint distribution that is the product of
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the marginals. For distributions with independent components, this is the identity; other-

wise, it maps a distribution into one with the same marginals, but whose components are

independent. For testing for spherical symmetry, τ maps a distribution into one with the

same mass at every distance from the origin, but that is uniform on spherical shells. For

testing for exchangability, Romano proposes looking at the largest difference between F and

a permutation of the coordinates of F , over all permutations of the coordinates. See his

excellent and lucid paper for more details.

Romano shows that these tests are consistent against all alternatives, and that the critical

values given by the bootstrap and by randomization are asymptotically equal with probability

one. Because the randomization tests are exact level α tests, they might be preferred.

Romano also discusses how to implement the tests computationally.

1.5 Bootstrap Confidence Sets

Let U be an index set (not necessarily countable). Recall that a collection {Iu}u∈U of

confidence intervals for parameters {θu}u∈U has simultaneous 1 − α coverage probability if

Pθ {∩u∈U{Iu 3 θu}} ≥ 1 − α. (47)

If P{Iu 3 θu} does not depend on u, the confidence intervals are said to be balanced.

Many of the procedures for forming joint confidence sets we have seen depend on piv-

ots, which are functions of the data and the parameter(s) whose distribution is known (even

though the parameter and the parent distribution are not). For example, the Scheffé method

relies on the fact that the sum of squared differences between the data and the correspond-

ing parameters, divided by the variance estimate, has an F distribution, regardless of the

parameter values. Similarly, Tukey’s maximum modulus method relies on the fact that the

distribution of the maximum of the studentized absolute differences between the data and

the corresponding parameters does not depend on the parameters. Both of those examples

are parametric, but the idea is more general: the procedure we looked at for finding bounds

on the density function subject to shape restrictions just relied on the fact that there are

uniform bounds on the probability that the K-S distance between the empirical distribution

and the true distribution exceeds some threshold.

Even in cases where there is no known exact pivot, one can sometimes show that some

function of the data and parameters is asymptotically a pivot. Working out the distribu-
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tions of the functions involved is not typically straightforward, and a general method of

constructing (possibly simultaneous) confidence sets would be nice.

Efron gives several methods of basing confidence sets on the bootstrap. Those meth-

ods are substantially improved (in theory, and in my experience) by Beran’s pre-pivoting

approach, which leads to iterating the bootstrap.

Let Xn denote a sample of size n from F . Let Rn(θ) = Rn(Xn, θ) have cdf Hn, and let

H−1
n (α) be the largest α quantile of the distribution of Rn. Then

{γ ∈ Θ : Rn(γ) ≤ H−1
n (1 − α)} (48)

is a 1 − α confidence set for θ.

1.5.1 The Percentile Method

The idea of the percentile method is to use the empirical bootstrap percentiles of some

quantity to approximate the true percentiles. Consider constructing a confidence interval

for a single real parameter θ = T (F ). We will estimate θ by θ̂ = T (F̂n). We would like to

know the distribution function Hn = Hn(·, F ) of Dn(θ) = T (F̂n) − θ. Suppose we did. Let

H−1
n (·) = H−1

n (·, F ) be the inverse cdf of Dn. Then

PF{H−1
n (α/2) ≤ T (F̂n) − θ ≤ H−1

n (1 − α/2)} = 1 − α, (49)

so

PF{θ ≤ T (F̂n) − H−1
n (α/2) and θ ≥ T (F̂n) − H−1

n (1 − α/2)} = 1 − α, (50)

or, equivalently,

PF{[T (F̂n) − H−1
n (1 − α/2), T (F̂n) − H−1

n (α/2)] 3 θ} = 1 − α, (51)

so the interval [T (F̂n)−H−1
n (1−α/2), T (F̂n)−H−1

n (α/2)] would be a 1−α confidence interval

for θ.

The idea behind the percentile method is to approximate Hn(·, F ) by Ĥn = Hn(·, F̂n),

the distribution of Dn under resampling from F̂n rather than F . An alternative approach

would be to take Dn(θ) = |T (F̂n) − θ|; then

PF{|T (F̂n) − θ| ≤ H−1
n (1 − α)} = 1 − α, (52)
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so

PF{[T (F̂n − H−1
n (1 − α), T (F̂n + H−1

n (1 − α)] 3 θ} = 1 − α. (53)

In either case, the “raw” bootstrap approach is to approximate Hn by resampling under F̂n.

Beran proves a variety of results under the following condition:

Condition 1. (Beran, 1987) For any sequence {Fn} that converges to F in a metric d on

cdfs, Hn(·, Fn) converges weakly to a continuous cdf H = H(·, F ) that depends only on F ,

and not the sequence {Fn}.
Suppose Condition 1 holds. Then because F̂n is consistent for F , the estimate Ĥn con-

verges in probability to H in sup norm; moreover, the distribution of Ĥn(Rn(θ)) converges

to U [0, 1].

Instead of Dn, consider Rn(θ) = |T (F̂n) − θ| or some other (approximate) pivot. Let

Ĥn(·, F̂n) be the bootstrap estimate of the cdf of Rn; The set

Bn = {γ ∈ Θ : Ĥn(Rn(γ)) ≤ 1 − α}

= {γ ∈ Θ : Rn(γ) ≤ Ĥ−1
n (1 − α)} (54)

is (asymptotically) a 1 − α confidence set for θ.

The level of this set for finite samples tends to be inaccurate. It can be improved in the

following way, due to Beran.

The original root, Rn(θ), whose limiting distribution depends on F , was transformed into

a new root Rn,1(θ) = Ĥn(Rn(θ)), whose limiting distribution is U [0, 1]. The distribution of

Rn,1 depends less strongly on F than does that of Rn; Beran calls mapping Rn into Rn,1

prepivoting. The confidence set 54 acts as if the distribution of Rn,1 really is uniform, which

is not generally true. One could instead treat Rn,1 itself as a root, and pivot to reduce the

dependence on F .

Let Hn,1 = Hn,1(·, F ) be the cdf of the new root Rn,1(θ), estimate Hn,1 by Ĥn,1 =

Hn,1(·, F̂n), and define

Bn,1 = {γ ∈ Θ : Ĥn,1(Rn,1(γ)) ≤ 1 − α}

= {γ ∈ Θ : Ĥn,1(Ĥn(Rn(γ))) ≤ 1 − α}

= {γ ∈ Θ : Rn(γ) ≤ Ĥ−1
n (Ĥ−1

n,1(1 − α)))}. (55)

Beran shows that this confidence set tends to have smaller error in its level than does Bn.
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The transformation can be iterated further, typically resulting in additional reductions in

the level error.

1.6 Approximating Bn,1 by Monte Carlo

I’ll follow Beran’s (1987) notation (mostly).

Let xn denote the “real” sample of size n. Let x∗
n be a bootstrap sample of size n drawn

from the empirical cdf F̂n. The components of x∗
n are conditionally iid given xn. Let F̂ ∗

n

denote the “empirical” cdf of the bootstrap sample x∗
n. Let x∗∗

n denote a sample of size n

drawn from F̂ ∗
n ; the components of x∗∗

n are conditionally iid given xn and x∗
n. Let θ̂n = T (F̂n),

and θ̂∗n = T (F̂ ∗
n). Then

Hn(s, F ) = PF{Rn(xn, θ) < s}, (56)

and

Hn,1(s, F ) = PF

{
PF̂n

{Rn(x∗
n, θ̂n) < Rn(xn, θ)} < s

}
. (57)

The bootstrap estimates of these cdfs are

Ĥn(s) = Hn(s, F̂n) = PF̂n
{Rn(x∗

n, θ̂n) < s}, (58)

and

Ĥn,1(s) = Hn,1(s, F̂n) = PF̂n

{
PF̂ ∗

n
{Rn(x∗∗

n , θ̂∗n) < Rn(x∗
n, θ̂n)}

}
. (59)

The Monte Carlo approach is as follows:

1. Draw {y∗
k}M

k=1 bootstrap samples of size n from F̂n. The ecdf of {Rn(y∗
k, θ̂n)}M

k=1 is an

approximation to Ĥn.

2. For k = 1, · · · , M , let {y∗∗
k`}N

`=1 be N size n bootstrap samples from the ecdf of y∗
k. Let

θ̂∗n,k = T (F̂ ∗
n,k). Let Zk be the fraction of the values

{Rn(y∗∗
k,`, θ̂

∗
n,k)}N

`=1 (60)

that are less than Rn(y∗
k, θ̂n). The ecdf of {Zk} is an approximation to Ĥn,1 that

improves (in probability) as M and N grow.

Note that this approach is extremely general. Beran gives examples for confidence sets

for directions, etc. The pivot can in principle be a function of any number of parameters,

which can yield simultaneous confidence sets for parameters of any dimension.
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1.7 Other approaches to improving coverage probability

There are other ways of iterating the bootstrap to improve the level accuracy of bootstrap

confidence sets. Efron suggests trying to attain a different coverage probability so that the

coverage attained in the second generation samples is the nominal coverage probability. That

is, if one wants a 95% confidence set, one tries different percentiles so that in resampling

from the sample, the attained coverage probability is 95%. Typically, the percentile one

uses in the second generation will be higher than 95%. Here is a sketch of the Monte-Carlo

approach:

• Set a value of α∗ (initially taking α∗ = α is reasonable)

• From the sample, draw M size-n samples that are each iid F̂n. Denote the ecdfs of the

samples by {F̂ ∗
n,j}.

• For each j = 1, . . . , M , apply the percentile method to make a (nominal) level 1 − α∗

confidence interval for T (F̂n). This gives M confidence intervals; a fraction 1− α′ will

cover T (F̂n). Typically, 1 − α′ 6= 1 − α.

• If 1 − α′ < 1 − α, decrease α∗ and return to the previous step. If 1 − α′ > 1 − α,

increase α∗ and return to the previous step. If 1 − α′ ≈ 1 − α to the desired level of

precision, go to the next step.

• Report as a 1−α confidence interval for T (F ) the (first generation) bootstrap quantile

confidence interval that has nominal 1 − α∗ coverage probability.

An alternative approach to increasing coverage probability by iterating the bootstrap is

to use the same root, but to use a quantile (among 2nd generation bootstrap samples) of

its 1 − α quantile rather than the quantile observed in the first generation. The heuristic

justification is that we would ideally like to know the 1 − α quantile of the pivot under

sampling from the true distribution F . We don’t. The percentile method estimates the

1 − α quantile of the pivot under F by the 1 − α quantile of the pivot under F̂n, but this

is subject to sampling variability. To try to be conservative, we could use the bootstrap a

second time find an (approximate) upper 1−α∗ confidence interval for the 1−α quantile of

the pivot.

Here is a sketch of the Monte-Carlo approach:

16



• Pick a value α∗ ∈ (0, 1/2) (e.g., α∗ = α). This is a tuning parameter.

• From the sample, draw M size-n samples that are each iid F̂n. Denote the ecdfs of the

samples by {F̂ ∗
n,j}.

• For each j = 1, . . . , M , draw N size-n samples, each iid F̂n,j. Find the 1 − α quantile

of the pivot. This gives M values of the 1 − α quantile. Let c be the 1 − α∗ quantile

of the 1 − α quantiles.

• Report as a 1 − α confidence interval for T (F ) the interval one gets by taking c to be

the estimate of the 1 − α quantile of the pivot.

In a variety of simulations, this tends to be more conservative than Beran’s method, and

more often attains at least the nominal coverage probability.

Exercise. Consider forming a two-sided 95% confidence interval for the mean θ of a distri-

bution F based on the sample mean, using |X̄ − θ| as a pivot. Implement the three “double-

bootstrap” approaches to finding a confidence interval (Beran’s pre-pivoting, Efron’s cali-

brated target percentile, and the percentile-of-percentile). Generate 100 synthetic samples

of size 100 from the following distributions: normal, lognormal, Cauchy, mixtures of normals

with the same mean but quite different variances (try different mixture coefficients), and

mixtures of normals with different means and different variances (the means should differ

enough that the result is bimodal). Apply the three double bootstrap methods to each,

resampling 1000 times from each of 1000 first-generation bootstrap samples. Which method

on the average has the lowest level error? Which method tends to be most conservative?

Try to provide some intuition about the circumstances under which each method fails, and

the circumstances under which each method would be expected to perform well. How do

you interpret coverage for the Cauchy? Warning: You might need to be clever in how you

implement this to make it a feasible calculation in S or Matlab. If you try to store all the

intermediate results, the memory requirement is huge. On the other hand, if you use too

many loops, the execution time will be long.

17



1.8 Bootstrap confidence sets based on Stein (shrinkage) esti-

mates

Beran (1995) discusses finding a confidence region for the mean vector θ ∈ Rq, q ≥ 3, from

data X ∼ N(θ, I). This is an example illustrating that what one bootstraps is important,

and that naive plug-in bootstrapping doesn’t always work.

The sets are spheres centered at the shrinkage estimate

θ̂S =

(
1 − q − 2

‖X‖2

)
X, (61)

with random diameter d̂. That is, the confidence sets C are of the form

C(θ̂S, d̂) =
{
γ ∈ Rq : ‖θ̂S − γ‖ ≤ d̂

}
. (62)

The problem is how to find d̂ = d̂(X; α) such that

Pγ{C(θ̂S, d̂) 3 γ} ≥ 1 − α (63)

whatever be γ ∈ Rq.

This problem is parametric: F is known up to the q-dimensional mean vector θ. We can

thus use a “parametric bootstrap” to generate data that are approximately from F , instead

of drawing directly from F̂n: if we have an estimate θ̂ of θ, we can generate artificial data

distributed as N(θ̂, I). If θ̂ is a good estimator, the artificial data will be distributed nearly

as F . The issue is in what sense θ̂ needs to be good.

Beran shows (somewhat surprisingly) that resampling from N(θ̂S, I) or from N(X, I) do

not tend to work well in calibrating d̂. The crucial thing in using the bootstrap to calibrate

the radius of the confidence sphere seems to be to estimate ‖θ‖ well.

Definition 2 The geometrical risk of a confidence set C for the parameter θ ∈ Rq is

Gq(C, θ) ≡ q−1/2Eθ sup
γ∈C

‖γ − θ‖. (64)

That is, the geometrical risk is the expected distance to the parameter from the most distant

point in the confidence set.

For confidence spheres

C = C(θ̂, d̂) = {γ ∈ Rq : ‖γ − θ̂‖ ≤ r̂}, (65)
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the geometrical risk can be decomposed further: the distance from θ to the most distant

point in the confidence set is the distance from θ to the center of the sphere, plus the radius

of the sphere, so

Gq(C(θ̂, r̂), θ) = q−1/2Eθ

(
‖θ̂ − θ‖ + d̂

)

= q−1/2Eθ‖θ̂ − θ‖ + q−1/2Eθd̂. (66)

Lemma 1 (Beran, 1995, Lemma 4.1). Define

Wq(X, γ) ≡ (q−1/2(‖X − γ‖2 − q), q−1/2γ′(X − γ). (67)

Suppose {γq ∈ Rq} is any sequence such that

‖γq‖2

q
→ a < ∞ as q → ∞. (68)

Then

Wq(X, γq) →
W

(
√

2Z1,
√

aZ2) (69)

under Pγq
, where Z1 and Z2 are iid standard normal random variables. (The symbol →

W

denotes weak convergence of distributions.)

Proof. Under Pγq
, the distribution of X − γ is rotationally invariant, so the distribution of

the components of Wq depend on γ only through ‖γ‖. Wlog, we may take each component

of γq to be q−1/2‖γq‖. The distribution of the first component of Wq is then that of the sum

of squares of q iid standard normals (a chi-square rv with q df), minus the expected value

of that sum, times q−1/2. The standard deviation of a chi-square random variable with q df

is
√

2q, so the first component of Wq is
√

2 times a standardized variable whose distribution

is asymptotically (in q) normal. The second component of Wq is a linear combination of iid

standard normals; by symmetry (as argued above), its distribution is that of

q−1/2
q∑

j=1

q−1/2‖γq‖Zj = ‖γq‖
q∑

j=1

Zj

→ a1/2Z2. (70)
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Recall that the squared-error risk (normalized by q−1/2) of the James-Stein estimator

is 1 − q−1Eθ{(q − 2)2/‖X‖2} < 1. The difference between the loss of θ̂S and an unbiased

estimate of its risk is

Dq(X, θ) = q−1/2{‖θ̂S − θ‖2 − [q − (q − 2)2/‖X‖2]}. (71)

By rotational invariance, the distribution of this quantity depends on θ only through ‖θ‖;
Beran writes the distribution as Hq(‖θ‖2/q). Beran shows that if {γq ∈ Rq} satisfies 68,

then

Hq(‖γq‖2/q) →
W

N(0, σ2(a)), (72)

where

σ2(t) ≡ 2 − 4t/(1 + t)2 ≥ 1. (73)

Define

θ̂CL = [1 − (q − 2)/‖X‖2]
1/2
+ X. (74)

Theorem 1 (Beran, 1995, Theorem 3.1) Suppose {γq ∈ Rq} satisfies 68. Then

Hq(‖θ̂CL‖
2/q) →

W

N(0, σ2(a)), (75)

Hq(‖X‖2/q) →
W

N(0, σ2(1 + a)), (76)

and

Hq(‖θ̂S‖2/q) → N(0, σ2(a2/(1 + a))), (77)

all in Pγq
probability.

It follows that to estimate Hq by the bootstrap consistently, one should use

ĤB = Hq(‖θ̂CL‖
2/q) (78)

rather than estimating using either the norm of X or the norm of the James-Stein estimate

θ̂S of θ.

Proof. Lemma 1 implies that under the conditions of the theorem, ‖θ̂CL‖2/q → a,

‖X‖2/q → 1 + a, and ‖θ̂S‖2/q → a2/(1 + a).
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