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First Set of Notes

1 Hypothesis Testing and Con�dence Sets

1.1 Set-up

We are to collect a vector of data X 2 X , which has probability distribution P�, with

(possibly in�nite-dimensional) parameter � unknown, except that � 2 �, where � is a

known set. Typically, X = Rn, but it might instead be a more general measurable space of

possible observations. We are interested in making statistical inferences about � (�), which

might be � itself, or a function of � (for example, for a univariate normal we might have

� = (�; �2), and be interested in � (�) = �). Let

T � � (�) = f : 9� 2 �s:t: = � (�)g; (1)

and

P� = fP� : � 2 �g: (2)

We wish to test the null hypothesis H : � (�) 2 TH � T against an alternative K not yet

speci�ed. In a deliberate \overloading" of notation, let H also stand for fP�; � 2 � : � (�) 2
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THg ( the set of probability distributions for which the null hypothesis H is true), and let

K also stand for fP�; � 2 � : � (�) 2 TKg (the set of probability distributions for which the

alternative hypothesis K is true). We shall typically assume that H [K = P�.

De�nition 1 If fP� 2 Hg be a singleton set (just one distribution), we say the null hypoth-

esis H is simple. If the alternative K be a singleton set, we say K is simple. If an hypothesis

is not simple, it is composite.

De�nition 2 A (signi�cance) level � test of the hypothesis � (�) 2 TH is a (possibly random)

measurable decision rule �(X) : X ! f accept, rejectg such that

sup
fP�2Hg

P�f�(X) = rejectg � �: (3)

The constant � is (an upper bound on) the probability of a false rejection.

The most common decision rules (deterministic rules) reject when the data X fall outside

a set A = AH that satis�es

sup
fP�2Hg

P�fX 62 AHg � �; (4)

The set AH is called the acceptance region of the test; AC
H is the rejection region of the

test. Under the Neyman-Pearson paradigm, the term \acceptance region" is a misnomer|

one never \accepts" the null hypothesis; one merely fails to reject it given certain data

(evidence) X. I shall often blur the notational distinction between a test and its acceptance

region.

Another family of decision rules performs a random experiment that depends on the

observed value of X, such that for each x, the null hypothesis is rejected with probability

�(x) and not rejected with probability 1 � �(x). To have a signi�cance level � randomized

test, we need

sup
fP�2Hg

E��(X) =
Z
�(x)dP�(x) � �: (5)

Deterministic rules correspond to decision functions � that take only the values 0 (do not

reject, with probability 1) and 1 (reject, with probability 1).

Typically, the set AH is de�ned in two steps: �rst, one selects a statistic T (X) (a function

of X that is P -measurable for all  2 �, and that does not depend on �), then one de�nes
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a subset ATH of the range of T , with the property that

sup
fP�2Hg

P�fT (X) 62 ATHg = �: (6)

Thus AH, a subset of X , is the pre-image under T of ATH , a subset of the range of T . (In

symbols, AH = T�1(ATH).)

Suppose that the range X of X is endowed with a distance

d(�; �) : X �X ! R+

(x; y) 7! d(x; y); (7)

where R+ are the nonnegative reals. (Recall that a distance d(�; �) on a set X must satisfy

1. 0 � d(x; y) � 1; d(x; y) = 0 () x = y (positive de�niteness)

2. d(x; y) = d(y; x) (symmetry)

3. d(x; z) � d(x; y) + d(y; z) (triangle inequality)

for all x; y; z in X .)

De�nition 3 The diameter of a set A on which a metric d is de�ned is

jAj � sup
x;y2A

d(x; y): (8)

The radius of A relative to the point x is

jAj� � sup
y2A

d(x; y): (9)

One natural criterion of optimality of an acceptance region is that its diameter be min-

imal. This is related to (but not equivalent to) the power of the test against a family of

alternatives; vide infra.

De�nition 4 A family of tests for � 2 T is a set-valued function A such that for each

 2 T, A is the acceptance region for a level � test of the hypothesis H : � = .

Examples.
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1. Suppose that P� is the normal distribution with mean � and unit variance, that � = R,

� (�) = �, and that we observe X � P�. Let z� be the � critical value of the standard

normal distribution; that is,

P0fX � z�g = �: (10)

Then

A � ( � z�=2;  + z�=2) (11)

is a family of level � tests for � (�) = � 2 R.

2. Suppose P� is the family of distributions on R that are continuous with respect to

Lebesgue measure. Let � (�) be the 90th percentile of the distribution parametrized by

�. We observe X = fXjgnj=1 i.i.d. P�. Let T : Rn ! N equal #fXj � g. (N are

the nonnegative integers). For all � such that � (�) = , the probability distribution of

T(X) is binomial with parameters n and p = 0:1. Thus for any , we can �nd integers

a� = a�(; n; �) and a+ = a+(; n; �) such that

P�fT(X) 62 [a�; a+]g � � 8�s:t:� (�) = : (12)

Such a pair of mappings de�nes a family of level � tests for � (�) 2 R.

3. Suppose that P� is the set of probability distributions on R that are continuous with

respect to Lebesgue measure; let � be the distribution function of the \true" measure,

and suppose we are interested in � (�) = �. We observe X = fXjgnj=1 i.i.d. P�. Let �̂n

denote the empirical distribution

�̂nf(�1; x]g �
1

n

nX
j=1

1x�Xj
; (13)

where 1B is the indicator function of the event B. For any two probability distributions

P1, P2, on R, de�ne the Kolmogorov-Smirnov distance

dKS(P1;P2) � kP1 �P2kKS � sup
x2R

jP1f(�1; x]g �P2f(�1; x]gj: (14)

There exist universal constants �� so that for every continuous (w.r.t. Lebesgue mea-

sure) distribution �,

P�

n
k� � �̂nkKS � �n(�)

o
= �: (15)
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This is the Dvoretzky-Kiefer-Wolfowitz indquality. Moreover, Massart (Ann. Prob.,

18, 1269{1283, 1990) showed that the constant

�n(�) �

s
ln 2

�

2n
(16)

is tight. For y = (y1; � � � ; yn) 2 Rn, let ŷn be the probability measure on R whose

distribution function is 1=n
Pn

j=1 1x�yj . Then

A � fy 2 Rn : k � ŷnkKS � ��g (17)

is a family of level � tests for � 2 �.

1.2 Most Powerful Tests

De�nition 5 The power � of the test � of H against the alternative K is

� = �(�;K) � inf
P�2K

P�f�(X) = rejectg: (18)

That is, �(�;K) is the smallest probability of rejecting the null hypothesis when the value of

the parameter of interest, � (�), is in the alternative set TK.

In the Neyman-Pearson paradigm for hypothesis testing, one is concerned with the prob-

abilities of two kinds of errors: rejecting the null hypothesis H when it is in fact true (a Type

I error), and failing to reject the null hypothesis when it is in fact false (a Type II error).

The signi�cance level of a test is a bound on the probability of a Type I error; the power of

the test against the alternative K is 1� sup
P�2K P�fType II errorg.

For a given bound � on the chance of a Type I error, one is naturally led to maximize

the power �(K). This can be thought of as a more general statistical decision problem with

two zero-one loss functions: De�ne

L1(�; reject) =

8><
>:

0; P� 62 H

1; P� 2 H
(19)

L1(�; accept) = 0;8� 2 �; (20)

and

L2(�; reject) = 0;8� 2 �; (21)
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L2(�; accept) =

8><
>:

0; P� 2 H

1; P� 62 H
(22)

Then the problem of �nding the most powerful test is to �nd the decision rule � that mini-

mizes EL2(�; �(X)) subject to the constraint EL1(�; �(X)) � �.

For the case H and K are simple, let PH = H and PK = K. Considering �rst nonran-

domized tests, one wants to �nd AH to maximize

� =
Z
x 62AH

dPK(x) (23)

subject to Z
x 62AH

dPH(x) � �: (24)

Subject to a bound on the chance of a Type I error, the best points to exclude from AH

are those that are most probable under K relative to their probability under H. Let r(x) =

dPK(x)=dPH(x). Then the most powerful nonrandomized level � test � has

AH = fx : r(x) > cg; (25)

where c solves

PHfX 62 AHg =
Z
x:r(x)>c

dPH(x) = �: (26)

If PH contains atoms, it can happen that for some values of �, the most powerful determin-

istic decision rule � that attains exactly level � is not given by the likelihood ratio region

25 for some special values of � (for a given value of c, the level would be too large, while

for in�nitesmaly larger c, the level would be too small). If one allows randomized decisions,

that problem does not occur; one makes a deterministic decision when r < c or r > c, and

makes a random decision for r = c, with probability of rejection chosen s.t. the overall level

is �. A more common approach (essentially ubiquitous in practice) is to choose � to avoid

such pathology.

Theorem 1 Fundamental Lemma of Neyman and Pearson (See Lehmann, TSH, 3.2, The-

orem 1.) Suppose PH and PK have densities pH and pK relative to a measure � (e.g.,

PH +PK). Then
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1. There is a decision function � and a constant c such that

EH�(X) = �; (27)

�(x) =

8><
>:

1; pK(x) > cpH(x)

0; pK(x) < cpH(x):
(28)

(The value of � for pK(x) = cpH(x) is adjusted to give EH�(X) = �; depending on �,

H, and K, this can result in a randomized decision rule.)

2. If a decision function � satis�es 27 and 28 for some c, it is most powerful for testing

H against K at level �.

3. If � is the most powerful decision function for testing H against K, then for some c it

satis�es 28 a.e.(�), and it satis�es 27 unless there is a level < � test of H against K

with � = 1.

The fundamental lemma of Neyman and Pearson applies just to simple null and alterna-

tive hypotheses. One might hope that when H and K were composite, the same test would

be most powerful for all P� 2 H against all P� 2 K; unfortunately, that is not typically the

case. Such a test, when it exists is called uniformly most powerful (UMP).

There is an important class of distributions with real parameters for which UMP tests

exist. Suppose P�, � 2 � = R has density p�(x).

De�nition 6 The set of densities p� has monotone likelihood ratio (in T (x)) if there exists

a function T : X ! R such that for � < �

1. P� 6= P�, and

2. p�(x)=p� (x) is a monotone non-decreasing function of T (x).

Theorem 2 (See Lehmann, TSH, 3.3, Theorem 2.) Suppose � 2 � = R and X has density

p�(x) with monotone likelihood ratio in T (x). Let H = fP� : � � �Hg and K = fP� : � >

�Hg. (Such a K is called a one-sided alternative.) Then

1. A UMP level � test of H against K exists.

7



2. The decision function � for the UMP test is

�(x) =

8>>>>><
>>>>>:

1; T (x) > c

b T (x) = c

0; T (x) < c;

(29)

with b and c chosen to satisfy

EP�H�(X) = �: (30)

3. For this test, the power

�(P�) = EP��(X) (31)

is a strictly increasing function of � at all points for which 0 < �(�) < 1.

4. For all , this test is UMP for testing � �  against � >  at level �().

5. For any � < �H , the test minimizes �(�) among all level � tests.

De�nition 7 Let P�, � 2 � � R have density

p�(x) = C(�)eQ(�)T (x)h(x) (32)

relative to some measure �, with Q(�) strictly monotone. Then fP� : � 2 �g is a one

parameter exponential family.

Remark. The one-parameter exponential families have monotone likelihood ratio in T (x).

Remark. Lehmann refers to a converse due to Pfanzagl (1968) that under weak regularity

conditions, if there exist level � UMP tests against one-sided alternatives for all sample sizes,

P� is an exponential family.

1.3 Con�dence Regions.

De�nition 8 A 1� � con�dence region for � (�) is a random set S(X) � T satisfying

P�fS(X) 3 � (�)g � 1 � �: (33)

The most common way to construct a 1� � con�dence region for � (�) is by \inverting"

a family of tests for the hypotheses � (�) = :
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Theorem 3 Duality between Tests and Con�dence Regions. (See Lehmann, TSH, 3.5, The-

orem 4). Let A be a family of acceptance regions for level � tests of the hypotheses � (�) = .

For each value of x 2 Rn, de�ne

S(x) = f 2 T : x 2 Ag: (34)

Then S(X) is a con�dence region for � (�) with con�dence level 1 � �.

Theorem 4 The Ghosh-Pratt Identity. (See Pratt, J.W., 1961. Length of con�dence in-

tervals, JASA, 56, 549{567; Ghosh, J.K., 1961. On the relation among shortest con�dence

intervals of di�erent types, Calcutta Stat. Assoc. Bull., 147{152.) For a set S(x) � �, let

�(S(x)) �
Z
2S(x)

d�(); (35)

for some measure � on �. Then

EP��(S(X)) =
Z
P�fS(X) 3 gd�(): (36)

The Ghosh-Pratt identity relates the expected \volume" (w.r.t. the measure �) of a

con�dence set to the probability that points other than the true parameter are in the set:

the right hand side is the integral of the \false coverage" probability. That is in turn related

to the power of the tests to which S is dual against the alternative with respect to which the

expectation and the probability are calculated. For example, suppose that � = Rm, that

� is Lebesgue measure (so the expectation on the left is the \ordinary" expected volume of

the con�dence set) and that S is the dual of a family of tests that are most powerful against

the alternative � = 0. That is, the sets A� minimize P�f0 3 A�g. Then the con�dence set

S(X) has minimal expected volume when the true value of � is 0 among all con�dence sets.

Brown, Casella and Huang (Optimal Con�dence Sets, Bioequivalence, and the Limacon

of Pascal, Brown Univ. Tech. Rept. BU-1205-M, 1993, rev.1994) use this result to develop

con�dence sets for assessing bioequivalence. In the case X � N(�; I), the acceptance regions

of tests with optimal power against 0 can be derived from the likelihood ratio; Brown and

Huang obtain closed-form expressions for the shape of the resulting con�dence sets.

Problem. Find a formula for a 1� � con�dence set for the mean of a Poisson distribution

from n i.i.d. observations, with minimal expected volume when the true mean � = 1. Is the
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set always an interval? Give the con�dence set that results when X = 2. It might help to

read Brown and Huang.
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