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Outline

Earthquake phenomenology; precursors; stochastic models

Forecasts: What is the chance of an earthquake?

Coin tosses:

Equally likely outcomes

Frequency theory

Subjective theory

Probability models

Weather predictions

The USGS forecast for the SF Bay Area

Evaluating predictions: null hypotheses, common tests

It’s easy to predict earthquakes!
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Earthquake Phenomenology

Clustering in space:

• About 90% of large events in “ring of fire”
(circum-Pacific belt, plate margins)

• Most earthquakes are on pre-existing faults

• Depths 0–700 km; most are shallow; most large quakes
are shallow

Clustering in time:

• Foreshocks, aftershocks, swarms
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Globally, on the order of 1 magnitude 8 earthquake per year.

Locally, recurrence times for big events O(100 y).

Big quakes deadly and expensive.

Much funding and glory in promise of prediction.

Would be nice if prediction worked.
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Claimed precursors:

• foreshocks, patterns

• electromagnetics in ground and air; resistivity

• cloud formations

• infrared

• well water composition, temperature and level

• geodetics

• animal behavior
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Some stochastic models for seismicity:

• Poisson (spatially heterogeneous; temporally homogeneous;

marked?)

• Gamma renewal processes

• Weibull, lognormal, normal, double exponential, . . .

• ETAS

• Brownian passage time
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Coin Tosses. What does P (heads) = 1/2 mean?

• Equally likely outcomes: Nature indifferent; principle of
insufficient reason

• Frequency theory: long-term limiting relative frequency

• Subjective theory: strength of belief

• Probability models: property of math model; testable pre-
dictions

Math coins 6= real coins.

Weather predictions: look at sets of assignments. Scoring
rules.
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Littlewood (1953):

Mathematics (by which I shall mean pure mathematics) has no grip on
the real world; if probability is to deal with the real world it must contain
elements outside mathematics; the meaning of ‘probability’ must relate
to the real world, and there must be one or more ‘primitive’ propositions
about the real world, from which we can then proceed deductively (i.e.
mathematically). We will suppose (as we may by lumping several primitive
propositions together) that there is just one primitive proposition, the
‘probability axiom,’ and we will call it A for short. Although it has got to
be true, A is by the nature of the case incapable of deductive proof, for
the sufficient reason that it is about the real world . . . .

There are 2 schools. One, which I will call mathematical, stays inside
mathematics, with results that I shall consider later. We will begin with
the other school, which I will call philosophical. This attacks directly
the ‘real’ probability problem; what are the axiom A and the meaning
of ‘probability’ to be, and how can we justify A? It will be instructive
to consider the attempt called the ‘frequency theory’. It is natural to
believe that if (with the natural reservations) an act like throwing a die
is repeated n times the proportion of 6’s will, with certainty , tend to
a limit, p say, as n → ∞. (Attempts are made to sublimate the limit
into some Pickwickian sense—‘limit’ in inverted commas. But either you
mean the ordinary limit, or else you have the problem of explaining how
‘limit’ behaves, and you are no further. You do not make an illegitimate
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conception legitimate by putting it into inverted commas.) If we take
this proposition as ‘A’ we can at least settle off-hand the other problem,
of the meaning of probability; we define its measure for the event in
question to be the number p. But for the rest this A takes us nowhere.
Suppose we throw 1000 times and wish to know what to expect. Is
1000 large enough for the convergence to have got under way, and how
far? A does not say. We have, then, to add to it something about
the rate of convergence. Now an A cannot assert a certainty about a
particular number n of throws, such as ‘the proportion of 6’s will certainly
be within p± ε for large enough n (the largeness depending on ε)’. It can
only say ‘the proportion will lie between p± ε with at least such and such
probability (depending on ε and n0) whenever n > n0’. The vicious circle
is apparent. We have not merely failed to justify a workable A; we have
failed even to state one which would work if its truth were granted. It
is generally agreed that the frequency theory won’t work. But whatever
the theory it is clear that the vicious circle is very deep-seated: certainty
being impossible, whatever A is made to state can be stated only in terms
of ‘probability’.



USGS 1999 Forecast

P (M≥6.7 event by 2030) = 0.7± 0.1

What does this mean?

Where does the number come from?

Two big stages.
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Stage 1

1. Determine regional constraints on aggregate fault motions from geode-
tic measurements.

2. Map faults and fault segments; identify segments with slip rates
≥1 mm/y. Estimate the slip on each fault segment principally from
paleoseismic data, occasionally augmented by geodetic and other
data. Determine (by expert opinion) for each segment a ‘slip factor,’
the extent to which long-term slip on the segment is accommodated
aseismically. Represent uncertainty in fault segment lengths, widths,
and slip factors as independent Gaussian random variables with mean
0. Draw a set of fault segment dimensions and slip factors at random
from that probability distribution.

3. Identify (by expert opinion) ways in which segments of each fault
can rupture separately and together. Each combination of segments
is a ‘seismic source.’

4. Determine (by expert opinion) the extent to which long-term fault
slip is accommodated by rupture of each combination of segments
for each fault.

5. Choose at random (with probabilities of 0.2, 0.2, and 0.6) 1 of
3 generic relationships between fault area and moment release to
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characterize magnitudes of events that each combination of fault
segments supports. Represent the uncertainty in the generic rela-
tionship as Gaussian with zero mean and standard deviation 0.12,
independent of fault area.

6. Using the chosen relationship and the assumed probability distribu-
tion for its parameters, determine a mean event magnitude for each
seismic source by Monte Carlo.

7. Combine seismic sources along each fault ‘to honor their relative like-
lihood as specified by the expert groups;’ adjust relative frequencies
of events on each source so that every fault segment matches its
estimated geologic slip rate. Discard combinations of sources that
violate a regional slip constraint.

8. Repeat until 2,000 regional models meet the slip constraint. Treat
the 2,000 models as equally likely for estimating magnitudes, rates,
and uncertainties.

9. Estimate the background rate of seismicity: Use an (unspecified)
Bayesian procedure to categorize historical events from three cata-
logs either as associated or not associated with the seven fault sys-
tems. Fit generic Gutenberg-Richter magnitude-frequency relation
N(M) = 10a−bM to the events deemed not to be associated with



the seven fault systems. Model background seismicity as a marked
Poisson process. Extrapolate the Poisson model to M ≥ 6.7, which
gives a probability of 0.09 of at least one event.



Stage 1: Generate 2,000 models; estimate long-term seismicity rates

as a function of magnitude for each seismic source.

Stage 2:

1. Fit 3 types of stochastic models for earthquake recurrence—Poisson,
Brownian passage time (Ellsworth et al., 1998), and ‘ time-predict-
able’—to the long-term seismicity rates estimated in stage 1.

2. Combine stochastic models to estimate the probability of a large
earthquake.

Poisson and Brownian passage time models used to estimate the proba-
bility an earthquake will rupture each fault segment.

Some parameters fitted to data; some were set more arbitrarily. Ape-
riodicity (standard deviation of recurrence time, divided by expected re-
currence time) set to three different values, 0.3, 0.5, and 0.7. Method
needs estimated date of last rupture of each segment.

Model redistribution of stress by large earthquakes; predictions made w/
& w/o adjustments for stress redistribution.

Predictions for segments combined into predictions for each fault using

expert opinion about the relative likelihoods of different rupture sources.
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‘Time-predictable model’ (stress from tectonic loading needs to reach
the level at which the segment ruptured in the previous event for the
segment to initiate a new event) used to estimate the probability that an
earthquake will originate on each fault segment. Estimating the state of
stress before the last event requires date of the last event and slip during
the last event. Those data are available only for the 1906 earthquake
on the San Andreas Fault and the 1868 earthquake on the southern
segment of the Hayward Fault. Time-predictable model could not be
used for many Bay Area fault segments.

Need to know loading of the fault over time; relies on viscoelastic models
of regional geological structure. Stress drops and loading rates modeled
probabilistically; the form of the probability models not given. Loading of
San Andreas fault by the 1989 Loma Prieta earthquake and the loading
of Hayward fault by the 1906 earthquake were modeled.

The probabilities estimated using time-predictable model were converted
into forecasts using expert opinion for relative likelihoods that an event
initiating on one segment will stop or will propagate to other segments.

The outputs of the three types of stochastic models for each segment

weighted using opinions of a panel of 15 experts. When results from the

time-predictable model were not available, the weights on its output were

0.
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So, what does it mean?

I have no idea. It’s just a number.

None of the standard interpretations of probability applies.

Method has aspects of Fisher’s fiducial inference, frequency

theory, probability models, subjective probability.

Frequencies equated to probabilities; outcomes assumed to

be equally likely; subjective probabilities used in ways that

violate Bayes’ Rule.

Calibrated using data that are not commensurable–global, or

extrapolated across magnitude ranges using ‘empirical’ scal-

ing laws.
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Models upon models; ad hoc ad nauseum.

Inconsistent and virtually opaque.

Better to spend resources on preparedness, education, out-

reach.



Testing predictions

Some predictions hold “by chance.”

Can’t conclude a method has merit just because some pre-

dictions come true.

How to evaluate? Ideas from hypothesis testing.

Chance model for successful predictions: Does method suc-

ceed ‘beyond chance?’
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Null hypotheses for testing predictions:

• Poisson seismicity, historical rates; predictions fixed

• Poisson seismicity after ‘declustering,’ historical rates;

predictions fixed

• Locations from catalogs, times uniform; predictions fixed

• Locations from catalogs, times permuted; predictions fixed
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Methodological examples

Jackson, 1996

Tests deterministic predictions using a probability distribution

for the number of successful predictions, derived from a null

hypothesis that specifies chance each prediction succeeds.

Does not say how to find these probabilities, although says

that usually the null hypothesis is that seismicity follows a

Poisson process with rates equal to the historical rates.

Assumes that successes are independent.

Advocates estimating the P -value by simulating the distribu-

tion of the sum of independent Bernoulli variables.
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Console, 2001

Rejects the null hypothesis if more events occur during alarms

than are expected on the assumption that seismicity has a

homogeneous Poisson distribution with true rate equal to the

observed rate.

No discussion of significance level or power.
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Shi, Liu & Zhang, 2001

Evaluated official Chinese earthquake predictions for magni-

tude 5 and above, 1990–1998.

Divided study region into 3,743 small cells in space, and years

of time.

In a given cell in a given year, either an earthquake is predicted

to occur, or—if no—that’s a prediction that there will be no

event in that cell during that year.

Test statistic is R-score:

R =
# cells in which earthquakes are successfully predicted

# cells in which earthquakes occur
−

# cells with false alarms

# aseismic cells
, (1)

18



Compare the R-score of the actual predictions on the declus-

tered catalog with the R-score of 3 sets of random predic-

tions:

1. Condition on the number of cells in which earthquakes are

predicted to occur. Choose that many cells at random

without replacement from the 3,743 cells, with the same

chance of selecting each cell; predict that earthquakes

of magnitude 5 or above will occur in those randomly-

selected cells.

2. For the jth cell, toss a pj-coin, where pj is proportional to

the historical rate of seismicity in that cell. If the jth coin

lands heads, predict that an earthquake of magnitude 5 or

above will occur in the jth cell. Toss coins independently

for all cells, j = 1, . . . ,3,743. Yields a random number
19



of predictions, with predictions more likely in cells where

more events occurred in the past.

3. Condition on the number of cells in which earthquakes are

predicted to occur. Choose that many cells at random

without replacement from the 3,743 cells. Select the jth

cell with probability pj, with pj set as in (2). Predict that

earthquakes of magnitude 5 or above will occur in the

selected cells.

None of 3 methods depends on the observed seismicity during

the study period, 1990–1998.



Claims of successful predictions

Varotsos, Alexopoulos and Nomicos (VAN)

Literature debate: v. 23 of Geophysical Research Letters,

1996.

Participants did not even agree about the number of earth-

quakes that were predicted successfully, much less whether

the number of successes was surprising. Participants dis-

agreed about whether the predictions were too vague to be

considered predictions, whether some aspects of the predic-

tions were adjusted post hoc, what the null hypothesis should

be, and what tests were appropriate.
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Wyss and Burford, 1987

Predicted ML = 4.6 earthquake of 31 May 1986 near Stone
Canyon, California, ≈1y before it occurred.

Examined the rates of earthquakes on different sections of the
San Andreas fault. Identified 2 fault sections in which the
rate dropped compared with the rates in neighboring sections.

Say “the probability [of the prediction] to have come true by
chance is < 5%.”

That’s the chance that an earthquake would occur in the
alarm region, if earthquakes occurred at random, indepen-
dently, uniformly in space and time, with rate equal to the
historic rate in the study area over the previous decade. Thus,
null hypothesis is that seismicity follows a homogeneous Pois-
son process with rate equal to the historical rate; clustering
is not taken into account.
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Kossobokov et al., 1999

Claim to have predicted four of the five magnitude 8 and

larger earthquakes that occurred in the circum-Pacific region

between 1992 and 1997. “[t]he statistical significance of the

achieved results is beyond 99%.”

Predictions based on pattern recognition.

Calculate statistical significance by assuming that earthquakes

follow a Poisson process: homogeneous in time, heteroge-

neous in space. Intensity estimated from historical data.

Condition on number of events in the study area, so loca-

tions and times are iid across events, the epicenters and

times are independent of each other, the temporal density

of earthquake times is uniform, and the spatial distribution

of epicenters is given by the historical distribution between

1992 and 1997.
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Calculation does not take clustering into account, and con-

ditions on the predictions. Treat successes as independent

with probability p equal to the normalized measure of the

union of the alarms. Measure is product of the uniform mea-

sure on time and counting measure on space, using historical

distribution of epicenters in the study volume.



Analogy to weather prediction:

• Predictions depend on weather history

• “If rain today, predict rain tomorrow” works well

• Most schemes lose dependence of predictions on history

• Don’t account for clustering

“If earthquake today, predict earthquake tomorrow” works

well, too.
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year Mτ events succ succ max P -value v
w/o sim (est)

2004 5.5 445 95 30 28 < 0.001 3.9× 10−4

2004 5.8 207 24 7 10 0.041 1.8× 10−4

2000-2004 5.5 2013 320 85 48 < 0.001 3.6× 10−4

2000-2004 5.8 996 114 29 19 < 0.001 1.8× 10−4

Simulations using Harvard CMT catalog. Col. 4: Events with magnitude at least Mτ

that are within 21 days following and within 50 km of the epicenter of an event with

magnitude Mτ or greater. Col. 5: Events within 21 days following and within 50 km

of the epicenter of an event whose magnitude is at least Mτ but no greater than that

of the event in question. Events that follow within 21 days of a larger event are not

counted. Col. 6, ‘max sim,’ is the largest number of successful predictions in 1,000

random permutations of the times of the events Harvard CMT catalog, holding the

alarms and the locations and magnitudes of events in the catalog fixed. Col. 7: fraction

of permutations in which the number of successful predictions was ≥ observed number.

Col. 8: upper bound on fraction of study region (in space and time) covered by alarms.
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Method succeeds far beyond chance. Why?

Null hypothesis does not model the dependence of predictions

on seismicity.

That dependence, plus clustering, gives ‘surprising’ success

rates.
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