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Stratification and Blocking

= statistical reasons

“take advantage of” (anticipated) within-stratum homogeneity
(true for MSE but not necessarily for inference)

= sometimes need stratumwise estimates/inferences

= |ogistics:

randomize independently at different centers
distribute work

= analysis/inference:

stratification/blocking often ignored in clinical trial data
Fisher's exact test

Student's t

stratified surveys generally use normal approx.

texts: Kish; Cochran; Thompson; Levy & Lemeshow; Hansen, Hurwitz, & Madow; ...



Exact inference about binary populations from stratified samples

N items. G labeled “1." N — G labeled "0." Partitioned into S strata.

Stratum s contains Ny items, of which Gs are labeled “1."

N=3%2 Nsand G:=Y2 G,

Draw simple random sample of size ns from stratum s, independently across strata.
Ys is the number of items labeled “1" in the sample from stratum s.

{Ys}f:1 are independent. Observed value of Y is ys.

Seek hypothesis tests and confidence bounds for G.
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ABSTRAC

This article attempts to compare the different interval estimation
methods for a stratified population where each stratum represents
a binomial population. We compare Wald, Wilson, modified
oull and Clopper—Pearson type intervals for both “with””

» replacement sampling scheme. The Wilson type

al performs well when compared to other intervals, but it fails

to achieve the coverage probability when the proportion of success in
each of the stratum is near 0 or 1. None of these methods are reliable

Nanthakumar and Selvavel

when the proportion of success for each of the stratum is near the
boundaries. Indeed, Wilson, Wald and Agresti-Coull intervals have
coverage probabilities much below the nominal confidence level.
The coverage probability for the modified Clopper-Pearson Type
interval is much higher than the nominal confidence level.




Wright’s (1991) method for Cls

= Add simultaneous LCBs for (Gs)7_; to get LCB; add simultaneous UCBs to get
UCB.

= Samples from different strata are independent: use Sidak’s adjustment, (1 — a)l/s.
= Find ClI for G5 by inverting hypergeometric tests using Y
= General method: joint 1 — « confidence set for all the parameters {Gj}le then find a
bound on functionals of interest over the joint set.
= Lots of slack:
= unnecessarily constrains S — 1 nuisance parameters

= not tight “geometry” for the desired functional



JASATh & Meth 1996 Exact Inference for Proportions From a
Stratified Finite Population

John P. WENDELL and Josef SCHMEE

Auditors and others often encounter finite populations with a dichotomous characteristic from which they draw stratified samples.
In auditing the di arises when a p ion item is ified as either in error or in compliance with some rule or regulation.
Usually the proportion of errors is small. The auditing objective may require calculation of a p value for the sample outcome
relative to a hypothesis, or a confidence bound for the proportion or total number of errors in the population. In sampling from L
strata with hypotheses concerning the total number of errors in the population, the calculation of p values is not straightforward.
The complication arises because the parameter of the null hypothesis does not completely specify the distribution of the test
statistic. This distribution depends on an (L — 1)-dimensional nuisance parameter consisting of the number of errors in each
stratum. Because confidence bounds can be obtained by inverting the hypothesis test, the same difficulty applies to calculating
confidence bounds. This article tests H; using the maximum p value over the feasible set of nuisance parameters. It describes a
fairly efficient search method for finding a global i p value. C bounds are d by inverting the hypothesis
test. The article also prescnts an heuristic expressxon for determining good starting values in the search for confidence bounds. The

are i ona dard statistical package and are available from StatLib. They seem to perform reasonably
wcll with samples from a moderate number of strata with a small number of errors.

KEY WORDS: Attribute sampling; Confidence bound; Hypergeometric distribution; Nuisance parameters; p value; Statistical
auditing.




2.2.2 P Values in Stratified Sampling with only M Spec-
ified. In many audit applications, only the hypothesized
number of errors in the population, the error threshold
M, is specified. Because (M, ..., My, ) is needed to cal-

The sample estimate of the number of errors My, is
4.1667, versus the hypothesized M; of 10. The variance
V(M) is 4.9102. The resulting standardized Zpnorm iS
—2.6325, which corresponds to @ pyorm of .0042.

culate the outcome probabilities, (Mg, ,...,M;,) b
a vector of nuisance parameters with the restriction that
M, = ¥ My, (My,,...,M,,) cannot be easily elimi-
nated. Different specifications of the nuisance parameters
yield different outcome probabilities and thus different p
values. The problem of calculating the p value can be over-
come by choosing a nuisance parameter that yields the most

Table 1. p Values for all (M, M2)

p value

061574
.067081
.062872
054091
043091
.034080
.025498
018467
012978

2.2.4 Results Comparing Pmaz 10 Prnorm. Table 2
presents the values of pmax and the normal distribution ap-
proximation ppo.m for a selection of typical audit popula-
tions and sample results. The uncorrected normal distribu-
tion severely underestimates the actual p values in all cases
investigated.

Journal of the American Statistical Association, June 1996
upper bounds:
L
— ,
Uss(w) = 9, Ubea(iys

i=1

where is an 100(1 — +')% upper confidence bound

)
srs(i)
for stratum 4 based on SRS calculations and with v/ = 1

- YT—.
The 95% upper confidence bound for M based on prmax
pe o in ection an be & o al



P-value for pop total is max P-value over stratum totals that give that pop total:

S — 1-dimensional nuisance parameter
Each P-value uses test statistic p := % Zle Nsys/ns, like norm approx

Cls by inverting tests (Cl includes all pop totals for which an allocation isn't

rejected at level o)

Maximizing the P-value over all allocations of G ones across S strata is
combinatorial:
= Feller's “bars and stars” (°£°]") ways to allocate G objects among S strata (some
don't honor data or stratum sizes).
= S=10, Ns =400, G =300 = ~ 6.3¢ + 16 allocations
= search intractable when there are many 1s or more than a few strata

Nonconvex objective: no guarantee numerical optimization will succeed

W&S use exhaustive search & numerical optimization by descent from some

number of random starting points.



duce the number of evaluations in applications with com-
binatorially larger spaces of points.
4.2 Finding U,

This section presents four steps for the efficient calcula-
tion of an upper confidence bound for M.

Step 1 guesses a starting point. A good heuristic starting
point is

Global Maximum

Qocal Maximum
O

0,015 0.02 0.025

20
20
A0 W
0

Figure 2. Grid Plot of p Values Over Nuisance Parameter Space for

N = (500, 300, 200), n = (75, 50, 25), y = (2, 1, 0), and My = 50. The

Figure 1. Contour Plot of p Values Over Nuisance Parameter Space  global maximum p value, Pmax, is .02768 and is at (My, My — M; — M3,
for N = (500, 300, 200), n = (75, 50, 25), y = (2, 1, 0), and My = 50.

Mz) = (28, 21, 1). The locally maximum p value is .02433 and is at (M;,
Pmax Is .02768 and is found at (My, M2, My —

My — Mz) = (28,21, 1). My — My — Ms, Ma) = (2, 1, 47).




Table 2. Comparison of pmax and pnarm for Selected Cases With Computation Times for pmax in Seconds:
N=(Ny,..., NL)yn=(n1,..., ), Yobs = (¥iy - -

N

(200, 100)
(200, 100)
(2,000, 1,000)
(300, 200)
(300, 200)
(500, 500)
(5,000, 5,000)
(100, 100, 100)
(300, 200, 100)
(3,000, 2,000, 1,000)
(300, 200, 100)
(500, 300, 200)
(500, 300, 200)
(5,000, 3,000, 2,000)

n

(50, 25)
(50, 50)
(50, 50)
(75, 50)
(100, 100)
(100, 50)
(100, 50)
(25, 25, 25)
(50, 50, 50)
(50, 50, 50)
(75, 50, 25)
(50, 50, 50)
(75, 50, 25)
(75, 50, 25)

Yobs

(0, 0)
(1.0
(1,0
(1,1
(3,2)
(2,1)
(2. 1)
0,0,0
(1,1,0)
(1,1,0)
(1,1,0)
21,0
(2,1,0)
(2,1,0)

Pnaorm

0

.00077
.00268
.00027
.00496
.00424
00676

0

.00103
.00255
.00004
04756
.00137
.00272

Seconds

12
15
16
18
23
18
28
44
63
97
75
117
45
85

10



Basic strategy: maximize P-value over a multidimensional nuisance parameter

= P-value for composite null is the maximum of the P-values of the simple nulls that
comprise the composite.

= The individual P-values can be hard to find.
= Representing simple nulls as intersection hypotheses helps.

= Union-of-intersections tests:

— S
He = Ug:zs 2=G Ns—1 Hsg.

= Test intersections by combining (independent) P-values.
= Inspired by NPC to build multivariate tests from univariate tests

11



Different test statistic makes the optimization trivial!

Define

8s (gs) (IXs:gs)
ps(gs) == P{Ys > ys||Gs = gs} = Z %’
Y=Ys (ns)
where (7) :=0if a<0or b> a.

P-value for the most powerful test of the hypothesis Gs = g5 against the alternative
Gs > gs.

Test the intersection hypothesis Gs = gs, s = 1,...,S by combining (independent)
stratumwise P-values, e.g., using Fisher's combining function.

12



If all S stratumwise nulls are true, the distribution of

S
X?(8) == =2 log ps(gs)

s=1

is dominated by the chi-square distribution with 25 degrees of freedom. Let x4(2)
denote the chance that a random variable with the chi-square distribution with d

degrees of freedom is greater than or equal to z.

A conservative P-value for the allocation g is
P(g) = x25(X?(8))-

The allocation g of g ones across strata that maximizes the P-value minimizes
minimizes X2(g) (maximizes >°2_; log ps(gs)) and satisfies 3", g5 = g.

13



Let

as(j) .= {

Then log ps(gs) =

IOgPs(Ys)7 J=Ys
log (Ps(j)/Ps(j - 1)) y J=Yys+1,... Ns— (ns - )/s)-

&s
J=Ys

otherwise. Moreover,

provided ys < gs < N —

(ns

as(j) if ys < gs < N — (ns — ys), and log ps(gs) = —o0

:—QZas(ys —22 Z as(j

s=1j=ys+1

—ys), s=1,...,S; otherwise, it is infinite.

14



An allocation of g ones across strata is inconsistent with the data unless g5 > ys,
s=1,...,5.

How to allocate the remaining g — > ys ones to maximize the P-value (equivalently, to
minimize X2(g))?

Let by denote the kth largest element of the bag

Las() e, () 5

with ties broken arbitrarily. Define g, := g — 255:1 Vs.

15



Proposition. For every g with >, g5 = g,

_ S &y _ _
X2(g:) Z Xf(g) — { 2 (Zs:l as(ys) + Ek:l bk) ) Zs Ys S g S N Zs(ns yS)
o0, otherwise.

Proof. Any g for which X?(g) is finite includes the first sum and a sum of g, elements
of {bi}; the latter is at most the sum of the g, largest elements of {by}. O

16



Proposition: For j € ys+1,..., Ns — (ns — ys), as(j) is monotone decreasing in ;.

(Equivalently, ps(j) is concave in j.)

Implies the bound is sharp: if as(i) is a term in the second sum for some i > ys + 1, so
is every as(j), ys <j < i— 1: the second sum corresponds to an allocation g of g ones

across the S strata, with ys < go < Ng — (ns — ys).

Among all allocations of g 1s, this one minimizes the tail probability, because it
corresponds to exponentiating the smallest sum of logs (the largest negative sum of
logs). O

Theorem: If Y ys < g < N—>.(ns —ys),

P(g) < xa(X2(g)).

17



A “greedy” approach finds a conservative P-value:

= Add the S values {as(xk)52_; to the g — g, largest elements of { byS§.

= Upper tail probability of the chi-square distribution with 25 degrees of freedom for
—2 times the sum is a conservative P-value for the hypothesis G = g.

= A conservative upper 1 — a confidence bound for G is the largest g for which
P(g) = a.

Special case of maximizing a weakly concave function over a polymatroid.
Rado-Edmonds Theorem guarantees the greedy algorithm succeeds.
(Componentwise concavity implies weak concavity over J C Z°.)

Same greedy approach gives lower bound on spending for lottery wins.

18



Operation count

= Calculate as(j) and as(j + 1) for all j (25 function evaluations)

= Evaluate as(-) once for each remaining step for the stratum a 1 is added to
(g — Y. ys — 1 evaluations), if gs < Ns.

= When a 1 is allocated, have to find a largest element of {as(gs + 1)52_;.

= Sort at the first step in O(SIn S) operations,
= Update sort as elements are replaced in O(S(g — >, ys — 1)) operations

19



Comparison to Wendell & Schmee (1996)

P-values
N n observed g Greedy WS

[200, 100] [50, 25] [0,0] 15 0.06482 0.01194
[200, 100] [50, 50] [0,20] 60 0.01686 0.03340
[300, 200] [75, 50] [1,1] 25 0.09105 0.02918
[300, 200] [75,50] [0,15] 100 0.00703 0.00563
[300, 300] [50, 50] [0,20] 200 0.00039 0.00106
[5000, 5000] [100, 50] [2,1] 500 0.21563 0.10908
[5000, 5000] [100, 50] [10,0] 1000 0.04454 0.04493

[15000, 5000, 1000] [150, 30, 10] [3,2,0] 2000 0.02123 *

[50000, 15000, 5000, 1000] [500,150,30,10] [5,3,2,0] 2750 0.02735 *

* calculation hadn't finished in 5 minutes

20



Directions to explore

= other P-value combining functions that yield weak concavity, so greedy algorithm

still works

= base stratumwise tests on E-values from test supermartingales

= product of independent E-values is an E-value for the intersection null
= predictable interleaving of terms from stratum test supermartingales is a test
supermartingale for the intersection
= choose stratum test SMs for each null
= choose interleaving: “gang of bandits” problem
= no adjustment for # strata needed
= works for bounded populations, not only binary populations
= sequential validity: can sample until Cl is as short as desired
= generally need guardrails to keep an E-value from approaching 0 in stata w true nulls
= generally, order of data matters

21
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Predictable Kelly Round Robin

Method
LcB
UI-NNSM Fisher
UI-NNSM Product

Betting Strategy
AGRAPA

- Fixed

= == Smooth Adaptive

Stopping Time

050 055 0.60 065 070 0.750.50 055 060 0.65 0.70 0.75
Reported Assorter Mean

Figure 2: Stopping times (y-axis; logio scale) against global reported assorter mean (x-axis)
for stratified ballot-level comparison audits without C VR error. There are two strata of equal
size N = N, = 200, and equal assorter mean AS = = A, displayed on the x-axis. Three
different bets are displayed as linetypes. The atldtcgy for testing is either to combine lower
confidence bounds (LCB) akin to Wright’s method, or union-intersection testing by nonnegative
supermartingales (UI-NNSM).




Stratum gap Stratum gap = 0.1 Stratum gap = 0.2

Method

LCB AGRAPA

LCB Fixed

UI-NNSM Adaptive
UI-NNSM Fixed
Unstratified AGRAPA

0.7050 055 0.60 0

Global Mean

Figure 3: Expected stopping times (y-axis; log ) of various sequenti
colors) of the null Hy : 41 < 1/2 against a range of true global means (

Populations consist of Ny 0 s within each stratum, drawn from truncated Gaussian

Ny

distributions with ard de 0.05. The number of strata K v:

The global mean p is on the is, while the columns correspond to the largest gap bet

stratum means, with other means spaced linearly between the largest and smallest. LCB = lower
i i ve supermarting;

24



Blocked/stratified experiments

Comparison of adaptive pacing therapy, cognitive behaviour
therapy, graded exercise therapy, and specialist medical care
for chronic fatigue syndrome (PACE): a randomised trial

PDWhite, KA Gol Lo ts, RWalwyn, | C DeCesare, H L Baber, M Burgess, LV Clark, D L Cox, | Bavinton, BJ Angus, G Murphy,
MMurphy, HO P McCrone, e arpe?, on b e PACE trial management grou

Summary

Background Trial findings show cognitive behaviour therapy (CBT) and graded exercise therapy (GET) can be effective
treatments for chronic fatigue syndrome, but patients’ organisations have reported that these treatments can be harmful
and favour pacing and specialist health care. We aimed to assess effectiveness and safety of all four treatments.

Methods In our parallel-group randomised trial, patients meeting Oxford criteria for chronic fatigue syndrome were
recruited from six secondary-care clinics in the UK and randomly allocated by computer-generated sequence to reccive
specialist medical care (SMC) alone or with adaptive pacing therapy (APT), CBT, or GET. Primary outcomes were fatigue
(measured by Chalder fatigue questionnaire score) and phvslcal function (measured by short form-36 subscale score) up
to 52 weeks after randomisation, and safety was assessed primarily by recording all serious adverse events, including
serious adverse reactions to trial treatments. Primary outcomes were rated by participants, who were necessarily
unmasked to treatment assignment; the statistician was masked to treatment assignment for the analysis of primary

. We used longitudinal regression models to compare SMC alone with other treatments, APT with CBT, and
APT with GET. The final analysis included all participants for whom we had data for primary outcomes. This tri
registered at http:/fisrctn.org, number ISRCTN54285094.

Findings We recruited 641 eligible patients, of whom 160 were assigned to the APT group, 161 to the CBT group, 160 to
the GET group, and 160 to the SMC-alone group. Compared with SMC alone, mean fatigue scores at 52 weeks were
3.4/(95% CI1-8 10 5-0) points lower for CBT (p=0-0001) and 3-2 (L-7 to 4-8) points lower for GET

not differ for APT (0-7 [~0-9 to 23] points lower; p=0-38). Compared with SMC alone, mean phys

were 7-1 (20 to 12-1) points higher for CBT (p=0-0068) and 9-4 (4-4 to 14-4) points higher for GET (

did not differ for APT (3-4[-1-6 to 8-4] points lower; p=0-18). Compared with APT, CBT and GET were associated with
less fatigue (CBT p=0-0027; GET p=0-0059) and better physical function (CBT p=0-0002; GET p<0-0001). Subgroup
analysis of 427 participants meeting international criteria for chronic fatigue syndrome and 329 participants meeting
London criteria for myalgic encephalomyelitis yielded equivalent results. Serious adverse reactions were recorded in
two (1%) of 159 participants in the APT group, three (2%) of 161 in the CBT group, two (19%) of 160 in the GET group,
and two (1%) of 160 in the SMC-alone group.

Interpretation CBT and GET can safely be added to SMC to moderately improve outcomes for chronic fatigue

Articles
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Methods

Study design and participants

PACE was a parallel, four group, multicentre, randomised
trial, with outcomes assessed up to 52 weeks after
randomisation for patients with chronic fatigue

syndrome."" We recruited 641 participants from consecutive
new outpatients attending six specialist chronic fatigue
syndrome clinics in the UK National Health Service
between March 18, 2005, and Nov 28, 2008, and completed
outcome data collection in January, 2010.

26



of consent. A database programmer undertook treatment
allocation, independently of the trial team. The first three
participants at each of the six clinics were allocated with
straightforward randomisation. Thereafter allocation was

stratified by centre, alternative criteria for chronic fatigue
syndrome” and myalgic encephalomyelitis,” and
depressive disorder (major or minor depressive episode or
dysthymia),” with computer-generated probabilistic
minimisation. Once notified of treatment allocation by the

27



naire and 11 for short form-36). Prorating involved
calculating the mean value of the item scores present
and replacing the missing values with that score.

We summarised continuous variables with mean (SD)
or median (IQR) and categorical variables with
frequencies and proportions. Differentiation of
treatment compared independent ratings of therapy
sessions with actual treatment. We calculated the inter-
rater reliability (x and 95% CI) between the two
assessors. We used Kruskal-Wallis tests for comparisons
of therapy received, therapeutic alliance, and manual
adherence. We compared categorical variables with
Fisher’s exact test.

A clinically useful difference between the means of
the primary outcomes was defined as 0-5 of the SD of
these measures at baseline,” equating to 2 points for
Chalder fatigue questionnaire and 8 points for short

scores of the UK working age population of 84 (-24) for
physical function (score of 60 or more).***
We estimated differences between treatment grou

both primary outcomes with mixed linear regression
models with Kenward-Roger adjusted standard errors.
Covariate re treatment group, baseline value of
outcome, time, and stratification factors (centre, present
depressive disorder, and alternative criteria for chronic
fatigue syndrome and myalgic encephalomyelitis; all as
stratified at entry). Time by treatment interaction terms
were included to allow extraction of contrasts at 52 weeks.
Models for the primary outcomes and the clinical global
impression incorporated random intercepts and slopes
over time by participant and main health-care practitioner
(doctor or therapist who saw the participant most
frequently, o, if equal, the first practitioner to see the
participant) to allow for clustering of outcomes within

Adaptivepacing  Cognitivebehaviour Graded exercise  Specialistmedical  pvalue*
therapy (n-159) 61)  therapy (n=160) _carealone (n=160)

Treatment received
Therapy sessions attendedt 13(1215)
medical caresessions attendedt 364

Adequate treatment§ 143 (90%)

tidepressantat baseline 63(40%)
Antidepressant at 24 weeks[
Antidepressant at 52 weeksf|
Hypnotic at baseline
Hyprotic at 24 weeks{|
Hyprotic at 52 weeks{|
Non-allocated treatment
Dropouts from treatment
Views before treatment.
Treatmentislogical 134 (84
Confident about treatment 114 (72%) 91057

Views after treatment

Satisfed with treatment | 128(85%) 117 (82%)

Dissatisfed with treatment{, 46%)

Therapeutic llian 65(60-65)

062

65 (41%)

76(50%)

Adherenceto manual** 60(60-65) 60(50-65)

Dataare median (IQR) o n (). “p values across ll groups. 1861% of essions were recelved fac-to-face and 14% by telephone. 194% of sessions

and 6% by telephone. SAdequate treatment was ten or mre sessions o therapy o thr

data.[Scored 17 (1-poor,7-excellent). *Scored 17 (1-not atal,7-very much s0)

Table 2: Treatment details

or more sssions ofspeci I care alone. Pe
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Exact inference in binary trials with binary outcomes

Neyman potential outcomes model: potential outcomes fixed before randomization,
revealed by randomization.

Statistics

Research Article

Received 3 January 2014, Accepted 13 November 2014 Published online 4 December 2014 in Wiley Online Library

(wileyonlinelibrary.com) DOI: 10.1002/sim.6384

Randomization inference for treatment
effects on a binary outcome

Joseph Rigdon and Michael G. Hudgens+'

Two methods are developed for constructing randomization-based confidence sets for the average effect of a treat-
ment on a binary outcome. The methods are nonparametric and require no assumptions about random sampling
from a larger population. Both of the resulting 1 — a confidence sets are exact in the sense that the probability
of containing the true treatment effect is at least 1 — a. Both types of confidence sets are also guaranteed to have
width no greater than one. In contrast, a previously proposed asymptotic confidence interval is not exact and may
have width greater than 1. The first approach combines Bonferroni-adjusted prediction sets for the attributable
effects in the treated and untreated. The second method entails inverting a permutation test. Simulations are
presented comparing the two randomization-based confidence sets with the asymptotic interval as well as the
standard Wald confidence interval and a commonly used exact interval for the difference in binomial propor-




Statistics

Commenta

(wileyonlinelibrary.com) DOI: 10.1002/sim.6764 Published online in Wiley Online Library

Exact confidence intervals for the average
causal effect on a binary outcome

Xinran Li* and Peng Ding"*"

I'Ka:ed on the physical randomization of completely randomized experiments, in a recent article in Statistics in

e, Rigdon and Hudgens propose two approaches to obtaining mn confidence intervals for the average
uml effect on a binary outcome. They construct the first confidence interval by combining, with the Bonferroni
adjustment, the prediction sets for treatment effects among treatment and control groups, and the second one by
inverting a series of randomization tests. With sample size n, their second approach requires performing O(1°)
randomization tests. We demonstrate that the physical randomization also justifies other ways to constructing

ion tests, we propose appmnhn that

r informa
cither do not need to invoke Monte Carlo or require performing at most O(*) randomization tests. We provide
technical details and R code in the Supporting Information. Copyright © 2016 John Wiley & Sons, Ltd.

Theorem 1
A potential table N is compatible with the observed table  if and only if

o { . in (N \
max {0,my; = Ny, Ny = o1, Ny = mig = g} < min {Nyy.myy, Ny = s, = Nig = gy = mio} -

Fast computation of exact confidence intervals for randomized
experiments with binary outcomes

Haoge Chang Patrick Lopat

o nfidence intervals for the
ago causal cffect of the treatment, can b computed thr s of pormutation te
pproach requires minimal o nption and o lid for e sizes, as it does not rely
e 11 uf

st fficient known const . 72) stch tests in the
2016], and O(n") tests eneral case [Rigdon and Hudgens

D13]. O results ths faciatc exact nforemco a5 » viabl aption for random

far larger than those accessible by previous methods.
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Blocked binary experiment with binary outcomes

N subjects in all; Ns in block s.

ns in block s assigned active treatment, ms := Ns — ns assigned placebo.
Assignment independent across blocks.

N1y: # subjects whose response to treatment would be 1, N4 5 in block s
Ny1: # subjects whose response to placebo would be 1, Ny s in block s
ATE: 7 := (Ni+ — Ny1)/N.

ni1,s: # subjects in block s who received active treatment and responded 1
no1,s: # subjects in block s who received placebo treatment and responded 1
mi,s ~ Hyp(Ns, N1+ s, ns); no1s ~ Hyp(Ns, Ni1 s, ms)
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Cls for ATE

= Enumerate & test all blocked potential outcome tables consistent w/ results

= Test statistic? Does |7 — 7| make sense? Analogous to WS: doesn't use stratum
heterogeneity

= Use Li & Ding or Aronow et al. to find Cls for ATE within blocks, then combine
using Sidak (analogous to Wright's method)

= Use Li & Ding or Aronow et al. to find a P-value within blocks, then combine

across blocks (union of intersections test, again)

= Exploit Aronow et al. O(nslog ns) result in the balanced blocks

= Apply the greedy approach to finding 1 — «/2 LCB for Ny and UCB for N1,
subtract, divide by N.

= With UI-NNSM approach, can make inferences about ATE for bounded treatments 0



