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Stratification and Blocking

• statistical reasons
• “take advantage of” (anticipated) within-stratum homogeneity

(true for MSE but not necessarily for inference)
• sometimes need stratumwise estimates/inferences

• logistics:
• randomize independently at different centers
• distribute work

• analysis/inference:
• stratification/blocking often ignored in clinical trial data
• Fisher’s exact test
• Student’s t
• stratified surveys generally use normal approx.
• texts: Kish; Cochran; Thompson; Levy & Lemeshow; Hansen, Hurwitz, & Madow; . . .
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Exact inference about binary populations from stratified samples

N items. G labeled “1.” N − G labeled “0.” Partitioned into S strata.

Stratum s contains Ns items, of which Gs are labeled “1.”

N =
∑S

s=1 Ns and G :=
∑S

s=1 Gs .

Draw simple random sample of size ns from stratum s, independently across strata.

Ys is the number of items labeled “1” in the sample from stratum s.

{Ys}Ss=1 are independent. Observed value of Ys is ys .

Seek hypothesis tests and confidence bounds for G .
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Wright’s (1991) method for CIs

• Add simultaneous LCBs for (Gs)S
s=1 to get LCB; add simultaneous UCBs to get

UCB.
• Samples from different strata are independent: use Šidák’s adjustment, (1− α)1/S .
• Find CI for Gs by inverting hypergeometric tests using Ys

• General method: joint 1− α confidence set for all the parameters {Gj}S
j=1, then find a

bound on functionals of interest over the joint set.
• Lots of slack:

• unnecessarily constrains S − 1 nuisance parameters
• not tight “geometry” for the desired functional
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• P-value for pop total is max P-value over stratum totals that give that pop total:
S − 1-dimensional nuisance parameter

• Each P-value uses test statistic p̂ := 1
N
∑S

s=1 Nsys/ns , like norm approx

• CIs by inverting tests (CI includes all pop totals for which an allocation isn’t
rejected at level α)

• Maximizing the P-value over all allocations of G ones across S strata is
combinatorial:

• Feller’s “bars and stars”
(G+S−1

S−1
)
ways to allocate G objects among S strata (some

don’t honor data or stratum sizes).
• S = 10, Ns = 400, G = 300 =⇒ ≈ 6.3e + 16 allocations
• search intractable when there are many 1s or more than a few strata

• Nonconvex objective: no guarantee numerical optimization will succeed

• W&S use exhaustive search & numerical optimization by descent from some
number of random starting points. 8
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Basic strategy: maximize P-value over a multidimensional nuisance parameter

• P-value for composite null is the maximum of the P-values of the simple nulls that
comprise the composite.

• The individual P-values can be hard to find.

• Representing simple nulls as intersection hypotheses helps.

• Union-of-intersections tests:

HG = ∪g:
∑

s gs=G ∩
S
s=1 Hs,gs

• Test intersections by combining (independent) P-values.
• Inspired by NPC to build multivariate tests from univariate tests
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Different test statistic makes the optimization trivial!

Define

ps(gs) := P{Ys ≥ ys ||Gs = gs} =
gs∑

y=ys

(gs
y
)(Ns−gs

ns−y
)(Ns

ns

) ,

where
(a

b
)

:= 0 if a ≤ 0 or b > a.

P-value for the most powerful test of the hypothesis Gs = gs against the alternative
Gs > gs .

Test the intersection hypothesis Gs = gs , s = 1, . . . ,S by combining (independent)
stratumwise P-values, e.g., using Fisher’s combining function.
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If all S stratumwise nulls are true, the distribution of

X 2(~g) := −2
S∑

s=1
log ps(gs)

is dominated by the chi-square distribution with 2S degrees of freedom. Let χd(z)
denote the chance that a random variable with the chi-square distribution with d
degrees of freedom is greater than or equal to z .

A conservative P-value for the allocation ~g is

P(~g) = χ2S(X 2(~g)).

The allocation ~g of g ones across strata that maximizes the P-value minimizes
minimizes X 2(~g) (maximizes

∑S
s=1 log ps(gs)) and satisfies

∑
s gs = g .
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Let

as(j) :=
{

log ps(ys), j = ys

log (ps(j)/ps(j − 1)) , j = ys + 1, . . .Ns − (ns − ys).

Then log ps(gs) =
∑gs

j=ys as(j) if ys ≤ gs ≤ N − (ns − ys), and log ps(gs) = −∞
otherwise. Moreover,

X 2(~g) = −2
S∑

s=1
as(ys)− 2

S∑
s=1

gs∑
j=ys+1

as(j)

provided ys ≤ gs ≤ N − (ns − ys), s = 1, . . . ,S; otherwise, it is infinite.
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An allocation of g ones across strata is inconsistent with the data unless gs ≥ ys ,
s = 1, . . . ,S.

How to allocate the remaining g −
∑

s ys ones to maximize the P-value (equivalently, to
minimize X 2(~g))?

Let bk denote the kth largest element of the bag

Has(j)INs−(ns−ys)
j=ys+1

S
s=1

with ties broken arbitrarily. Define g̃y := g −
∑S

s=1 ys .
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Proposition. For every ~g with
∑

s gs = g ,

X 2(~g) ≥ X 2
∗ (g) :=

 −2
(∑S

s=1 as(ys) +
∑g̃y

k=1 bk
)
,
∑

s ys ≤ g ≤ N −
∑

s(ns − ys)
∞, otherwise.

Proof. Any ~g for which X 2(~g) is finite includes the first sum and a sum of g̃y elements
of {bk}; the latter is at most the sum of the g̃y largest elements of {bk}. �
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Proposition: For j ∈ ys + 1, . . . ,Ns − (ns − ys), as(j) is monotone decreasing in j .
(Equivalently, ps(j) is concave in j .)

Implies the bound is sharp: if as(i) is a term in the second sum for some i > ys + 1, so
is every as(j), ys ≤ j ≤ i − 1: the second sum corresponds to an allocation ~g of g ones
across the S strata, with ys ≤ gs ≤ Ns − (ns − ys).

Among all allocations of g 1s, this one minimizes the tail probability, because it
corresponds to exponentiating the smallest sum of logs (the largest negative sum of
logs). �

Theorem: If
∑

s ys ≤ g ≤ N −
∑

s(ns − ys),

P(g) ≤ χd(X 2
∗ (g)).
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A “greedy” approach finds a conservative P-value:

• Add the S values Has(xk)IS
s=1 to the g − gy largest elements of HbkI.

• Upper tail probability of the chi-square distribution with 2S degrees of freedom for
−2 times the sum is a conservative P-value for the hypothesis G = g .

• A conservative upper 1− α confidence bound for G is the largest g for which
P(g) ≥ α.

Special case of maximizing a weakly concave function over a polymatroid.
Rado-Edmonds Theorem guarantees the greedy algorithm succeeds.
(Componentwise concavity implies weak concavity over J ⊂ ZS .)

Same greedy approach gives lower bound on spending for lottery wins.
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Operation count

• Calculate as(j) and as(j + 1) for all j (2S function evaluations)
• Evaluate as(·) once for each remaining step for the stratum a 1 is added to

(g −
∑

s ys − 1 evaluations), if gs < Ns .
• When a 1 is allocated, have to find a largest element of Has(gs + 1)IS

s=1.
• Sort at the first step in O(S ln S) operations,
• Update sort as elements are replaced in O(S(g −

∑
s ys − 1)) operations
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Comparison to Wendell & Schmee (1996)

P-values
N n observed g Greedy WS

[200, 100] [50, 25] [0, 0] 15 0.06482 0.01194
[200, 100] [50, 50] [0, 20] 60 0.01686 0.03340
[300, 200] [75, 50] [1, 1] 25 0.09105 0.02918
[300, 200] [75, 50] [0, 15] 100 0.00703 0.00563
[300, 300] [50, 50] [0, 20] 200 0.00039 0.00106

[5000, 5000] [100, 50] [2, 1] 500 0.21563 0.10908
[5000, 5000] [100, 50] [10, 0] 1000 0.04454 0.04493

[15000, 5000, 1000] [150, 30, 10] [3, 2, 0] 2000 0.02123 *
[50000, 15000, 5000, 1000] [500, 150, 30, 10] [5, 3, 2, 0] 2750 0.02735 *

∗ calculation hadn’t finished in 5 minutes
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Directions to explore

• other P-value combining functions that yield weak concavity, so greedy algorithm
still works

• base stratumwise tests on E -values from test supermartingales

• product of independent E -values is an E -value for the intersection null
• predictable interleaving of terms from stratum test supermartingales is a test

supermartingale for the intersection
• choose stratum test SMs for each null
• choose interleaving: “gang of bandits” problem

• no adjustment for # strata needed
• works for bounded populations, not only binary populations
• sequential validity: can sample until CI is as short as desired
• generally need guardrails to keep an E -value from approaching 0 in stata w true nulls
• generally, order of data matters
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Blocked/stratified experiments
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Exact inference in binary trials with binary outcomes

Neyman potential outcomes model: potential outcomes fixed before randomization,
revealed by randomization.
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Blocked binary experiment with binary outcomes

N subjects in all; Ns in block s.

ns in block s assigned active treatment, ms := Ns − ns assigned placebo.
Assignment independent across blocks.

N1+: # subjects whose response to treatment would be 1, N1+,s in block s

N+1: # subjects whose response to placebo would be 1, N+1,s in block s

ATE: τ := (N1+ − N+1)/N.

n11,s : # subjects in block s who received active treatment and responded 1

n01,s : # subjects in block s who received placebo treatment and responded 1

n11,s ∼ Hyp(Ns ,N1+,s , ns); n01,s ∼ Hyp(Ns ,N+1,s ,ms)
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CIs for ATE

• Enumerate & test all blocked potential outcome tables consistent w/ results

• Test statistic? Does |τ̂ − τ | make sense? Analogous to WS: doesn’t use stratum
heterogeneity

• Use Li & Ding or Aronow et al. to find CIs for ATE within blocks, then combine
using Šidák (analogous to Wright’s method)

• Use Li & Ding or Aronow et al. to find a P-value within blocks, then combine
across blocks (union of intersections test, again)

• Exploit Aronow et al. O(ns log ns) result in the balanced blocks

• Apply the greedy approach to finding 1− α/2 LCB for N1+ and UCB for N+1,
subtract, divide by N.

• With UI-NNSM approach, can make inferences about ATE for bounded treatments
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