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Intro Probability Rabbits Description Predictions

What are earthquake probabilities?

Where does earthquake probability come from? What does “the chance of an earthquake” mean? Stochastic

models for seismicity have a peculiar ontological status that makes it difficult to interpret earthquake probabilities.

The compelling appeal of probability models for seismicity seems to derive in part from confusion in the literature

about the crucial distinction between empirical rates and probabilities. The underlying physics of earthquakes is

hardly understood, but does not appear to be intrinsically stochastic, merely unpredictable. Earthquake

probabilities reflect assumptions and metaphors rather than knowledge: They amount to saying that earthquakes

occur as if according to a casino game–a thesis for which there is little evidence. Many stochastic models have

been invented to produce features similar to features of real seismicity. Those models contradict each other; none is

a great match to what is believed about the underlying physics; none seems to hold up statistically when there

enough data for a reasonably powerful hypothesis test; and none has been demonstrated to predict better than a

very simplistic “automatic alarm” strategy. I contend that probabilistic models for earthquakes lack adequate

scientific basis to justify using them for high-consequence policy decisions, that such models obfuscate and confuse

more than they illuminate and edify, and that for the purpose of protecting the public they should be abandoned in

favor of common sense.
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Earthquake Probability as Metaphor

Shall I compare thee to a game of cards?

Thou art less predictable and yet not random.

–Wm. ShakesEarth
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Earthquake Poker

Earthquake probabilities are based on a metaphor

• Earthquakes occur “as if” in a casino game whose rules are
embodied in some mathematical model known to the
seismologist.

• Like saying that there is a deck of seismology cards.
• The deck contains some blank cards and some numbered cards.
• In a given region, in every time interval, a card is dealt from

the deck.
• If the card is blank, there is no earthquake.
• If the card has a number on it, an event with that magnitude

occurs.
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What’s the game?

• Different models make different assumptions about how many
cards of each type there are, the shuffling, whether drawn
cards are returned to the deck, etc.

• One extreme: earthquake cards are distributed fairly evenly
(the characteristic earthquake model).

• Another extreme: cards are thoroughly shuffled, and after
each draw the card is replaced and the deck is re-shuffled
(tantamount to the Poisson model).

• In between: deck is shuffled less than thoroughly (e.g., high
cards tend to be followed by low cards—aftershocks), cards
are not replaced (modeling stress accumulation or stress
release), deck not re-shuffled between draws.
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Also “Earthquake Urns”

Stein & Stein, 2013. Shallow Versus Deep Uncertainties in Natural
Hazard Assessments, EOS http://onlinelibrary.wiley.com/

doi/10.1002/2013EO140001/abstract

Gushing commentary by Mohi Kumar:
http://blogs.agu.org/sciencecommunication/2013/04/02/

simple-math-gives-readers-x-ray-vision/

“ a few weeks ago, a gem came across my desk. I barely needed to touch it, and after

reading it I experienced a stillness of the mind. You know those magicians black boxes

we build in our heads, where complicated stuff goes in, hands are waved,

and—poof!—useable information comes out? I knew that one of those floating in my

mind was just rendered transparent. . . . ‘Imagine an urn containing balls . . . in which e

balls are labeled “E” for event and n balls are labeled “N” for no event,’ the authors

write. ‘The probability of an event is that of drawing an E ball, which is the ratio of

the number of E balls to the total number of balls.’ ”

I will explain why this is deep confusion, not shallow uncertainty.

http://onlinelibrary.wiley.com/doi/10.1002/2013EO140001/abstract
http://onlinelibrary.wiley.com/doi/10.1002/2013EO140001/abstract
http://blogs.agu.org/sciencecommunication/2013/04/02/simple-math-gives-readers-x-ray-vision/
http://blogs.agu.org/sciencecommunication/2013/04/02/simple-math-gives-readers-x-ray-vision/
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Gambling and Terror

• Why should the occurrence of earthquakes be like a card
game (or like drawing marbles)?

• It’s only a metaphor.

• Why not like terrorist bombings?

• We might know that a terrorist plans to detonate a bomb, but
not where or when or how big

• Ignorance of place, time, and magnitude of the threat does
not make them random.



Intro Probability Rabbits Description Predictions

Weather prediction; Signal-to-noise

• Common to say earthquake prediction is like weather
prediction. It isn’t.

• Earthquakes account for only a small fraction of the energy
budget of plate tectonics.

• Trying to predict large earthquakes is not like trying to predict
rain.

• More like like trying to predict where the lightning will be in a
storm: Tiny part of the energy budget of weather.

• Lightning more common some places than others, but trying
to predict precisely where and when it will strike is impossible.

• Lightning might be frequent enough in some places that one
could test a stochastic model for lightning statistically, with a
test that had good power.

• Not true for stochastic models of large, local events: Too rare
for meaningful statistical tests
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Earthquake probabilities

Why do we think earthquakes have probabilities?

• Standard argument:
M = 8 events happen about once a century.
Therefore, the chance is about 1% per year.

• But rates are not probabilities.

• Probabilities imply rates in repeated random trials; can
estimate the probability from the rate.

• Rates need not be the result of anything random.

• Having an empirical rate doesn’t make something random.
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Mortality Tables

‘What are my chances, doc?’

The US Social Security Actuarial Life Table says that 6,837 of
1,000,000 men my age are expected to die in the next year. It
reports that as a one-year “death probability” of 0.006837.

Is that the probability that I (or any other particular man my age)
dies in the next year?
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Thought experiment 1

Chance of death

You are in a group of 100 people. Two people in the group will die
in a year. What’s the chance you will die in the next year?
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Thought experiment 2

Chance of name

You are in a group of 100 people. Two people in the group are
named “Philip.” What’s the chance your name is “Philip?”
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What’s the difference?

Ignorance does not create chance

• For some reason, the first scenario invites answering with a
probability but the second does not.

• If the mechanism for deciding which two people would die
were to pick two at random and shoot them, then the chance
would indeed be 2%.

• But the mechanism were to shoot the two tallest people,
there’s no “chance” about it: You are one of the two tallest,
or not.
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Rates are not (necessarily) related to chances

• Every list of numbers has a mean, but not every list of
numbers is random.

• About 1 in 8 people in the US lives in California. Is the
probability you live in California ∼ 12%?

No: nothing random.

But, chance a person selected at random from the US
population lives in California is ∼ 12%.

Chance comes from selection mechanism, not from rate.

• About 60% of births are in Asia.
You are about to have a baby.
Is the chance your baby will be Asian about 60%?
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Confusing measured and simulated rates: Musson (2012)

In seismology, a similar solution could be applied to answering the
question “What is the probability that tomorrow there will be an
earthquake larger than 6 Mw somewhere in the world?” It would
be sufficient to collate the data for the past 1,000 days and observe
on how many days an earthquake above 6 Mw was recorded.

To answer the question “What is the annual probability of 0.2 g
PGA at my site?” is more intractable, as the data are insufficient,
and there may actually be no past observations of the target
condition. The test of a statement about earthquake ground
motion would be to make observations over a long enough number
of years (say, 100,000) and count the number of times an
acceleration over 0.2 g is recorded.
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Musson (2012) contd.

The model is essentially a conceptualization of the seismic process
expressed in numerical form, describing 1) where earthquakes
occur, 2) how often they occur, both in terms of inter-event time
and magnitude-frequency, and 3) what effects they have. With
these three elements, one describes everything that determines the
statistical properties of the seismic effects that will occur at a
given site in the future. This is, therefore, all that one needs to
simulate that future. One does not know precisely what will
happen in the future, one only knows the aggregate properties of
the seismicity and the ground motion propagation. Therefore
simulations need to be stochastic. For each simulation, the
probability density functions for earthquake occurrence in the
model are randomly sampled to produce one possible outcome
compatible with the model.
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Musson (2012) contd.

One 50-year catalog, with ground motions assessed at site for each
event, represents one possible outcome of the seismicity around the
site in the next 50 years that is compatible with 1) what is known
about the properties of the regional seismicity and 2) what is
known about the relationship between ground motion, magnitude,
and distance. Obviously, the content of this single catalog owes
much to chance, and reality may be quite different. But when one
repeats the process a very large number of times, say 200,000
times, the result is 10,000,000 years’ worth of pseudo-observational
data, from which computing the probability of any result is as
simple as counting. In fact, this is as close to a purely frequentist
approach to probabilistic hazard as one can get, as the simulated
observations form a collective in the manner of von Mises (1957).



Intro Probability Rabbits Description Predictions

Musson critique

• explicitly claims that simulation is tantamount to a frequency
theory measurement.

• false: all simulation does is approximate a distribution that is
built into the assumptions.

• does not measure anything, just substitutes floating-point
arithmetic for calculations that might be difficult to perform
in closed form

• amounts to Monte Carlo integration of the assumed density.

• the density itself has not been measured, nor even established
to exist. It’s an input.

• like claiming you can tell whether a coin is fair by guessing its
chance of heads, and having a computer simulate tosses of an
ideal coin with that chance—without tossing the actual coin
or measuring its chance of heads.
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Rabbits

The Rabbit Axioms

1. For the number of rabbits in a closed system to increase, the
system must contain at least two rabbits.

2. No negative rabbits.
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Rabbits contd.

Freedman’s Rabbit-Hat Theorem

You cannot pull a rabbit from a hat unless at least one rabbit has
previously been placed in the hat.

Corollary

You cannot “borrow” a rabbit from an empty hat, even with a
binding promise to return the rabbit later.
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Applications of the Rabbit-Hat Theorem

• Can’t turn a rate into a probability without assuming the
phenomenon is random in the first place.

• Cannot conclude that a process is random without making
assumptions that amount to assuming that the process is
random. (Something has to put the randomness rabbit into
the hat.)

• Testing whether the process appears to be random using the
assumption that it is random cannot prove that it is random.
(You can’t borrow a rabbit from an empty hat.)

• Can’t conclude a process is stationary and random without
assumptions strong enough to imply the process is random
and stationary. Observing the process isn’t enough.
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Rabbits and Earthquake Casinos

What would make the casino metaphor apt?

1. the physics of earthquakes might be stochastic

2. stochastic models might provide a compact, accurate
description of earthquake phenomenology

3. stochastic models might be useful for predicting future
seismicity

• Unless you believe (1), Rabbit Theorem says you can’t
conclude process is random.

• Might still be useful to treat it as random for reason (2) or (3).

• We will look at (2) and (3) for several common models.
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Seismicity models

Common Stochastic Models for Seismicity

• Poisson. Clearly doesn’t fit: too little clustering

• Poisson for “declustered” catalogs.
Will pass test if you remove enough events, but standard
algorithms don’t (Luen & Stark)

• Gamma renewal. Doesn’t fit (Luen, 2012)

• ETAS. Doesn’t fit (Luen, 2012)
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Are reclustered catalogs approximately Poisson?

Examine several declustering methods on SCEC data; test for
temporal and spatiotemporal Poisson behavior.
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Years Mag Meth n MC CC KS Romano Reject?

1932– (events) χ2 Sim P Time Space-time

1971

GKl 437 0.087 0.089 0.069 0.011 0.005 Yes Yes
GKlb 424 0.636 0.656 0.064 0.006 0.000 Yes Yes

3.8 GKm 544 0 0 0 0.021 0.069 Yes No
(1,556) Rl 985 0 0 0 0.003 0 Yes Yes

dT 608 0.351 0.353 0.482 0.054 0.001 No Yes
GKl 296 0.809 0.824 0.304 0.562 0.348 No No

GKlb 286 0.903 0.927 0.364 0.470 0.452 No No
4.0 GKm 369 <0.001 <0.001 0 0.540 0.504 Yes No

(1,047) Rl 659 0 0 0 0 0.001 Yes Yes
dT 417 0.138 0.134 0.248 0.051 0 No Yes

2010

GKl 913 0.815 0.817 0.080 0.011 0.214 Yes No
GKlb 892 0.855 0.855 0.141 0.005 0.256 Yes No

3.8 GKm 1120 0 0 0 0.032 0.006 Yes Yes
(3,368) Rl 2046 0 0 0 0 0 Yes Yes

dT 1615 0.999 1.000 0.463 0.439 0 No Yes
GKl 606 0.419 0.421 0.347 0.138 0.247 No No

GKlb 592 0.758 0.768 0.442 0.137 0.251 No No
4.0 GKm 739 0 0 0 0.252 0.023 Yes Yes

(2,169) Rl 1333 0 0 0 0 0 Yes Yes
dT 1049 0.995 0.999 0.463 0.340 0.001 No Yes

P-values for tests for Poisson behavior of declustered SCEC catalog. χ2: multinomial

chi-square test using χ2 approximation. Sim: multinomial chi-square test conditional

on n. CC: conditional chi-square test. Sim, CC estimated w/ 105 simulated catalogs

(± ∼ 0.16%). KS: Kolmogorov-Smirnov test that event times are iid uniform given n.

Romano: permutation test for conditional exchangeability of times given locations.

Time reject if simulation P for any of 4 temporal tests is < 0.0125. Space-time reject

if P for Romano test < 0.05. From Luen & Stark, 2012.
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Poisson doesn’t fit, even after declustering using standard
approaches.

Do Gamma renewal or ETAS fit?
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B. Luen, 2010. PhD Dissertation, UC Berkeley
4.5. SUMMARY 84
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Figure 4.1: Cumulative distribution functions of inter-events times attached. The
empirical inter-event distribution (SCEC catalog of Southern Californian M � 3
earthquakes, 1984-2004, n = 6958) is significantly di↵erent from both the fitted ETAS
and gamma renewal models (in both cases, the P -value is less than 0.00001 for a test
using the Kolmogorov-Smirnov test statistic). Empirically, there are more inter-event
times under 2 hours than either fitted model would suggest. Beyond 12 hours, the
di↵erence in empirical distributions is small (not pictured).
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Prediction

Recap

• No physical basis for any of the stochastic models
Rabbits all the way down

• Poisson doesn’t fit raw or declustered catalogs

• Gamma renewal and ETAS don’t fit raw catalog

• Poisson obviously useless for prediction

• Does ETAS help for prediction?
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Automatic Alarms and MDAs

• Automatic alarm: after every event with M > µ, start an
alarm of duration τ

No free parameters.

• Magnitude-dependent automatic alarm (MDA): after every
event with M > µ, start an alarm of duration τuM

1 free parameter (u)

For both, adjust fraction of time covered by alarms through τ .

• Optimal ETAS predictor: level set of conditional intensity.

ETAS has 4 free parameters: K , α, c , p.
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ETAS v Auto (Luen, 2010. PhD Dissertation, Berkeley)5.4. AUTOMATIC ALARMS AND ETAS PREDICTABILITY 108
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Figure 5.6: Error diagram for a simple automatic alarm strategy (solid line) and
conditional intensity predictor (dotted line) for a 200,000 (with 10,000 day burn-in)
day simulation of Tokachi seismicity based on parameters estimated by Ogata [1] from
the catalog from 1926-1945. The simulation parameters were m0 = 5, m1 = 9, b =
1, µ = 0.047, K = 0.013, c = 0.065,↵ = 0.83, p = 1.32. On the x-axis, ⌧ gives the
fraction of time covered by alarms; on the y-axis, ⌫ gives the fraction of earthquakes
of magnitude 5 or greater not predicted. The 10th percentile of interarrival times is
40 minutes, the median is 4.3 days, and the 90th percentile is 34 days.
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ETAS v MDA: Simulations (Luen, 2010)5.4. AUTOMATIC ALARMS AND ETAS PREDICTABILITY 110
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Figure 5.7: Error diagrams for predictors of a simulated temporal ETAS sequence.
The parameters used in the simulation were those estimated for Southern Californian
seismicity: m0 = 3, µ = 0.1687, K = 0.04225,↵ = 0.4491, c = 0.1922, p = 1.222.
Models were fitted to a 20-year training set and assessed on a 10-year test set. The
ETAS conditional intensity predictor with the true parameters (green dashed line)
performs very similarly to the ETAS conditional intensity predictor with estimated
parameters (blue dotted line). The magnitude-dependent automatic alarms have pa-
rameter u = 3.70, chosen to minimise area under the error diagram in the training
set. In the test set (solid black line), they perform slightly better than automatic
alarms (red dotted-dashed line) and slightly worse than the ETAS conditional inten-
sity predictors. No single strategy dominated any other single strategy.
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ETAS v MDA: SCEC Data (Luen, 2010)5.5. PREDICTING SOUTHERN CALIFORNIAN SEISMICITY 113
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Figure 5.9: Error diagrams for predictors of Southern Californian seismicity. The
predictors were fitted to the SCEC catalog from January 1st, 1984 to June 17th,
2004, and tested on the SCEC catalog from June 18th, 2004 to December 31st, 2009.
For low values of ⌧̂ , simple automatic alarms do not perform as well as the ETAS
predictors. For high values of ⌧̂ , MDA alarms do not perform as well as the ETAS
predictors. Note that although success rates are determined for the test set only,
predictors used both training and test data to determine times since past events (for
simple automatic and MDA alarms) and conditional intensity (for ETAS predictors).
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ETAS v MDA: SCEC Data (Luen, 2010)5.5. PREDICTING SOUTHERN CALIFORNIAN SEISMICITY 116

Predictor Training area Test area LQ test area
Space-time ETAS 0.234 0.340 0.161
Temporal ETAS 0.235 0.341 0.161
Typical ETAS 0.236 0.345 0.161
MDA, u = 2 0.253 0.348 0.165

MDA, u = 5.8 0.240 0.351 0.163
Simple auto 0.254 0.352 0.168

Table 5.5: Success of several predictors of Southern Californian earthquakes of mag-
nitude M � 3. The predictors are fitted to a training set of data (the SCEC catalog
from January 1st, 1984 to June 17th, 2004) and assessed on a test set of data (the cat-
alog from June 18th, 2004 to December 31st, 2009). The predictors have parameters
estimated on the training set, but may use times and magnitudes of training events
in the test. The measures of success are area under the training set error diagram,
area under the test set error diagram, and area under the left quarter of the test set
error diagram. “Space-time ETAS” is a conditional intensity predictor using Veen
and Schoenberg’s space-time parameter estimates, given in the “VS spatial estimate”
column of Table 4.2. “Temporal ETAS” uses parameters estimated using a tempo-
ral ETAS model, given in the “Temporal estimate” column of Table 4.2. “Typical
ETAS” uses the parameters in Table 4.3. “MDA, u = 2” is a magnitude-dependent
automatic alarm strategy with base 2. “MDA, u = 5.8” is an MDA alarm strategy
alarm strategy with base determined by fitting alarms to a test set. “Simple auto” is
a simple automatic alarm strategy.

pronounced for small values of ⌧̂ . The MDA alarms with fitted parameter u = 5.8
perform comparably to the conditional intensity predictors for small values of ⌧̂ .
For large values of ⌧̂ , they perform slightly worse than both conditional intensity
predictors and simple automatic alarms. For the MDA alarm to capture half of
events, the alarm would have to be on 28% of the time. In comparison, an alarm
based on conditional intensity estimated from a temporal ETAS model would have to
be on 26% of the time to capture half of events. In both cases, the observed predictive
success is far from that required for operational earthquake prediction.

Table 5.5 gives the area under the training and test error diagrams for a number
of predictors. No predictor dominated any other predictor for all values of ⌧̂ . In fact,
each predictor was uniquely best for at least some values of ⌧̂ . The predictor based
on Veen-Schoenberg estimates was best most often (outright best for 47% of ⌧̂ values,
equal best for a further 10% of ⌧̂ values). We would like to perform similar analyses
on other geographic areas, as well as on subregions of Southern California, to see if
we obtain similar results.
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Conclusions

• The probability models do not have a defensible basis in
physics.

• They do not describe seismicity in a way that is
probabilistically adequate, on the assumption that they are
true (they fail goodness of fit tests)

• They do not appear to predict better than far simpler
methods.

• Why are we so attached to these probability models?
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