Eat your Weedies: Wild and Feral Foods can be a Delicious & Nutritious Addition to your Diet

Seabourn Ovation Somewhere in the Arabian Sea

Daphne Miller, M.D., and Philip B. Stark, Ph.D. 25 November 2019

University of California, Berkeley

THE STARK EFFECT

Philip Stark is a fascinating man. A Dean, statistician, forager and barefoot runner, Philip's curiosity and passion for doing things differently has less to him setting up the Berkeley Open Bource Food project. The project looks at things like nutrition, toicloology, and availability of wild eithle greens Bar Prancisco.

The aliens have landed ... and they are delicious!

https://www.thebotanist.com/wild-a-state-of-mind/mini-film-series/philip-stark-usa/

Wild/Feral Food Week 2019 (5th annual)

CHEZ PANISSE

An apéritif

A WILD FOODS DINNER WITH BERKELEY OPEN SOURCE FOOD

Wild king salmon carpaccio with nasturtiums and watercress

3

Foraged spring greens pansotti with morel mushrooms and sage

3

Elliott Ranch lamb cooked in the fireplace; with wild fennel fritters and asparagus

00

Wildflower honey panna cotta with strawberries and candied rose

Tuesday, May 28, 2019

Botanical Cruising and the Modern Hunter-Gatherer

Denmark (Copenhagen)

Australia (Melbourne)

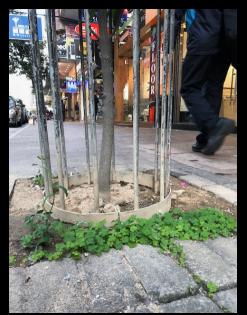
Belgium (Brussels in the dead of winter)

California (Berkeley)

Canada (Vancouver)

China (Hubei)

Estonia (Baltic coast)



France (Loire Valley)

Hong Kong

Japan (Wakayama)

India (Shillong)

Israel (Tel Aviv)

Jordan (Petra)

Latvia (Baltic coast)

Luxembourg

Mexico (Tecate)

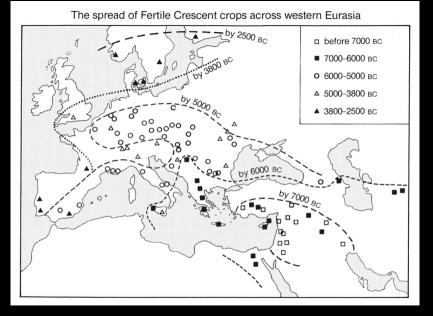
New York (Manhattan)

Portugal (Lisbon)

Scotland (Islay)

Sweden (Skane)

Switzerland (Lausanne)

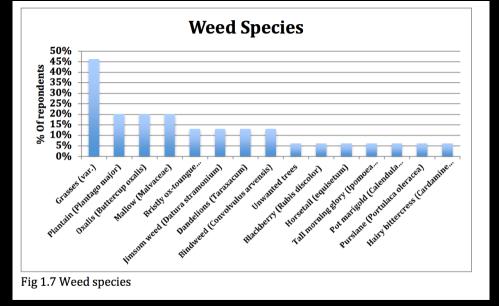


Why are the same wild foods all over the world?

To 55 0 Fertile Crescent China eastern U.S. Sahel? 20. New Guinea? Mesoamerica Ethiopia? West Africa? Andes and (?) Amazonia D

J. Diamond, Guns, Germs, and Steel: The Fates of Human Societies


A	rea	Domes	sticated	Earliest	
		Plants	Animals	Attested Date of Domestication	
Independer	t Origins of I	Domestication			
1. South	west Asia	wheat, pea, olive	sheep, goat	8500 в.с.	
2. China		rice, millet	pig, silkworm	by 7500 в.с.	
3. Meso	america	corn, beans, squash	turkey	by 3500 в.с.	
4. Andes	and	potato, manioc	llama, guinea	by 3500 в.с.	
Amaz	onia		pig		
5. Easter		sunflower,	none	2500 в.с.	
States		goosefoot			
? 6. Sahel		sorghum, Afri- can rice	guinea fowl	by 5000 в.с.	
? 7. Tropic Africa		African yams, oil palm	none	by 3000 в.с.	
? 8. Ethiop	bia	coffee, teff	none	?	
? 9. New (Guinea	sugar cane, banana	none	7000 в.с.?	
Local Dom	estication Foli	lowing Arrival of Fou	under Crops from E	lsewhere	
10. Weste	rn Europe	poppy, oat	none	6000-3500 в.с.	
11. Indus	Valley	sesame, eggplant	humped cattle	7000 в.с.	
12. Egypt		sycamore fig,	donkey, cat	6000 в.с.	
		chufa			


Many modern crops were once weeds:

rye, oats, turnips, radishes, beets, leeks, lettuce.

Altieri et al., 2014. Survey of 21 urban farms in the East Bay.

RESEARCH ARTICLE

Open-source food: Nutrition, toxicology, and availability of wild edible greens in the East Bay

Philip B. Stark^{1*}, Daphne Miller^{2,3}, Thomas J. Carlson⁴, Kristen Rasmussen de Vasquez⁵

1 Department of Statistics, University of California, Berkeley, California, United States of America, 2 School of Unici Review), California, United States of America, 3 Department of Pamily Berkeley, California, United States of America, 3 Department of Integrative Biology, University of California, Berkeley, California, United States of America, 3 Department of Integrative Biology, University of California, Berkeley, California, United States of America, 5 Department of Integrative Biology, University of California, Berkeley, California, United States of America, 5 Department of Integrative Biology, University of California, Berkeley, California, United States of America, 5 Department of Integrative Biology, University of California, Berkeley, California, United States of America, 5 Department of Integrative Biology, University of California, Berkeley, California, United States of America, 5 Department of Integrative Biology, University of California, Berkeley, California, United States of America, 5 Department of Integrative Biology, University of California, Berkeley, California, United States of America, 5 Department of Integrative Biology, University of California, Berkeley, California, United States of America, 5 Department of Integrative Biology, University of California, Berkeley, California, United States of America, 5 Department of Integrative Biology, California, Department of Integrative Biology, Biology, Biology, Biology, Biology, Biology, Biology, Biology, California, Berkeley, California, Department of Integrative Biology, Bi

stark@stat.berkeley.edu

Abstract

OPEN ACCESS

Check for

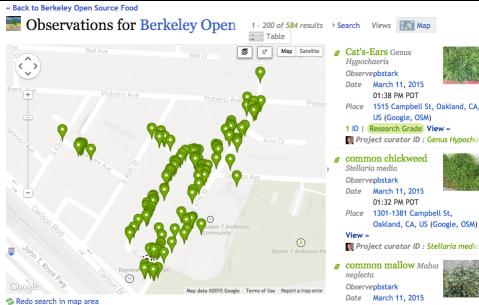
undates

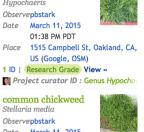
Citation: Stark PB, Miller D, Carlson TJ, de Vasquez KR (2019) Open-source food: Nutrition, toxicology, and availability of wild edible greens in the fast Bay. PLoS ONE 14(1): e0202450. https:// doi.org/10.1371/journal.pone.0202450

Editor: Roger A Coulombe, Utah State University, UNITED STATES

Received: July 31, 2018

Accepted: January 2, 2019


Published: January 17, 2019


Significance

Foraged leafy greens are consumed around the globe, including in urban areas, and may play a larger role when food is scarce or expensive. It is thus important to assess the safety and nutritional value of wild areens foraged in urban environments.

Methods

Field observations, soil tests, and nutritional and toxicology tests on plant tissue were conducted for three sites, each roughly 9 square blocks, in disadvantaged neighborhoods in the East San Francisco Bay Area in 2014–2015. The sites included mixed-use areas and areas with hich vehicle traffic.

Soil v plant tissue

Elemen	nt U	SEPA li	imit	1-10	11 - 18	20 - 22	23 - 2	26	27	28	29
		(mg)	/kg)								
Zn		23	600	187.2	243.3	261.8	212.	2 34	9.1 2	2887.2	453.1
Cu		ľ	N/A	41.4	38.6	40.8	25	.6 3	7.8	66.8	63.8
\mathbf{As}			25	N/A	N/A	3.4	1.	7	2.8	5.1	4.1
Se			20	N/A	N/A	2.4	2.	1	2.7	3.4	3.7
Pb			400	199.8	359.7	196.5	120.	1 15	0.0	354.6	700.9
Ni		1	.600	32.4	30.5	32.7	23	.3 3	2.3	73.7	40.9
Cr			230	43.7	35.5	51.3	39.	1 - 5	4.9	56.7	83.6
Cd			70	1.2	0.7	25.7	21	.3 3	0.9	58.8	41.9
Mo		ľ	N/A	N/A	N/A	0.8	0.	4	1.0	0.9	0.7
	a			1. 0			• •			a 11	
Element	5001	5002a	5002ł	o 5003	5004-1	5004-2	5005	5006	5007	5009-1	5009-2
As	1.709	1.687116	1.664110		1.518404	1.607692	1.65625	1.623277	1.690590	1.590909	1.573482
Cd	0.709	0.858895	< 0.383		0.506134	0.499999	5.382812	< 0.3828	< 0.3987	< 0.3918	< 0.3993
Cr	< 0.787	< 0.7668	< 0.7668		< 0.7668	< 0.7692	< 0.7812	< 0.7656	< 0.7974	< 0.7836	< 0.7987
Cu	13.929	13.55828	7.96779		8.872699	9.038461	17.47656	4.785604	8.508771	5.266457	5.071884
Pb	<3.9370	<3.8343	<3.8343		<3.8343	<3.8461	< 3.9062	<3.8284	<3.9872	<3.9184	<3.9936
Hg Mo	< 0.0393	< 0.0383	< 0.0383		< 0.0383	< 0.0384	<0.0390	<0.0382	< 0.0398	< 0.0391	< 0.0399
Ni	<3.9370 <0.7874	< 3.8343 < 0.7668	<3.8343 <0.7668		$< 3.8343 \\ < 0.7668$	$< 3.8461 \\ < 0.7692$	<3.9062 <0.7812	$< 3.8284 \\ < 0.7656$	< 3.9872 < 0.7974	<3.9184 <0.7836	$< 3.9936 \\ < 0.7987$
Se	< 0.7874 < 2.3622	< 2.3006	<2.300		< 0.7008 < 2.3006	< 0.7092 < 2.3076	< 0.7812 < 2.3437	< 0.7656 < 2.2970	< 0.7974 < 2.3923	< 0.7830 < 2.3510	< 0.7987 < 2.3961
Zn	161.0236	69.64723	71.78680		2.3000 183.0521	183.5384	398.2031	115.1607	70.86921	30.70532	2.3301 30.54313
DWT%	24.3	13.9	12.8		19.6	19.6	12.6	15.1	12.7	19.3	19.3

54

MALLOW

(foraged)

	Nutrition Facts					
	Serving Size 1/2 cup (68g) Servings Per Container					
	Calories	35				
	Total Fat	0 g				
	Sodium	30 mg				
	Potassium	240 mg				
	Total Carbohydrate	5 g				
	Dietary Fiber	5 g				
	Sugar	0 g				
-	Protein	3 g				
	Calcium 20%	Iron 15%				

SPINACH

(conventional)

Nutrition Facts					
Serving Size 1 cup (30g) Servings Per Container					
Calories	7				
Total Fat	0 g				
Sodium	24 mg				
Potassium	167 mg				
Total Carbohydrate	1 g				
Dietary Fiber	1 g				
Sugar	0 g				
Protein	1 g				
Calcium 3%	Iron 4%				

*Comparison of total polyphenols awaiting lab results

(Source: SCSglobalServices.com)

OXALIS

(foraged)

Nutrition Facts					
Serving Size 1/2 cup (84g) Servings Per Container					
Calories	25				
Total Fat	0 g				
Sodium	25 mg				
Potassium	110 mg				
Total Carbohydrate	4 g				
Dietary Fiber	3 g				
Sugar	0 g				
Protein	1 g				
Calcium 4%	Iron 8%				

SPINACH

(conventional)

Nutrition Facts					
Serving Size 1 cup (30g) Servings Per Container					
Calories	7				
Total Fat	0 g				
Sodium	24 mg				
Potassium	167 mg				
Total Carbohydrate	1 g				
Dietary Fiber	1 g				
Sugar	0 g				
Protein	1 g				
Calcium 3%	Iron 4%				

*Comparison of total polyphenols awaiting lab results

(Source: SCSglobalServices.com)

NASTURTIUM

(foraged)

Nutrition Facts					
Serving Size 1/2 cup (72g) Servings Per Container					
Calories	35				
Total Fat	0 g				
Sodium	30 mg				
Potassium	210 mg				
Total Carbohydrate	5 g				
Dietary Fiber	2 g				
Sugar	0 g				
Protein	2 g				
Calcium 10%	Vitamin A 120%				

SPINACH

(conventional)

Nutrition Facts					
Serving Size 1 cup (30g) Servings Per Container					
Calories	7				
Total Fat	0 g				
Sodium	24 mg				
Potassium	167 mg				
Total Carbohydrate	1 g				
Dietary Fiber	1 g				
Sugar	0 g				
Protein	1 g				
Calcium 3%	Vitamin A 56%				

*Comparison of total polyphenols awaiting lab results

(Source: SCSglobalServices.com)

Why are wild/feral foods more nutritious?

Why are wild/feral foods more nutritious? What traits are we breeding for? Why are wild/feral foods more nutritious?

What traits are we breeding for?

Is stress good for nutrition?

DANDELION

(foraged)

Nutrition Facts					
Serving Size 1 cup (70g) Servings Per Container					
Calories 25					
Total Fat	0 g				
Sodium	35 mg				
Potassium	310 mg				
Total Carbohydrate	4 g				
Dietary Fiber	4 g				
Sugar	0 g				
Protein	2 g				
Calcium 6%	Iron 10%				

DANDELION

(conventional)

Nutrition Facts				
Serving Size 1 cup (70g) Servings Per Container				
Calories	32			
Total Fat	0 g			
Sodium	54 mg			
Potassium	279 mg			
Total Carbohydrate	6 g			
Dietary Fiber	2 g			
Sugar	0 g			
Protein	2 g			
Calcium 3%	Iron 4%			

*Comparison of total polyphenols awaiting lab results

(Source: SCSglobalServices.com)

	chickweed	dandelion	dock	mallow	nasturtium	oxalis	kale
	Stellaria	Taraxacum	Rumex	Malva	Tropaeolum	Oxalis	Brassica
	media	officinale	crispus	sylvestris	majus	pes- $caprae$	oleracea
cal (Kcal)	29.09	34.86	33.37	52.14	46.91	27.52	35.0
fat cal (Kcal)	2.40	3.47	2.47	3.58	6.39	2.52	13.41
fat (g)	0.27	0.39	0.27	0.40	0.71	0.28	1.49
saturated fat (g)	0.01	0.01	0.02	0.01	0.04	0.01	0.18
TFA (g)	0	0	0	0	0	0	0
cholesterol (mg)	0	0	0	0	0	0	0
carbohydrates (g)	5.19	5.55	4.79	7.81	6.90	5.27	4.42
dietary fiber (g)	3.64	5.26	3.39	7.20	3.10	2.99	4.10
total sugars (g)	0	0	0	0	0.37	0	0.99
protein (g)	1.43	2.27	2.63	4.10	3.23	0.98	2.92
Vitamin A (IU)	2282	6577	5396	4637	8182	2369	4812
Vitamin C (mg)	10.66	4.49	36.19	8.65	1.49	9.40	93.40
Na (mg)	45.17	52.34	101.04	42.87	39.97	28.85	53.0
Ca (mg)	65.96	95.90	68.47	273.39	148.46	48.69	254.0
Fe (mg)	1.54	2.73	1.31	3.35	1.18	1.87	1.60
K (mg)	439.82	440.08	310.24	357.09	297.97	128.29	348.0
total phenolics	0.77	0.49	2.77	1.29	2.82	1.68	NA
(mg/g)							
oxalic acid-soluble			0.18		10.94		
(mg/g)							
oxalic acid-total			0.39		15.42		
(mg/g)							

Concerned Scientists

POLICY BRIEF

The Rise of Superweeds and What to Do About It

Solutions based on the science of agroecology can avert a looming crisis for farmers and the environment. In what may sound like science fiction but is all too real, "superweeds" are overrunning America's farm landscape, immune to the herbicides that used to keep crop-choking weeds largely in check. This plague has spread across much of the country—some 60 million acres of U.S. cropland are infested—and it is wreaking environmental havoc, driving up farmers' costs and prompting them to resort to more toxic weed-killers.

How did this happen? It turns out that big agribusiness, including the Monsanto Company, has spent much of the last two decades selling farmers products that would ultimately produce herbicide-resistant weeds. And now that thousands of farmers are afflicted with this problem, those same companies are promising new "solutions" that will just make things worse.

Herbicide-resistant weeds are also symptomatic of a bigger problem: an outdated system of farming that relies on planting huge acreages of the same crop year after year. This system, called monoculture, has provided especially good habitat for weeds and pests and accelerated the development of resistance. In

Ideal crops

- outcompete other plants
- no/low input
- long productive season
- edible root to fruit
- promiscuous and fecund
- highly nutritious
- delicious

Ideal crops

- outcompete other plants
- no/low input
- long productive season
- edible root to fruit
- promiscuous and fecund
- highly nutritious
- delicious

Edible weeds!

C.f. H.G. Baker, 1965. Characteristics and modes of origin of weeds.

Seismic Salad: Fresh Food after The Big One

by Philip B. Stark, Berkeley Open Source Food

17 🕥 philipbstark

