Urban Foraging: Nutrition, Safety, and Food Security

Garden to Table Nutrition Dietetic Internship

Philip B. Stark

12 May 2023

University of California, Berkeley

NEAT DIT ON

THE STARK EFFECT

Philip Stark is a fascinating man. A Dean, statistician, forage and barefoot runner, Philip's curiosity and passion for dioign things differently has lest to him setting up the Berkeley Open Source Food project. The project looks at things like nutrition, toxicology, and availability of wild edible greens San Francisco.

...........

Wild/Feral Food Week 2019 (7th annual)

CHEZ PANISSE

An apéritif

A WILD FOODS DINNER
WITH BERKELEY OPEN SOURCE FOOD

Wild king salmon carpaccio with nasturtiums and watercress

a

Foraged spring greens pansotti with morel mushrooms and sage

a

Elliott Ranch lamb cooked in the fireplace; with wild fennel fritters and asparagus

.

Wildflower honey panna cotta with strawberries and candied rose

Tuesday, May 28, 2019

Weed tourism (not that kind of weed)

Denmark (Copenhagen)

Australia (Melbourne)

Belgium (Brussels in the dead of winter)

California (Berkeley)

Canada (Vancouver)

China (Hubei)

Estonia (Baltic coast)

France (Loire Valley)

Hong Kong

Japan (Wakayama)

India (Shillong)

Israel (Tel Aviv)

Jordan (Petra)

Latvia (Baltic coast)

Luxembourg

Mexico (Tecate)

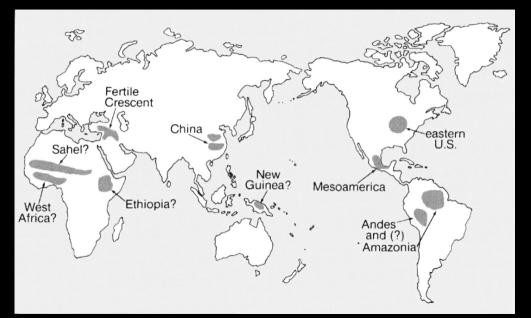
New York (Manhattan)

Portugal (Lisbon)

Scotland (Islay)

Sweden (Skane)

Switzerland (Lausanne)



Qatar (Doha)

Why are the same wild foods all over the world?

J. Diamond, Guns, Germs, and Steel: The Fates of Human Societies

The spread of Fertile Crescent crops across western Eurasia

Area	Domes	Earliest	
	Plants	Animals	Attested
			Date of
			Domestication
Independent Origins of I			
1. Southwest Asia	wheat, pea, olive	sheep, goat	8500 в.с.
2. China	rice, millet	pig, silkworm	by 7500 в.с.
3. Mesoamerica	corn, beans, squash	turkey	by 3500 в.с.
4. Andes and Amazonia	potato, manioc	llama, guinea pig	by 3500 в.с.
5. Eastern United States	sunflower, goosefoot	none	2500 в.с.
? 6. Sahel	sorghum, Afri- can rice	guinea fowl	by 5000 в.с.
? 7. Tropical West Africa	African yams, oil palm	none	by 3000 в.с.
? 8. Ethiopia	coffee, teff	none	?
? 9. New Guinea	sugar cane, banana	none	7000 в.с.?
Local Domestication Fol	lowing Arrival of For	ınder Crops from El	sewhere
10. Western Europe	poppy, oat	none	6000-3500 в.с.
11. Indus Valley	sesame, eggplant	humped cattle	7000 в.с.
12. Egypt	sycamore fig,	donkey, cat	6000 в.с.
	chufa		

Many modern crops were once weeds:

rye, oats, turnips, radishes, beets, leeks, lettuce.

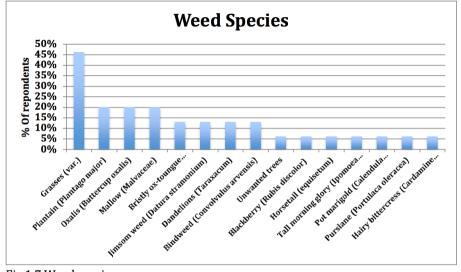


Fig 1.7 Weed species

Open-source food: Nutrition, toxicology, and availability of wild edible greens in the East Bay

Philip B. Stark o¹*, Daphne Miller^{2,3}, Thomas J. Carlson⁴, Kristen Rasmussen de Vasquez⁵

1 Department of Statistics, University of California, Berkeley, California, United States of America, 2 School of Uptible Health, University of California, Berkeley, California, United States of America, 3 Department of Family and Community Medicine, University of California, San Francisco, California, United States of America, 4 Department of Integrative Biology, University of California, Berkeley, California, United States of America, 5 Department of Nutrition and Toxicology, University of California, Berkeley, California, United States of America, 4 Department of Nutrition and Toxicology, University of California, Berkeley, California, United States of America.

* stark@stat.berkeley.edu

OPEN ACCESS

Citation: Stark PB, Miller D, Carlson TJ, de Vasquez KR (2019) Open-source food: Nutrition, toxicology, and availability of wild edible greens in the East Bay. PLoS ONE 14(1): e0202450. https:// doi.org/10.1371/journal.pone.0202450

Editor: Roger A Coulombe, Utah State University, UNITED STATES

Received: July 31, 2018

Accepted: January 2, 2019

Published: January 17, 2019

Abstract

Significance

Foraged leafy greens are consumed around the globe, including in urban areas, and may play a larger role when food is scarce or expensive. It is thus important to assess the safety and nutritional value of wild dreens foraged in urban environments.

Methods

Field observations, soil tests, and nutritional and toxicology tests on plant tissue were conducted for three sites, each roughly 9 square blocks, in disadvantaged neighborhoods in the East San Francisco Bay Area in 2014–2015. The sites included mixed-use areas and areas with high vehicle traffic.

Soil v plant tissue

Ni

Se

Zn

DWT%

< 0.7874

< 2.3622

161.0236

24.3

< 0.7668

< 2.3006

69.64723

13.9

< 0.7668

< 2.3006

71.78680

12.8

< 0.7812

< 2.3437

110.625

12.6

< 0.7668

< 2.3006

183.0521

19.6

< 0.7692

< 2.3076

183.5384

19.6

< 0.7812

< 2.3437

398.2031

12.6

< 0.7656

< 2.2970

115.1607

< 0.7974

< 2.3923

70.86921

12.7

< 0.7836

< 2.3510

30.70532

19.3

< 0.7987

< 2.3961

30.54313

19.3

Element | USEPA limit | 1-10

Eleme	$\mathbf{n}_{\mathbf{t}} \mid 0$	SEPA I		1-10	11-10	20-22	25-2	20	41	20	29
		(mg)	/kg)								
Zn		23	3600	187.2	243.3	261.8	212	.2 34	9.1 2	887.2	453.1
Cu		1	N/A	41.4	38.6	40.8	25	.6 3	7.8	66.8	63.8
As			25	N/A	N/A	3.4	1.	.7	2.8	5.1	4.1
Se			20	N/A	N/A	2.4	2	.1	2.7	3.4	3.7
Pb			400	199.8	359.7	196.5	120	.1 15	0.0	354.6	700.9
Ni		1	600	32.4	30.5	32.7	23	.3 3	2.3	73.7	40.9
Cr			230	43.7	35.5	51.3	39	.1 5	4.9	56.7	83.6
Cd			70	1.2	0.7	25.7	21	.3 3	0.9	58.8	41.9
Mo		1	N/A	N/A	N/A	0.8	0	.4	1.0	0.9	0.7
	~			. ~		la la				~	
Element	5001	5002a	50021	b 5003	5004-1	5004-2	5005	5006	5007	5009-1	5009-2
As	1.709	1.687116	1.664110		1.518404	1.607692	1.65625	1.623277	1.690590	1.590909	1.573482
Cd	0.709	0.858895	< 0.383		0.506134	0.499999	5.382812	< 0.3828	< 0.3987	< 0.3918	< 0.3993
Cr	< 0.787	< 0.7668	< 0.7668		< 0.7668	< 0.7692	< 0.7812	< 0.7656	< 0.7974	< 0.7836	< 0.7987
Cu Pb	13.929 <3.9370	13.55828 <3.8343	7.967793 <3.8343		8.872699 <3.8343	9.038461 <3.8461	17.47656 <3.9062	4.785604 <3.8284	8.508771 < 3.9872	5.266457 < 3.9184	5.071884 <3.9936
Hg	< 0.0393	< 0.0383	< 0.038		< 0.0383	< 0.0384	< 0.0390	< 0.0382	< 0.0398	< 0.0391	< 0.0399
Mo	<3.9370	< 3.8343	<3.8343		< 3.8343	< 3.8461	< 3.9062	< 3.8284	< 3.9872	< 3.9184	< 3.9936
1110	20.0010	C.0040	V3.00-10	J.50002	C0.0040	CO.0401	C0.0002	CO.0204	Q.0012	Z0.0104	CO.0000

11_18

20-22

23-26

27

28

20

Pesticides & other organic contaminants

Fresh/wet plant tissue samples rinsed in tapwater to remove soil and dust, as if to make salad.

- QuEChERS multi-pesticide residue (~330 pesticides & herbicides): nondetect
- glyphosate: nondetect
- PCBs: nondetect

MALLOW

(foraged)

	Nutrition Facts						
	Serving Size 1/2 cup (68g) Servings Per Container						
	Calories	35					
	Total Fat	0 g					
	Sodium	30 mg					
	Potassium	240 mg					
	Total Carbohydrate	5 g					
	Dietary Fiber	5 g					
	Sugar	0 g					
\rightarrow	Protein	3 g					
	Calcium 20%	Iron 15%					

*Comparison of total polyphenois awaiting lab results

(Source: SCSglobalServices.com)

SPINACH

(conventional)

Nutrition Facts						
Serving Size 1 cup (30g) Servings Per Container						
Calories 7						
Total Fat	0 g					
Sodium	24 mg					
Potassium	167 mg					
Total Carbohydrate	1 g					
Dietary Fiber	1 g					
Sugar	0 g					
Protein	1 g					
Calcium 3%	Iron 4%					

OXALIS

(foraged)

Nutrition Facts					
Serving Size 1/2 c Servings Per Cont					
Calories	25				
Total Fat	0 g				
Sodium	25 mg				
Potassium	110 mg				
Total Carbohydrate	4 g				
Dietary Fiber	3 g				
Sugar	0 g				
Protein	1 g				
Calcium 4%	Iron 8%				

*Comparison of total polyphenols awaiting lab results

(Source: SCSglobalServices.com)

SPINACE

(conventional)

Nutrition Facts						
Serving Size 1 cup (30g) Servings Per Container						
Calories 7						
Total Fat	0 g					
Sodium	24 mg					
Potassium	167 mg					
Total Carbohydrate	1 g					
Dietary Fiber	1 g					
Sugar	0 g					
Protein	1 g					
Calcium 3%	Iron 4%					

NASTURTIUM

(foraged)

Nutrition Facts						
Serving Size 1/2 cup (72g) Servings Per Container						
Calories	35					
Total Fat	0 g					
Sodium	30 mg					
Potassium	210 mg					
Total Carbohydrate	5 g					
Dietary Fiber	2 g					
Sugar	0 g					
Protein	2 g					
Calcium 10%	Vitamin A 120%					

*Comparison of total polyphenois awaiting lab results

(Source: SCSglobalServices.com)

SPINACH

(conventional)

Nutritio	on Facts				
Serving Size 1 cup (30g) Servings Per Container					
Calories 7					
Total Fat	0 g				
Sodium	24 mg				
Potassium	167 mg				
Total Carbohydrate	1 g				
Dietary Fiber	1 g				
Sugar	0 g				
Protein	1 g				
Calcium 3%	Vitamin A 56%				

	chickweed Stellaria media	dandelion Taraxacum officinale	dock Rumex crispus	mallow Malva sylvestris	nasturtium Tropaeolum majus	oxalis Oxalis pes-caprae	kale Brassica oleraceae
cal (Kcal)	29.09	34.86	33.37	52.14	46.91	27.52	35.0
fat cal (Kcal)	2.40	3.47	2.47	3.58	6.39	2.52	13.41
fat (g)	0.27	0.39	0.27	0.40	0.71	0.28	1.49
saturated fat (g)	0.01	0.01	0.02	0.01	0.04	0.01	0.18
TFA (g)	0	0	0	0	0	0	0
cholesterol (mg)	0	0	0	0	0	0	0
carbohydrates (g)	5.19	5.55	4.79	7.81	6.90	5.27	4.42
dietary fiber (g)	3.64	5.26	3.39	7.20	3.10	2.99	4.10
total sugars (g)	0	0	0	0	0.37	0	0.99
protein (g)	1.43	2.27	2.63	4.10	3.23	0.98	2.92
Vitamin A (IU)	2282	6577	5396	4637	8182	2369	4812
Vitamin C (mg)	10.66	4.49	36.19	8.65	1.49	9.40	93.40
Na (mg)	45.17	52.34	101.04	42.87	39.97	28.85	53.0
Ca (mg)	65.96	95.90	68.47	273.39	148.46	48.69	254.0
Fe (mg)	1.54	2.73	1.31	3.35	1.18	1.87	1.60
K (mg)	439.82	440.08	310.24	357.09	297.97	128.29	348.0
total phenolics (mg/g)	0.77	0.49	2.77	1.29	2.82	1.68	NA
oxalic acid-soluble (mg/g)			0.18			10.94	
oxalic acid-total (mg/g)			0.39			15.42	

https://doi.org/10.1371/journal.pone.0239794.t001

Why are wild/feral foods more nutritious?

Why are wild/feral foods more nutritious?

What traits are we breeding for?

Why are wild/feral foods more nutritious?

What traits are we breeding for?

Is stress good for nutrition?

DANDELION

(foraged)

	Nutrition Facts					
	Serving Size 1 cup (70g) Servings Per Container					
	Calories	25				
	Total Fat	0 g				
	Sodium	35 mg				
	Potassium	310 mg				
	Total Carbohydrate	4 g				
	Dietary Fiber	4 g				
	Sugar	0 g				
	Protein	2 g				
\rightarrow	Calcium 6%	Iron 10%				

*Comparison of total polyphenois awaiting lab results

(Source: SCSglobalServices.com)

DANDELION

(conventional)

,					
Nutritio	on Facts				
Serving Size 1 cup (70g) Servings Per Container					
Calories 32					
Total Fat	0 g				
Sodium	54 mg				
Potassium	279 mg				
Total Carbohydrate	6 g				
Dietary Fiber	2 g				
Sugar	0 g				
Protein	2 g				
Calcium 3%	Iron 4%				

	chickweed Stellaria media	dandelion Taraxacum officinale	dock Rumex crispus	mallow Malva sylvestris	nasturtium Tropaeolum majus	oxalis Oxalis pes-caprae	kale Brassica oleraceae
cal (Kcal)	29.09	34.86	33.37	52.14	46.91	27.52	35.0
fat cal (Kcal)	2.40	3.47	2.47	3.58	6.39	2.52	13.41
fat (g)	0.27	0.39	0.27	0.40	0.71	0.28	1.49
saturated fat (g)	0.01	0.01	0.02	0.01	0.04	0.01	0.18
TFA (g)	0	0	0	0	0	0	0
cholesterol (mg)	0	0	0	0	0	0	0
carbohydrates (g)	5.19	5.55	4.79	7.81	6.90	5.27	4.42
dietary fiber (g)	3.64	5.26	3.39	7.20	3.10	2.99	4.10
total sugars (g)	0	0	0	0	0.37	0	0.99
protein (g)	1.43	2.27	2.63	4.10	3.23	0.98	2.92
Vitamin A (IU)	2282	6577	5396	4637	8182	2369	4812
Vitamin C (mg)	10.66	4.49	36.19	8.65	1.49	9.40	93.40
Na (mg)	45.17	52.34	101.04	42.87	39.97	28.85	53.0
Ca (mg)	65.96	95.90	68.47	273.39	148.46	48.69	254.0
Fe (mg)	1.54	2.73	1.31	3.35	1.18	1.87	1.60
K (mg)	439.82	440.08	310.24	357.09	297.97	128.29	348.0
total phenolics (mg/g)	0.77	0.49	2.77	1.29	2.82	1.68	NA
oxalic acid-soluble (mg/g)			0.18			10.94	
oxalic acid-total (mg/g)			0.39			15.42	

https://doi.org/10.1371/journal.pone.0239794.t001

Concerned Scientists

POLICY BRIEF

The Rise of Superweeds—and What to Do About It

Solutions based on the science of agroecology can avert a looming crisis for farmers and the environment In what may sound like science fiction but is all too real, "superweeds" are overrunning America's farm landscape, immune to the herbicides that used to keep crop-choking weeds largely in check. This plague has spread across much of the country—some 60 million acres of U.S. cropland are infested—and it is wreaking environmental havoc, driving up farmers' costs and prompting them to resort to more toxic weed-killers.

How did this happen? It turns out that big agribusiness, including the Monsanto Company, has spent much of the last two decades selling farmers products that would ultimately produce herbicide-resistant weeds. And now that thousands of farmers are afflicted with this problem, those same companies are promising new "solutions" that will just make things worse.

Herbicide-resistant weeds are also symptomatic of a bigger problem: an outdated system of farming that relies on planting huge acreages of the same crop year after year. This system, called monoculture, has provided especially good habitat for weeds and pests and accelerated the development of resistance. In

Ideal crops

- outcompete other plants
- no/low input
- long productive season
- edible root to fruit
- promiscuous and fecund
- highly nutritious
- delicious

Ideal crops

- outcompete other plants
- no/low input
- long productive season
- edible root to fruit
- promiscuous and fecund
- highly nutritious
- delicious

Edible weeds!

C.f. H.G. Baker, 1965. Characteristics and modes of origin of weeds.

Seismic Salad: Fresh Food after The Big One

<u>by Philip B. Stark, Berkeley</u> <u>Open Source Food</u>

Follow

From Herbicide-Free Cal to Edible Cal

Join the movement to rewild campuses and fight the climate and biodiversity crises

Re:wild Your Campus is transforming the land care paradigm and cultivating next-generation leaders to create climate-resilient, biodiverse campus landscapes. for all wildkind.