Urban Foraging, Sustainability, Biodiversity, and Food Security

Wild and Fermented Food DeCal

Philip B. Stark

16 November 2020

University of California, Berkeley

THE STARK EFFECT

Philip Stark is a fascinating man. A Dean, statistician, forager and barefoot runner, Philip's curiosity and passion for doing things differently has let to him setting up the Berkeley Open Source Food project. The project tooks at things like nutrition, toxicology, and availability of will dicitize green San Francisco.

READ MORE

Wild/Feral Food Week 2019 (5th annual)

CHEZ PANISSE

An apéritif

A WILD FOODS DINNER
WITH BERKELEY OPEN SOURCE FOOD

Wild king salmon carpaccio with nasturtiums and watercress

a

Foraged spring greens pansotti with morel mushrooms and sage

0

Elliott Ranch lamb cooked in the fireplace; with wild fennel fritters and asparagus

Wildflower honey panna cotta with strawberries and candied rose

Tuesday, May 28, 2019

Weed tourism (not that kind of weed)

Denmark (Copenhagen)

Australia (Melbourne)

Belgium (Brussels in the dead of winter)

California (Berkeley)

Canada (Vancouver)

China (Hubei)

Estonia (Baltic coast)

France (Loire Valley)

Hong Kong

Japan (Wakayama)

India (Shillong)

Israel (Tel Aviv)

Jordan (Petra)

Latvia (Baltic coast)

Luxembourg

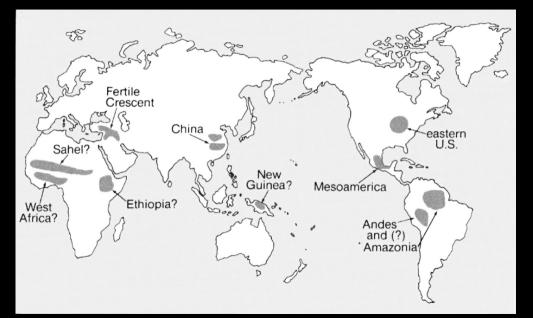
Mexico (Tecate)

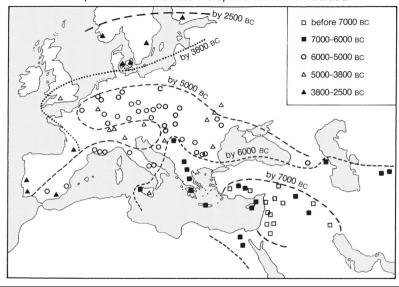
New York (Manhattan)

Portugal (Lisbon)

Scotland (Islay)

Sweden (Skane)


Switzerland (Lausanne)



Why are the same wild foods all over the world?

J. Diamond, Guns, Germs, and Steel: The Fates of Human Societies

The spread of Fertile Crescent crops across western Eurasia

Area	Domes	Earliest				
	Plants	Animals	Attested			
			Date of			
			Domestication			
Independent Origins of I						
1. Southwest Asia	wheat, pea, olive	sheep, goat	8500 в.с.			
2. China	rice, millet	pig, silkworm	by 7500 в.с.			
3. Mesoamerica	corn, beans, squash	turkey	by 3500 в.с.			
4. Andes and	potato, manioc	llama, guinea	by 3500 в.с.			
Amazonia		pig				
5. Eastern United	sunflower,	none	2500 в.с.			
States	goosefoot					
? 6. Sahel	sorghum, Afri-	guinea fowl	by 5000 в.с.			
	can rice					
? 7. Tropical West	African yams, oil	none	by 3000 в.с.			
Africa	palm					
? 8. Ethiopia	coffee, teff	none	?			
? 9. New Guinea	sugar cane,	none	7000 в.с.?			
	banana					
Local Domestication Following Arrival of Founder Crops from Elsewhere						
Western Europe	poppy, oat	none	6000-3500 в.с.			
Indus Valley	sesame, eggplant	humped cattle	7000 в.с.			
12. Egypt	sycamore fig,	donkey, cat	6000 в.с.			
	chufa					

Many modern crops were once weeds:

rye, oats, turnips, radishes, beets, leeks, lettuce.

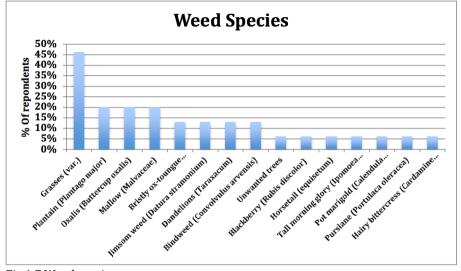


Fig 1.7 Weed species

DESEADON ADTICLE

Open-source food: Nutrition, toxicology, and availability of wild edible greens in the East Bay

Philip B. Stark o¹*, Daphne Miller^{2,3}, Thomas J. Carlson⁴, Kristen Rasmussen de Vasquez⁵

1 Department of Statistics, University of California, Berkeley, California, United States of America, 2 School of Upblic Health, University of California, Berkeley, California, United States of America, 3 Department of Family and Community Medicine, University of California, San Francisco, California, United States of America, 4 Department of Integrative Biology, university of California, Berkeley, California, United States of America, 5 Department of Integrative Biology, University of California, Berkeley, California, United States of America, 5 Department of Nutrition and Toxicology, University of California, Berkeley, California, United States of America.

* stark@stat.berkeley.edu

OPEN ACCESS

Citation: Stark PB, Miller D, Carlson TJ, de Vasquez KR (2019) Open-source food: Nutrition, toxicology, and availability of wild edible greens in the East Bay. PLoS ONE 14(1): e0202450. https:// doi.org/10.1371/journal.pone.0202450

Editor: Roger A Coulombe, Utah State University, UNITED STATES

Received: July 31, 2018

Accepted: January 2, 2019

Published: January 17, 2019

Abstract

Significance

Foraged leafy greens are consumed around the globe, including in urban areas, and may play a larger role when food is scarce or expensive. It is thus important to assess the safety and nutritional value of wild revens for

Methods

Field observations, soil tests, and nutritional and toxicology tests on plant tissue were conducted for three sites, each roughly 9 square blocks, in disadvantaged neighborhoods in the East San Francisco Bay Area in 2014–2015. The sites included mixed-use areas and areas with high vehicle traffic.

Map data ©2015 Google Terms of Use Report a map error

Observepbstark

March 11, 2015

Soil v plant tissue

69.64723

13.9

71.78680

12.8

161.0236

24.3

110.625

12.6

183.0521

19.6

Zn

DWT%

Elemer	nt U	SEPA l	$\operatorname{imit} \mid$	1 - 10	11-18	20-22	23-2	26	27	28	29
		(mg)	/kg)								
Zn		23	3600	187.2	243.3	261.8	212.	.2 349	9.1 2	887.2	453.1
Cu		1	N/A	41.4	38.6	40.8	25.	.6 3'	7.8	66.8	63.8
As			25	N/A	N/A	3.4	1.	.7 2	2.8	5.1	4.1
Se			20	N/A	N/A	2.4	2.	.1	2.7	3.4	3.7
Pb			400	199.8	359.7	196.5	120.	.1 150	0.0	354.6	700.9
Ni		1	1600	32.4	30.5	32.7	23.	.3 32	2.3	73.7	40.9
Cr			230	43.7	35.5	51.3	39.	1 - 54	4.9	56.7	83.6
Cd			70	1.2	0.7	25.7	21.	.3 30	0.9	58.8	41.9
Mo		1	N/A	N/A	N/A	0.8	0.	4	1.0	0.9	0.7
	~					1-1-2				~	
Element	5001	5002a	5002	b 5003	5004-1	5004-2	5005	5006	5007	5009-1	5009-2
As	1.709	1.687116	1.66411		1.518404	1.607692	1.65625	1.623277	1.690590	1.590909	1.573482
Cd	0.709	0.858895	< 0.383		0.506134	0.499999	5.382812	< 0.3828	< 0.3987	< 0.3918	< 0.3993
Cr	< 0.787	< 0.7668	< 0.766	8 < 0.7812	< 0.7668	< 0.7692	< 0.7812	< 0.7656	< 0.7974	< 0.7836	< 0.7987

		(0/	0/								
Zn		23	3600	187.2	243.3	261.8	212	.2 34	9.1 2	887.2	453.1
Cu		ľ	N/A	41.4	38.6	40.8	25	.6 3	7.8	66.8	63.8
As			25	N/A	N/A	3.4	. 1.	.7	2.8	5.1	4.1
Se			20	N/A	N/A	2.4	2.	.1	2.7	3.4	3.7
Pb			400	199.8	359.7	196.5	120	.1 15	0.0	354.6	700.9
Ni		1	1600	32.4	30.5	32.7	23	.3 3	2.3	73.7	40.9
Cr			230	43.7	35.5	51.3	39.	.1 5	4.9	56.7	83.6
Cd			70	1.2	0.7	25.7	21.	.3 3	0.9	58.8	41.9
Mo		1	N/A	N/A	N/A	0.8	0.	.4	1.0	0.9	0.7
	~					1010				~	
Element	5001	5002a	50021	b 5003	5004-1	5004-2	5005	5006	5007	5009-1	5009-2
As	1.709	1.687116	1.664110	0 1.679687	1.518404	1.607692	1.65625	1.623277	1.690590	1.590909	1.573482
Cd	0.709	0.858895	< 0.383	4 < 0.3906	0.506134	0.499999	5.382812	< 0.3828	< 0.3987	< 0.3918	< 0.3993
Cr	< 0.787	< 0.7668	< 0.7668		< 0.7668	< 0.7692	< 0.7812	< 0.7656	< 0.7974	< 0.7836	< 0.7987
Cu	13.929	13.55828	7.96779		8.872699	9.038461	17.47656	4.785604	8.508771	5.266457	5.071884
Pb	< 3.9370	< 3.8343	< 3.8343		< 3.8343	< 3.8461	< 3.9062	< 3.8284	< 3.9872	< 3.9184	< 3.9936
Hg	< 0.0393	< 0.0383	< 0.0383		< 0.0383	< 0.0384	< 0.0390	< 0.0382	< 0.0398	< 0.0391	<0.0399
Mo Ni	<3.9370 <0.7874	<3.8343 <0.7668	<3.8343 <0.7668		<3.8343 <0.7668	<3.8461 <0.7692	<3.9062 <0.7812	<3.8284 <0.7656	<3.9872 <0.7974	<3.9184 <0.7836	<3.9936 <0.7987
Se	< 2.3622	< 2.3006	< 2.3000		< 2.3006	< 0.7692	< 0.7812	< 2.2970	< 0.7974	< 0.7836	< 0.7987
50	2.0022	~2.5000	₹2.0000	2.0401	2.0000	2.0010	2.0401	2.2010	2.0020	~2.0010	2.0301

398.2031

12.6

183.5384

19.6

115.1607

70.86921

12.7

30.70532

19.3

30.54313

19.3

MALLOW

(foraged)

Nutrition Facts										
Serving Size 1/2 cup (68g) Servings Per Container										
Calories	35									
Total Fat	0 g									
Sodium	30 mg									
Potassium	240 mg									
Total Carbohydrate	5 g									
Dietary Fiber	5 g									
Sugar	0 g									
Protein	3 g									
Calcium 20%	Iron 15%									

*Comparison of total polyphenois awaiting lab results

(Source: SCSglobalServices.com)

SPINACH

(conventional)

Nutrition Facts							
Serving Size 1 cup (30g) Servings Per Container							
Calories	7						
Total Fat	0 g						
Sodium	24 mg						
Potassium	167 mg						
Total Carbohydrate	1 g						
Dietary Fiber	1 g						
Sugar	0 g						
Protein	1 g						
Calcium 3%	Iron 4%						

OXALIS

(foraged)

Nutrition Facts										
Serving Size 1/2 cup (84g) Servings Per Container										
Calories	25									
Total Fat	0 g									
Sodium	25 mg									
Potassium	110 mg									
Total Carbohydrate	4 g									
Dietary Fiber	3 g									
Sugar	0 g									
Protein	1 g									
Calcium 4%	Iron 8%									

*Comparison of total polyphenols awaiting lab results

(Source: SCSglobalServices.com)

SPINACH

(conventional)

Nutrition Facts						
Serving Size 1 cup (30g) Servings Per Container						
Calories 7						
Total Fat	0 g					
Sodium	24 mg					
Potassium	167 mg					
Total Carbohydrate	1 g					
Dietary Fiber	1 g					
Sugar	0 g					
Protein	1 g					
Calcium 3%	Iron 4%					

NASTURTIUM

(foraged)

Nutrition Facts									
Serving Size 1/2 cup (72g) Servings Per Container									
Calories	35								
Total Fat	0 g								
Sodium	30 mg								
Potassium	210 mg								
Total Carbohydrate	5 g								
Dietary Fiber	2 g								
Sugar	0 g								
Protein	2 g								
Calcium 10%	Vitamin A 120%								

*Comparison of total polyphenols awaiting lab results

(Source: SCSglobalServices.com)

SPINACH

(conventional)

Nutrition Facts							
Serving Size 1 cup (30g) Servings Per Container							
Calories	7						
Total Fat	0 g						
Sodium	24 mg						
Potassium	167 mg						
Total Carbohydrate	1 g						
Dietary Fiber	1 g						
Sugar	0 g						
Protein	1 g						
Calcium 3%	Vitamin A 56%						

Why are wild/feral foods more nutritious?

Why are wild/feral foods more nutritious?

What traits are we breeding for?

Why are wild/feral foods more nutritious?

What traits are we breeding for?

Is stress good for nutrition?

DANDELION

(foraged)

*Comparison of total polyphenols awaiting lab results

(Source: SCSglobalServices.com)

DANDELION

(conventional)

,						
Nutrition Facts						
Serving Size 1 cup (70g) Servings Per Container						
Calories 32						
Total Fat	0 g					
Sodium	54 mg					
Potassium	279 mg					
Total Carbohydrate	6 g					
Dietary Fiber	2 g					
Sugar	0 g					
Protein	2 g					
Calcium 3%	Iron 4%					

	chickweed Stellaria media	dandelion Taraxacum officinale	dock Rumex crispus	mallow Malva sylvestris	nasturtium Tropaeolum majus	oxalis Oxalis pes-caprae	kale Brassica oleraceae
cal (Kcal)	29.09	34.86	33.37	52.14	46.91	27.52	35.0
fat cal (Kcal)	2.40	3.47	2.47	3.58	6.39	2.52	13.41
fat (g)	0.27	0.39	0.27	0.40	0.71	0.28	1.49
saturated fat (g)	0.01	0.01	0.02	0.01	0.04	0.01	0.18
TFA (g)	0	0	0	0	0	0	0
cholesterol (mg)	0	0	0	0	0	0	0
carbohydrates (g)	5.19	5.55	4.79	7.81	6.90	5.27	4.42
dietary fiber (g)	3.64	5.26	3.39	7.20	3.10	2.99	4.10
total sugars (g)	0	0	0	0	0.37	0	0.99
protein (g)	1.43	2.27	2.63	4.10	3.23	0.98	2.92
Vitamin A (IU)	2282	6577	5396	4637	8182	2369	4812
Vitamin C (mg)	10.66	4.49	36.19	8.65	1.49	9.40	93.40
Na (mg)	45.17	52.34	101.04	42.87	39.97	28.85	53.0
Ca (mg)	65.96	95.90	68.47	273.39	148.46	48.69	254.0
Fe (mg)	1.54	2.73	1.31	3.35	1.18	1.87	1.60
K (mg)	439.82	440.08	310.24	357.09	297.97	128.29	348.0
total phenolics (mg/g)	0.77	0.49	2.77	1.29	2.82	1.68	NA
oxalic acid-soluble (mg/g)			0.18			10.94	
oxalic acid-total (mg/g)			0.39			15.42	

https://doi.org/10.1371/journal.pone.0239794.t001

Concerned Scientists

POLICY BRIEF

The Rise of Superweeds—and What to Do About It

Solutions based on the science of agroecology can avert a looming crisis for farmers and the environment In what may sound like science fiction but is all too real, "superweeds" are overrunning America's farm landscape, immune to the herbicides that used to keep crop-choking weeds largely in check. This plague has spread across much of the country—some 60 million acres of U.S. cropland are infested—and it is wreaking environmental havoc, driving up farmers' costs and prompting them to resort to more toxic weed-killers.

How did this happen? It turns out that big agribusiness, including the Monsanto Company, has spent much of the last two decades selling farmers products that would ultimately produce herbicide-resistant weeds. And now that thousands of farmers are afflicted with this problem, those same companies are promising new "solutions" that will just make things worse.

Herbicide-resistant weeds are also symptomatic of a bigger problem: an outdated system of farming that relies on planting huge acreages of the same crop year after year. This system, called monoculture, has provided especially good habitat for weeds and pests and accelerated the development of resistance. In

Ideal crops

- outcompete other plants
- no/low input
- long productive season
- edible root to fruit
- promiscuous and fecund
- highly nutritious
- delicious

Ideal crops

- outcompete other plants
- no/low input
- long productive season
- edible root to fruit
- promiscuous and fecund
- highly nutritious
- delicious

Edible weeds!

C.f. H.G. Baker, 1965. Characteristics and modes of origin of weeds.

Seismic Salad: Fresh Food after The Big One

<u>by Philip B. Stark, Berkeley</u> <u>Open Source Food</u>

Follow

the stark philipbstark

