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Emulators, Surrogate functions, Metamodels

Try to approximate a function f from few samples when evaluating
f expensive: computational cost or experiment.

Emulators are essentially interpolators/smoothers

• Kriging

• Gaussian process models (GP)

• Polynomial Chaos Expansions

• Multivariate Adaptive Regression Splines (MARS)

• Projection Pursuit Regression

• Neural networks
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Noiseless non-parametric function estimation

Estimate f on domain dom(f ) from {f (x1), . . . , f (xn)}

• f infinite-dimensional.

• dom(f ) typically high-dimensional.

• Observe only f |X , where X = {x1, . . . , xn}. No noise.

• Estimating f is grossly underdetermined problem (worse with
noise).

• Usual context: question that requires knowing f (x) for x /∈ X
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Common context

Part of larger problem in uncertainty quantification (UQ)

• Real-world phenomenon

• Physics description of phenomenon

• Theoretical simplification/approximation of the physics

• Numerical solution of the approximation f

• Emulation of the numerical solution of the approximation f̂

• Calibration to noisy data

• “Inference”
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HEB: H igh dimensional domain, Expensive, B lack-box

• Climate models (Covey et al. 2011: 21–28-dimensional
domain 1154 simulations, Kriging and MARS)

• Car crashes (Aspenberg et al. 2012: 15-dimensional domain;
55 simulations; polynomial response surfaces, NN)

• Chemical reactions (Holena et al. 2011: 20–30-dimensional
domain, boosted surrogate models; Shorter et al., 1999:
46-dimensional domain)

• Aircraft design (Srivastava et al. 2004: 25-dimensional
domain, 500 simulations, response surfaces and Kriging; Koch
et al. 1999: 22-dimensional domain, minutes per run, response
surfaces and Kriging; Booker et al. 1999: 31-dimensional
domain, minutes to days per run, Kriging)

• Electric circuits (Bates et al. 1996: 60-dimensional domain;
216 simulations; Kriging)
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Emulator Accuracy Matters

• High-consequence decisions are made on the basis of
emulators.

• How accurate are they in practice?

• How can the accuracy be estimated reliably, measured, or
bounded?

• How many training data are needed to ensure that an
emulator (the best possible) is accurate?
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Common strategies to estimate accuracy

Bayesian Emulators (GP, Kriging, . . . )

• Use the posterior distribution (Tebaldi & Smith 2005)

• Posterior depends on prior and likelihood, but inputs are
generally fixed parameters, not random.

Others

• Using holdout data (Fang et al. 2006)

• Relevant only if the error at the held-out data is
representative of the error everywhere.
Data not usually IID; values of f not IID.

Required conditions generally unverifiable or known to be false.
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So, what to do?

• Standard methods can be misleading when the assumptions
don’t hold—and usually no reason for the assumptions to hold.

• Is there a more rigorous way to evaluate the accuracy?

• Is there a way that relies only on the observed data?
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Constraints are mandatory

• Uncertainty estimates are driven by assumptions about f .

• Without constraints on f , no reliable way to extrapolate to
values of f at unobserved inputs: completely uncertain.

• Stronger assumptions → smaller uncertainties.

• What’s the most optimistic assumption the data justify?
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(Best) Lipschitz constant

Given a metric d on dom(g), best Lipschitz constant K for g is

K (g) ≡ sup

{
g(v)− g(w)

d(v ,w)
: v ,w ∈ dom(g) and v 6= w

}
. (1)

If f /∈ C(dom(f )), then K (f ) ≡ ∞.
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What’s the problem?

• If we knew f , we could emulate it perfectly—by f .

• Require emulator f̂ to be computable from the data, without
relying on any other information about f .

• If we knew K (f ), could guarantee some level of accuracy for
f̂ .

• All else equal, the larger K (f ) is, the harder to guarantee that
f̂ is accurate.
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How bad must the uncertainty be?

• Data f |X impose a lower bound on K (f ) (but no upper
bound): Data require some lack of regularity.

• Is there any f̂ guaranteed to be close to f —no matter what f
is—provided f agrees with f |X and is not less regular than the
data require?
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Minimax formulation: Information-Based Complexity (IBC)

• potential error at w : minimax error of emulators f̂ over the
set F of functions g that agree with data & have K (g)
constant no greater than the lower bound, at w ∈ dom(f ).

• maximum potential error : sup of potential error over
w ∈ dom(f ).

• For known K , finding potential error is standard IBC problem.

• But K (f ) is unknown: Bound potential error using a lower
bound for K (f ) computed from data.
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Sketch of results

• Lower bound on additional observations possibly necessary to
estimate f w/i ε.

• Application to Community Atmosphere Model (CAM):
required n could be ginormous.

• Lower bounds on the max potential error for approximating f
from a fixed set of observations: empirical, and as a fraction
of the unknown K .

• Conditions under which a constant emulator has smaller
maximum potential error than best emulator trained on the
actual observations. Conditions hold for the CAM simulations.

• Sampling to estimate quantiles and mean of the potential
error over dom(f ). For CAM, moderate quantiles are a large
fraction of maximum.
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Notation

f : fixed unknown real-valued function on [0, 1]p

C[0, 1]p: real-valued continuous functions on [0, 1]p

dom(g): domain of the function g

g |D : restriction of g to D ⊂ dom(g)

f |X : f at the n points in X , the data

f̂ : emulator based on f |X , but no other information about f

‖h‖∞ ≡ supw∈dom(h) |h(w)|
d : a metric on dom(g)

K (g): best Lipschitz constant for f (using metric d)
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More notation

• κ-smooth interpolant of g :

Fκ(g) ≡ {h ∈ C[0, 1]p : K (h) ≤ κ and h|dom(g) = g}.

F∞(f |X ) is the space of functions in C[0, 1]p that fit the data.

• potential error of f̂ ∈ C[0, 1]p over the set of functions F :

E(w ; f̂ ,F) ≡ sup
{
|f̂ (w)− g(w)| : g ∈ F

}
.

• maximum potential error of f̂ ∈ C[0, 1]p over the set of
functions F :

E(f̂ ,F) ≡ sup
w∈[0,1]p

E(w ; f̂ ,F) =
{
‖f̂ − g‖∞ : g ∈ F

}
.
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Maximum potential error

• Example of worst-case error in IBC.

• “Real” uncertainty of f̂ is E(f̂ ,F∞(f |X )).

• Presumes f ∈ C[0, 1]p.

• Maximum potential error is infinite unless f has more
regularity than mere continuity.

• If f /∈ C[0, 1]p, f̂ could differ from f by more.

• We lower-bound uncertainty of the best possible emulator of
f , under optimistic assumption that
K = K (f ) = K̂ ≡ K (f |X ) ≤ K (f )
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f

Dotted line is tangent to f where f attains its Lipschitz constant:
slope K = K (f ). Dashed line is the steepest line that intersects
any pair of observations: slope K̂ = K (f |X ) ≤ K .
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More notation

• Fκ ≡ Fκ(f |X )

• Eκ(f̂ ) ≡ E(f̂ ,Fκ)

• radius of F ⊂ C[0, 1]p is

r(F) ≡ 1

2
sup {‖g − h‖∞ : g , h ∈ F} .
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First result

Eκ(f̂ ) ≥ r(Fκ). (2)

Equality holds for the emulator that “splits the difference”:

f ?κ (w) ≡ 1

2

[
inf

g∈Fκ
g(w) + sup

g∈Fκ
g(w)

]

For all emulators f̂ that agree with f on X ,

Eκ(f̂ ) ≥ Eκ(f̂ ∗κ ) ≡ E∗κ.
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e−κ
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f

e−κ
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f

Left panel: κ = K . Right panel: κ < K .
If κ ≥ K then e−κ ≤ f ≤ e+

κ , so f ∈ Fκ.
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Constructing e−, e+, and e?

Define

• e+
κ (w) ≡ minx∈X [f (x) + κd(x ,w)]

• e−κ (w) ≡ maxx∈X [f (x)− κd(x ,w)]

• e?κ(w) ≡ 1
2

[
e+
f ,X ,κ(w)− e−f ,X ,κ(w)

]
e?κ(w) is minimax error at w :
smallest (across emulators f̂ ) maximum (across functions g) error
at the point w
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Black error bars are twice the maximum potential error over Fκ.
As the slope between observations approaches κ, e?(w)
approaches 0 for points w between observations, and the
maximum potential error over Fκ decreases.
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Lower bounds on n

• Fix “tolerable error” ε > 0

• If
∥∥∥f̂ |A − g |A

∥∥∥
∞
≤ ε, then f̂ ε-approximates g on A.

If A = dom(g), then f̂ ε-approximates g .

• If F is a non-empty class of functions with common domain
D, then f̂ ε-approximates F on A ⊂ D if ∀g ∈ F , f̂
ε-approximates g on A.
If A = D, then f̂ ε-approximates F .
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ε-approximates and tolerable error

f̂ ε-approximates F if and only if the maximum potential error of f̂
on F does not exceed ε.

Since K̂ is the observed variation of f on X , a useful value of ε
would typically be much smaller than K̂ . (Otherwise, we might
just as well take f̂ to be a constant.)
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Minimum potential computational burden

• For fixed ε > 0, and Y ⊂ dom(f ), Y is ε-adequate for f on A
if f ?K ε-approximates FK (f |Y ) on A. If A = dom(f ), then Y is
ε-adequate for f .

• B(x , δ): open ball in Rp centered at x with radius δ.

• Nf ≡ min{#Y : Y is ε-adequate for f }
• The minimum potential computational burden is

M ≡ max{Ng : g ∈ FK}.

• Over all experimental designs Y , M is the smallest number of
data for which the maximum error of the best emulator based
on those data is guaranteed not to exceed ε.
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Upper bound on Nf

• For each x ∈ X , f ?K ε-approximates FK (f |K ) on (at least)
B(x , ε/K ).

• Thus, f ?K ε-approximates FK on
⋃

x∈X B(x , ε/K ).

• Hence, the cardinality of any Y ⊂ [0, 1]p for which

V ≡
{
B
(
x ,

ε

K

)
: x ∈ Y

}
⊃ [0, 1]p

is an upper bound on Nf .

• In `∞, [0, 1]p can be covered by
⌈
K
2ε

⌉p
balls of radius ε/K .
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Lower bound on Nf : Heuristics

• Can happen that f ?
K̂
ε-approximates FK on regions of the

domain not contained in ∪x∈XB(x , ε/K ).

• If f varies on X , then if g agrees with f at the data, g must
vary too.

• Fitting the data“spends” some of g ’s Lipschitz constant:
can’t get as far away from f as it could if fX were constant.

• Can quantify to find lower bounds for M.
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Lower bound on Nf : Construction

Define

• γ̄ ≡ arg minγ∈R
∑

x∈X |f (x)− γ|p.

• X+ ≡ {x ∈ X : f (x) ≥ γ̄}
• X− ≡ {x ∈ X : f (x) < γ̄}.

• Q+ ≡
⋃

x∈X+

{
B
(
x , f (x)−γ̄

K̂

)⋂
[0, 1]p

}
• Q− ≡

⋃
x∈X−

{
B
(
x , γ̄−f (x)

K̂

)⋂
[0, 1]p

}
• Q̄ ≡ [0, 1]p \ (Q+ ∪ Q−).

• f̄ (w) ≡ {e−
K̂

(w),w ∈ Q+; e+

K̂
(w),w ∈ Q−; γ̄,w ∈ Q̄}.
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f̄

γ̄ e−κ

e+κ

γ̄

f̄ (left panel) is comprised of segments of e+

K̂
, e−

K̂
and the constant

γ̄ (right panel). f̄ constant over roughly half of the domain. No
function between e−

K̂
and e+

K̂
(inclusive) is constant over a larger

fraction of the domain.
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Potential computational burden: bounds for Lebesgue measure

• µ: Lebesgue measure.

µ(Q̄) ≥ 1−
∑
x∈X

µ
(
B
(
x , |f (x)− γ̄|/K̂

))
.

• C2 ≡ πp/2

Γ(p/2+1) and C∞ ≡ 2p.

• For q ∈ {2,∞},

µ(Q̄) ≥ 1− Cq

∑
x∈X

(
|f (x)− γ̄|/K̂

)p
.

• M ≥
⌈

µ(Q̄)

µ(B(0,ε/K̂))

⌉
≥
⌈
ε−p

[
K̂p

Cq
−
∑

x∈X |f (x)− γ̄|p
]⌉
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Uncertainty Quantification Strategic Initiative–LLNL

• Uncertainty Quantification Strategic Initiative at LLNL:
1154 climate simulations using the Community Atmosphere
Model (CAM).

• p = 21 parameters scaled so that [0, 1] has all plausible values.

• f is global average upwelling longwave flux (FLUT)
approximately 50 years in the future.

• Each run took several days on a supercomputer.

• Several approaches to choose X ⊂ [0, 1]p: Latin hypercube,
one-at-a-time, and random-walk multiple-one-at-a-time.

• 1154 simulations total.
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CAM calculations

• γ̄ = 232.77

• For q = 2, K̂ = 14.20:

M ≥
⌈
ε−21

[
1.57×1024

0.0038 − 6.81× 1024
]⌉
> ε−21 × 1026

If ε is 1% of K̂ , then M ≥ 1043.
Even if ε is 50% of K̂ , M > 108.

• For q =∞, K̂ = 34.68:

M ≥
⌈
ε−21

[
2.19×1032

221 − 6.81× 1025
]⌉
> ε−21 × 1025
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Universal bound from the data

Theorem

EK (f̂ ) ≥ sup e?
K̂
.

sup e?
K̂

, a statistic calculable from data f |X , is a lower bound on

the maximum potential error for any emulator f̂ based on the
observations f |X .
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More isn’t necessarily better

Theorem

If sup e?
K̂
≥ K̂/2, then

EK (f̂ ) = EK (f̂ ,FK (f |X )) ≥ K

2
≥ EK (ĝ ,FK (f |{z})).

If sup e?
K̂
≥ K̂/2, no f̂ based on f |X has smaller maximum

potential error than the constant emulator based on one
observation at the centroid z of [0, 1]p
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Implications for CAM

• sup e?
K̂

= 20.95 ≥ 17.34 = K̂/2

• Hence, EK (f̂ ) ≥ K/2 for every emulator f̂ .

• Maximum potential error would have been no greater had we
just observed f at z and emulated by f̂ (w) = f (z) for all
w ∈ [0, 1]p.
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Extensions

• Covered maximum uncertainty over all w ∈ [0, 1]p: crucial for
some applications.

• In others, maybe interesting to know fraction of [0, 1]p where
uncertainty is large.

• Can estimate the fraction of [0, 1]p for which e∗ ≥ ε > 0 by
sampling.

• Draw points w ∈ [0, 1]p at random; evaluate e∗ at each w .

• Yields binomial lower confidence bounds for the fraction of
[0, 1]p where uncertainty is large, and confidence bounds for
quantiles of the potential error.

• Another issue: take ε as fraction of “typical value” rather
than fraction of K or K̂

• But why? Not same as estimating f̄ , which is easier.
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CAM: bounds on percentiles of error

95% lower confidence bound
norm units lower quartile median upper quartile average

Euclidean K̂/2 1.462 1.599 1.732 1.599

supremum K̂/2 0.648 0.716 0.781 0.715
Euclidean γ̂ 0.044 0.049 0.053 0.049
supremum γ̂ 0.048 0.053 0.058 0.053

Error of minimax emulator f ?
K̂

of CAM model from 1154 LLNL
observations. Col 1: metric d used to define K . Cols 3–5:
binomial lower confidence bounds for quartiles of the pointwise
error, obtained by inverting binomial tests.
Col 6: 95% lower confidence bound for integral of the pointwise
error over [0, 1]p, based on inverting a z-test.
Cols 3–6 are expressed as a fraction of the quantity in col 2. Based
on 10,000 random samples.
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Computational Burden for “typical value”

norm ε lower bound on M

Euclidean 0.02γ̂ 3.6× 1012

0.04γ̂ 1, 720, 354
0.06γ̂ 345
0.08γ̂ 1

supremum 0.02γ̂ 8.6× 1010

0.04γ̂ 413, 595
0.06γ̂ 83
0.08γ̂ 1
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Conclusions

• In some problems, every emulator based on any tractable
number of observations of f has large maximum potential
error (and the potential error is large over much of the
domain), even if f is no less regular than it is observed to be.

• Can find sufficient conditions under which all emulators are
potentially substantially incorrect.

• Conditions depend only on the observed values of f ; can be
computed from the same observations used to train an
emulator, at small incremental cost.

• Conditions are sufficient but not necessary: f could be less
regular than any finite set of observations reveals it to be.

• It is not possible to give necessary conditions that depend only
on the data.

• Conditions seem to hold for problems with large societal
interest.
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Directions

• Reducing the potential error in HEB problems requires more
information about f (knowledge, not assumptions), or
changing the measure of uncertainty—changing the question.

• Both tactics are application-specific: the science dictates the
conditions that actually hold for f and the senses in which it
is useful to approximate f .

• Not clear that simulation and emulators help address the most
important questions.

• Approximating f pointwise rarely ultimate goal; most
properties of f are nuisance parameters.

• Important questions about f might be answered more directly.

• Heroic simulations and emulators may be distractions.
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