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Emulators, Surrogate functions, Metamodels

• Can evaluate f w/o noise.

• f expensive to evaluate—experiment or big computation

• f typically “black-box”

• Want “cheap” approximation of f based on affordable number
of samples.

• Emulators are essentially interpolators:
• Kriging
• Gaussian process models (GP)
• Polynomial Chaos Expansions
• Multivariate Adaptive Regression Splines (MARS)
• Projection Pursuit Regression
• Neural networks
• etc.
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Noiseless non-parametric function estimation

• Estimate f on domain dom(f ) from {f (x1), . . . , f (xn)}
• f infinite-dimensional.

• dom(f ) typically has dimension 5–100.

• Observe only f |X , where X = {x1, . . . , xn}. No noise.

• Estimating f is grossly underdetermined problem (worse with
noise).

• Usual context: A question that requires knowing f (x) for
x /∈ X
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Common context

Part of larger problem in uncertainty quantification (UQ)

• Real-world phenomenon

• Physics description of phenomenon

• Theoretical simplification/approximation of the physics

• f is the numerical solution of the approximation

• Emulation of the numerical solution of the approximation f̂

• Calibration to noisy data

• “Inference”

High-consequence decisions are made on the basis of f̂ .
How well does f̂ approximate f ? The real world?



Intro Constraints IBC Burden Examples Extensions Conclusions

Common strategies to estimate accuracy

Bayesian Emulators (GP, Kriging, . . . )

• Use the posterior distribution (Tebaldi & Smith 2005)

• Posterior depends on prior and likelihood, but inputs are
generally fixed parameters, not random.

Others

• Using holdout data (Fang et al. 2006)

• Relevant only if the error at the held-out data is
representative of the error everywhere.
Data not usually IID; values of f not IID.

Required conditions generally unverifiable or demonstrably false.
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Need constraints to say anything

• In rare cases, “physics” provides constraints, but generally,
uncertainty estimates are driven by assumptions about f .

• Absent some regularity, no reliable way to extrapolate data to
values of f at unobserved inputs: completely uncertain.

• Stronger assumptions → smaller apparent uncertainties.

• What’s the most optimistic assumption the data don’t
contradict?
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(Best) Lipschitz constant

Given a metric d on dom(g), best Lipschitz constant K for g is

K (g) ≡ sup

{
g(v)− g(w)

d(v ,w)
: v ,w ∈ dom(g) and v 6= w

}
.
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How bad must the uncertainty be?

• Data f |X impose a lower bound on K (f ) (but no upper
bound): Data require some lack of regularity.

• Intentional optimism: assume f is as regular as possible while
fitting the data

• Is there any f̂ guaranteed to be close to f —no matter what f
is—provided f fits the data and is that regular?
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Minimax formulation: Information-Based Complexity (IBC)

• Fκ,Y : functions g s.t. Lip(g) ≤ κ and g |Y = f |Y .
• uncertainty at w of f̂ over Fκ,Y :

Eκ,Y (w ; f̂ ) ≡ sup
g∈Fκ,Y

|f̂ (w)− g(w)|.

• minimax uncertainty at w :

Eκ,Y (w) ≡ inf
f̂ :[0,1]p→<

Eκ,Y (w ; f̂ ).

• maximum uncertainty of f̂ :

Eκ,Y (f̂ ) ≡ sup
w∈[0,1]p

Eκ,Y (w ; f̂ ) = sup
g∈Fκ,Y

‖f̂ − g‖∞.

• minimax uncertainty:

Eκ,Y ≡ inf
f̂ :[0,1]p→<

Eκ,Y (f̂ ).
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Pointwise minimax emulator and its uncertainty

• e+
κ (w) ≡ minx∈X [f (x) + κd(x ,w)]

• e−κ (w) ≡ maxx∈X [f (x)− κd(x ,w)] .

• Eκ,X (w) = e?κ(w) ≡ e−κ (w)−e+
κ (w)

2 (theorem).

• If Lip(f ) = κ, f̂κ(w) ≡ e−κ (w)+e+
κ (w)

2 is minimax (theorem).

• e∗κ, f̂κ(w) are computable from f |X .
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Black error bars are double supw e?κ(w). As the slope between
observations approaches κ, e?(w) approaches 0 for points w
between observations, and supw e?κ(w) decreases
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Lower bounds on computational burden

• Construct f̄ that agrees with f |X , has Lip(f̄ ) = K̂ , and
requires Mε additional observations f |Y to approximate within
ε on [0, 1]p.

• Since f could be f̄ , this gives a lower bound on the number of
additional observations that might be required to approximate
f well, even if f is not rougher than original data f |X require
it to be.

• f̄ is constant “as much as possible” while fitting the data and
having Lip(f̄ ) ≤ K̂

• γ̄ ≡ arg minγ∈R
∑

x∈X |f (x)− γ|p



Intro Constraints IBC Burden Examples Extensions Conclusions

f̄ is constant “as much as possible”
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Potential computational burden

• Cq: volume of p-dimensional unit ball in q norm:

C2 ≡ πp/2

Γ(p/2+1) and C∞ ≡ 2p.

• Mε: observations potentially required to emulate f within ε.

Mε ≥

⌈
ε−p

[
K̂p

Cq
−
∑
x∈X
|f (x)− γ̄|p

]⌉
. (1)
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Uncertainty Quantification Strategic Initiative–LLNL

• Uncertainty Quantification Strategic Initiative at LLNL:
1154 climate simulations using the Community Atmosphere
Model (CAM).

• p = 21 parameters scaled so that [0, 1] has all plausible values.

• f is global average upwelling longwave flux (FLUT)
approximately 50 years in the future.

• Each run took several days on a supercomputer.

• Several approaches to choose X ⊂ [0, 1]p: Latin hypercube,
one-at-a-time, and random-walk multiple-one-at-a-time.

• 1154 simulations total.
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CAM calculations

• γ̄ = 232.77

• For q = 2, K̂ = 14.20:

M ≥
⌈
ε−21

[
1.57×1024

0.0038 − 6.81× 1024
]⌉
> ε−21 × 1026

If ε is 1% of K̂ , then M ≥ 1043.
Even if ε is 50% of K̂ , M > 108.

• For q =∞, K̂ = 34.68:

M ≥
⌈
ε−21

[
2.19×1032

221 − 6.81× 1025
]⌉
> ε−21 × 1025
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More isn’t necessarily better

If EK̂ ≥ K̂/2, then

EK (f̂ ) ≥ K

2
≥ EK ,Z (ĝ).

No f̂ based on f |X has smaller maximum potential error than the
constant emulator based on one observation at the centroid z of
[0, 1]p
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Implications for CAM

• sup e?
K̂

= 20.95 ≥ 17.34 = K̂/2

• Hence, EK (f̂ ) ≥ K/2 for every emulator f̂ .

• Maximum potential error would have been no greater had we
just observed f at z and emulated by f̂ (w) = f (z) for all
w ∈ [0, 1]p.
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Extensions

• Can estimate the measure of {w : e∗κ(w) ≥ ε > 0} by
sampling.

• Draw points w ∈ [0, 1]p at random; evaluate e∗ at each
w—cheap.

• Yields binomial lower confidence bounds for the fraction of
[0, 1]p where uncertainty is large, and confidence bounds for
quantiles of the potential error.
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CAM: bounds on percentiles of error

95% lower confidence bound
norm units lower quartile median upper quartile average

Euclidean K̂/2 1.462 1.599 1.732 1.599

supremum K̂/2 0.648 0.716 0.781 0.715
Euclidean γ̂ 0.044 0.049 0.053 0.049
supremum γ̂ 0.048 0.053 0.058 0.053

Error of minimax emulator f ?
K̂

of CAM model from 1154 LLNL
observations. Col 1: metric d used to define K . Cols 3–5:
binomial lower confidence bounds for quartiles of the pointwise
error, obtained by inverting binomial tests.
Col 6: 95% lower confidence bound for integral of the pointwise
error over [0, 1]p, based on inverting a z-test.
Cols 3–6 are expressed as a fraction of the quantity in col 2. Based
on 10,000 random samples.
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Computational Burden for “typical value”

norm ε lower bound on M

Euclidean 0.02γ̂ 3.6× 1012

0.04γ̂ 1,720,354
0.06γ̂ 345
0.08γ̂ 1

supremum 0.02γ̂ 8.6× 1010

0.04γ̂ 413,595
0.06γ̂ 83
0.08γ̂ 1



Intro Constraints IBC Burden Examples Extensions Conclusions

Conclusions

• In some problems, every emulator based on any tractable
number of observations of f has large potential error over
much of its domain, even if f is no less regular than the data
require.

• Can find sufficient conditions under which all emulators are
have large minimax error over much of their domain, even if f
is no less regular than the data require.

• Conditions depend only on the data; can be computed from
the same data used to train emulator, at small incremental
cost.

• Conditions hold for some problems of societal interest.
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Directions

• Reducing uncertainty in HEB problems requires knowing more
about f or changing the question.

• Both tactics application-specific: the science dictates what
constraints f satisfies and the senses in which it is useful to
approximate f .

• Not clear that simulation and emulators help address the most
important questions.

• Approximating f pointwise rarely ultimate goal; most
properties of f are nuisance parameters.

• Important questions about f might be answered more directly.

• Heroic simulations and emulators may be distractions.
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