Intro 0000000 ints

Burd 000 Examples 0000 Extensions 000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusions

# Mini-Minimax Uncertainty Quantification for Emulators http://arxiv.org/abs/1303.3079

Philip B. Stark and Jeffrey C. Regier

Department of Statistics University of California, Berkeley

> 2nd ISNPS Conference Cadiz, Spain 13 June 2014

| Intro  | Constraints | IBC  | Burden | Examples | Extensions | Conclusions |
|--------|-------------|------|--------|----------|------------|-------------|
| 000000 | 000         | 0000 | 000    | 0000     | 000        | 00          |
|        |             |      |        |          |            |             |

# Why Uncertainty Quantification Matters



# James Bashford / AP



# Why Uncertainty Quantification Matters



#### Reuters / Japan TSB

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

NASA

0000000

Intro

IBC

Burden

Examples 0000

Extensions



Intro 0000000 straints

Burde 000 Examples 0000 Extensions 000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusions

# Emulators, Surrogate functions, Metamodels

- Can evaluate f w/o noise.
- f expensive to evaluate—experiment or big computation
- f typically "black-box"
- Want "cheap" approximation of *f* based on affordable number of samples.
- Emulators are essentially interpolators:
  - Kriging
  - Gaussian process models (GP)
  - Polynomial Chaos Expansions
  - Multivariate Adaptive Regression Splines (MARS)
  - Projection Pursuit Regression
  - Neural networks
  - etc.

| Intro   | Constraints | IBC  | Burden | Examples | Extensions | Conclusions |
|---------|-------------|------|--------|----------|------------|-------------|
| 0000000 | 000         | 0000 | 000    | 0000     | 000        | 00          |
|         |             |      |        |          |            |             |

#### Noiseless non-parametric function estimation

- Estimate f on domain dom(f) from {f(x<sub>1</sub>),...,f(x<sub>n</sub>)}
- f infinite-dimensional.
- dom(f) typically has dimension 5–100.
- Observe only  $f|_X$ , where  $X = \{x_1, \ldots, x_n\}$ . No noise.
- Estimating *f* is grossly underdetermined problem (worse with noise).

• Usual context: A question that requires knowing f(x) for  $x \notin X$ 

| Intro   | Constraints | IBC  | Burden | Examples | Extensions | Conclusions |
|---------|-------------|------|--------|----------|------------|-------------|
| 0000000 | 000         | 0000 | 000    | 0000     | 000        | 00          |
|         |             |      |        |          |            |             |

#### Common context

Part of larger problem in uncertainty quantification (UQ)

- Real-world phenomenon
- Physics description of phenomenon
- Theoretical simplification/approximation of the physics
- *f* is the numerical solution of the approximation
- Emulation of the numerical solution of the approximation  $\hat{f}$

- Calibration to noisy data
- "Inference"

High-consequence decisions are made on the basis of  $\hat{f}$ . How well does  $\hat{f}$  approximate f? The real world? 000000

# Common strategies to estimate accuracy

Bayesian Emulators (GP, Kriging, ...)

- Use the posterior distribution (Tebaldi & Smith 2005)
- Posterior depends on prior and likelihood, but inputs are generally fixed parameters, not random.

# Others

Intro

- Using holdout data (Fang et al. 2006)
- Relevant only if the error at the held-out data is representative of the error everywhere. Data not usually IID; values of f not IID.

Required conditions generally unverifiable or demonstrably false. ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

| Intro   | Constraints | IBC  | Burden | Examples | Extensions | Conclusions |
|---------|-------------|------|--------|----------|------------|-------------|
| 0000000 | 000         | 0000 | 000    | 0000     | 000        | 00          |
|         |             |      |        |          |            |             |
|         |             |      |        |          |            |             |
|         |             |      |        |          |            |             |

#### Need constraints to say anything

- In rare cases, "physics" provides constraints, but generally, uncertainty estimates are driven by assumptions about f.
- Absent some regularity, no reliable way to extrapolate data to values of *f* at unobserved inputs: completely uncertain.

- Stronger assumptions  $\rightarrow$  smaller apparent uncertainties.
- What's the most optimistic assumption the data don't contradict?

| Intro   | Constraints | IBC  | Burden | Examples | Extensions | Conclusions |
|---------|-------------|------|--------|----------|------------|-------------|
| 0000000 | 000         | 0000 | 000    | 0000     | 000        | 00          |
|         |             |      |        |          |            |             |
|         |             |      |        |          |            |             |
|         |             |      |        |          |            |             |

# (Best) Lipschitz constant

Given a metric d on dom(g), best Lipschitz constant K for g is

$$\mathcal{K}(g) \equiv \sup \left\{ rac{g(v) - g(w)}{d(v, w)} : v, w \in \mathsf{dom}(g) \text{ and } v 
eq w 
ight\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

| Intro<br>0000000 | Constraints<br>00● | IBC<br>0000 | Burden<br>000 | Examples<br>0000 | Extensions<br>000 | Conclusions<br>00 |
|------------------|--------------------|-------------|---------------|------------------|-------------------|-------------------|
|                  |                    |             |               |                  |                   |                   |
|                  |                    |             |               |                  |                   |                   |

#### How bad *must* the uncertainty be?

- Data f|<sub>X</sub> impose a lower bound on K(f) (but no upper bound): Data require some lack of regularity.
- Intentional optimism: assume *f* is as regular as possible while fitting the data
- Is there any f̂ guaranteed to be close to f—no matter what f is—provided f fits the data and is that regular?

| Intro  | Constraints | IBC  | Burden | Examples | Extensions | Conclusions |
|--------|-------------|------|--------|----------|------------|-------------|
| 000000 | 000         | 0000 | 000    | 0000     | 000        | 00          |
|        |             |      |        |          |            |             |

#### Minimax formulation: Information-Based Complexity (IBC)

- $\mathcal{F}_{\kappa,Y}$ : functions g s.t.  $\operatorname{Lip}(g) \leq \kappa$  and  $g|_Y = f|_Y$ .
- uncertainty at w of  $\hat{f}$  over  $\mathcal{F}_{\kappa,Y}$ :

$$\mathcal{E}_{\kappa,Y}(w;\hat{f})\equiv \sup_{g\in\mathcal{F}_{\kappa,Y}}|\hat{f}(w)-g(w)|.$$

minimax uncertainty at w:

$$\mathcal{E}_{\kappa,Y}(w)\equiv \inf_{\widehat{f}:[0,1]^p o \mathfrak{R}}\mathcal{E}_{\kappa,Y}(w;\widehat{f}).$$

• maximum uncertainty of  $\hat{f}$ :

$$\mathcal{E}_{\kappa,Y}(\hat{f})\equiv \sup_{w\in [0,1]^p}\mathcal{E}_{\kappa,Y}(w;\hat{f})=\sup_{g\in\mathcal{F}_{\kappa,Y}}\|\hat{f}-g\|_{\infty}.$$

minimax uncertainty:

$$\mathcal{E}_{\kappa,Y} \equiv \inf_{\hat{f}:[0,1]^p \to \Re} \mathcal{E}_{\kappa,Y}(\hat{f}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

| Intro   | Constraints | IBC  | Burden | Examples | Extensions | Conclusions |
|---------|-------------|------|--------|----------|------------|-------------|
| 0000000 | 000         | o●oo | 000    | 0000     | 000        | 00          |
|         |             |      |        |          |            |             |

# Pointwise minimax emulator and its uncertainty

• 
$$e_{\kappa}^+(w) \equiv \min_{x \in X} [f(x) + \kappa d(x, w)]$$

• 
$$e_{\kappa}^{-}(w) \equiv \max_{x \in X} \left[ f(x) - \kappa d(x, w) \right]$$

• 
$$\mathcal{E}_{\kappa,X}(w) = e_{\kappa}^{\star}(w) \equiv \frac{e_{\kappa}^{-}(w) - e_{\kappa}^{+}(w)}{2}$$
 (theorem).

• If 
$$\operatorname{Lip}(f) = \kappa$$
,  $\hat{f}_{\kappa}(w) \equiv \frac{e_{\kappa}^{-}(w) + e_{\kappa}^{+}(w)}{2}$  is minimax (theorem).

• 
$$e_{\kappa}^*$$
,  $\hat{f}_{\kappa}(w)$  are computable from  $f|_X$ .



Black error bars are double  $\sup_{w} e_{\kappa}^{\star}(w)$ . As the slope between observations approaches  $\kappa$ ,  $e^{\star}(w)$  approaches 0 for points w between observations, and  $\sup_{w} e_{\kappa}^{\star}(w)$  decreases

| 0000000 000 0000 <b>000 000</b> 000 000 000 | Intro   | Constraints | IBC  | Burden | Examples | Extensions | Conclusions |
|---------------------------------------------|---------|-------------|------|--------|----------|------------|-------------|
|                                             | 0000000 | 000         | 0000 | •00    | 0000     | 000        | 00          |

## Lower bounds on computational burden

- Construct *f* that agrees with *f*|<sub>X</sub>, has Lip(*f*) = *K̂*, and requires *M<sub>ε</sub>* additional observations *f*|<sub>Y</sub> to approximate within *ε* on [0, 1]<sup>p</sup>.
- Since f could be  $\overline{f}$ , this gives a lower bound on the number of additional observations that might be required to approximate f well, even if f is not rougher than original data  $f|_X$  require it to be.
- $\bar{f}$  is constant "as much as possible" while fitting the data and having  ${\rm Lip}(\bar{f}) \leq \hat{K}$

• 
$$\bar{\gamma} \equiv \arg \min_{\gamma \in \mathbb{R}} \sum_{x \in X} |f(x) - \gamma|^{p}$$



# $\bar{f}$ is constant "as much as possible"



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 \_ のへで

| Intro   | Constraints | IBC  | Burden | Examples | Extensions | Conclusions |
|---------|-------------|------|--------|----------|------------|-------------|
| 0000000 | 000         | 0000 | 00●    | 0000     | 000        |             |
|         |             |      |        |          |            |             |

#### Potential computational burden

- $C_q$ : volume of *p*-dimensional unit ball in *q* norm:  $C_2 \equiv \frac{\pi^{p/2}}{\Gamma(p/2+1)}$  and  $C_{\infty} \equiv 2^p$ .
- $M_{\epsilon}$ : observations potentially required to emulate f within  $\epsilon$ .

$$M_{\epsilon} \geq \left[ \epsilon^{-p} \left[ \frac{\hat{K}^{p}}{C_{q}} - \sum_{x \in X} |f(x) - \bar{\gamma}|^{p} \right] \right].$$
 (1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Intro 0000000 straints

Burd

Examples •000 Extensions 000

Conclusions

# Uncertainty Quantification Strategic Initiative-LLNL

- Uncertainty Quantification Strategic Initiative at LLNL: 1154 climate simulations using the Community Atmosphere Model (CAM).
- p = 21 parameters scaled so that [0, 1] has all plausible values.
- *f* is global average upwelling longwave flux (FLUT) approximately 50 years in the future.
- Each run took several days on a supercomputer.
- Several approaches to choose X ⊂ [0, 1]<sup>p</sup>: Latin hypercube, one-at-a-time, and random-walk multiple-one-at-a-time.
- 1154 simulations total.

| Intro   | Constraints | IBC  | Burden | Examples | Extensions | Conclusions |
|---------|-------------|------|--------|----------|------------|-------------|
| 0000000 | 000         | 0000 | 000    | 0000     | 000        | 00          |
|         |             |      |        |          |            |             |
|         |             |      |        |          |            |             |

# CAM calculations

• 
$$\bar{\gamma} = 232.77$$

• For 
$$q = 2$$
,  $\hat{K} = 14.20$ :  
 $M \ge \left[ \epsilon^{-21} \left[ \frac{1.57 \times 10^{24}}{0.0038} - 6.81 \times 10^{24} \right] \right] > \epsilon^{-21} \times 10^{26}$   
If  $\epsilon$  is 1% of  $\hat{K}$ , then  $M \ge 10^{43}$ .  
Even if  $\epsilon$  is 50% of  $\hat{K}$ ,  $M > 10^8$ .

• For 
$$q = \infty$$
,  $\hat{K} = 34.68$ :  
 $M \ge \left[ e^{-21} \left[ \frac{2.19 \times 10^{32}}{2^{21}} - 6.81 \times 10^{25} \right] \right] > e^{-21} \times 10^{25}$ 

| Intro   | Constraints | IBC  | Burden | Examples | Extensions | Conclusions |
|---------|-------------|------|--------|----------|------------|-------------|
| 0000000 | 000         | 0000 | 000    | 00●0     | 000        |             |
|         |             |      |        |          |            |             |

#### More isn't necessarily better

If  $\mathcal{E}_{\hat{K}} \geq \hat{K}/2$ , then

$$\mathcal{E}_{\mathcal{K}}(\hat{f}) \geq rac{\mathcal{K}}{2} \geq \mathcal{E}_{\mathcal{K},Z}(\hat{g}).$$

No  $\hat{f}$  based on  $f|_X$  has smaller maximum potential error than the constant emulator based on one observation at the centroid z of  $[0,1]^p$ 

| Intro   | Constraints | IBC  | Burden | Examples | Extensions | Conclusions |
|---------|-------------|------|--------|----------|------------|-------------|
| 0000000 | 000         | 0000 | 000    | 000●     | 000        | 00          |
|         |             |      |        |          |            |             |

#### Implications for CAM

- sup  $e^{\star}_{\hat{K}} = 20.95 \ge 17.34 = \hat{K}/2$
- Hence,  $\mathcal{E}_{\mathcal{K}}(\hat{f}) \geq \mathcal{K}/2$  for every emulator  $\hat{f}$ .
- Maximum potential error would have been no greater had we just observed f at z and emulated by f̂(w) = f(z) for all w ∈ [0, 1]<sup>p</sup>.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

| Intro  | Constraints | IBC  | Burden | Examples | Extensions   | Conclusions |
|--------|-------------|------|--------|----------|--------------|-------------|
| 000000 | 000         | 0000 | 000    | 0000     | ● <b>○</b> ○ | 00          |
|        |             |      |        |          |              |             |
|        |             |      |        |          |              |             |

#### Extensions

- Can estimate the measure of  $\{w : e_{\kappa}^{*}(w) \ge \epsilon > 0\}$  by sampling.
- Draw points  $w \in [0, 1]^p$  at random; evaluate  $e^*$  at each w—cheap.
- Yields binomial lower confidence bounds for the fraction of [0, 1]<sup>p</sup> where uncertainty is large, and confidence bounds for quantiles of the potential error.

| Intro  | Constraints | IBC  | Burden | Examples | Extensions | Conclusions |
|--------|-------------|------|--------|----------|------------|-------------|
| 000000 | 000         | 0000 | 000    | 0000     | 000        | 00          |
|        |             |      |        |          |            |             |

# CAM: bounds on percentiles of error

|           |                | 95% lower confidence bound |        |                |         |  |  |  |
|-----------|----------------|----------------------------|--------|----------------|---------|--|--|--|
| norm      | units          | lower quartile             | median | upper quartile | average |  |  |  |
| Euclidean | $\hat{K}/2$    | 1.462                      | 1.599  | 1.732          | 1.599   |  |  |  |
| supremum  | $\hat{K}/2$    | 0.648                      | 0.716  | 0.781          | 0.715   |  |  |  |
| Euclidean | $\hat{\gamma}$ | 0.044                      | 0.049  | 0.053          | 0.049   |  |  |  |
| supremum  | $\hat{\gamma}$ | 0.048                      | 0.053  | 0.058          | 0.053   |  |  |  |

Error of minimax emulator  $f_{\hat{K}}^{\star}$  of CAM model from 1154 LLNL observations. Col 1: metric *d* used to define *K*. Cols 3–5:

binomial lower confidence bounds for quartiles of the pointwise error, obtained by inverting binomial tests.

Col 6: 95% lower confidence bound for integral of the pointwise error over  $[0,1]^p$ , based on inverting a *z*-test.

Cols 3–6 are expressed as a fraction of the quantity in col 2. Based on 10,000 random samples.

| Intro   | Constraints | IBC  | Burden | Examples | Extensions | Conclusions |
|---------|-------------|------|--------|----------|------------|-------------|
| 0000000 | 000         | 0000 | 000    | 0000     |            | 00          |
|         |             |      |        |          |            |             |

Computational Burden for "typical value"

| norm      | $\epsilon$          | lower bound on M  |
|-----------|---------------------|-------------------|
| Euclidean | $0.02\hat{\gamma}$  | $3.6	imes10^{12}$ |
|           | $0.04\hat{\gamma}$  | 1,720,354         |
|           | $0.06\hat{\gamma}$  | 345               |
|           | $0.08\hat{\gamma}$  | 1                 |
| supremum  | $0.02\hat{\gamma}$  | $8.6	imes10^{10}$ |
|           | 0.04 $\hat{\gamma}$ | 413,595           |
|           | $0.06\hat{\gamma}$  | 83                |
|           | $0.08\hat{\gamma}$  | 1                 |

| Intro   | Constraints | IBC  | Burden | Examples | Extensions | Conclusions |
|---------|-------------|------|--------|----------|------------|-------------|
| 0000000 | 000         | 0000 | 000    | 0000     | 000        | ●O          |
|         |             |      |        |          |            |             |

## Conclusions

- In some problems, *every* emulator based on any tractable number of observations of *f* has large potential error over much of its domain, even if *f* is no less regular than the data *require*.
- Can find sufficient conditions under which all emulators are have large minimax error over much of their domain, even if *f* is no less regular than the data *require*.
- Conditions depend only on the data; can be computed from the same data used to train emulator, at small incremental cost.

• Conditions hold for some problems of societal interest.

| Intro   | Constraints | IBC  | Burden | Examples | Extensions | Conclusions |
|---------|-------------|------|--------|----------|------------|-------------|
| 0000000 | 000         | 0000 | 000    | 0000     | 000        | O•          |
|         |             |      |        |          |            |             |

#### Directions

- Reducing uncertainty in HEB problems requires knowing more about *f* or changing the question.
- Both tactics application-specific: the science dictates what constraints *f* satisfies and the senses in which it is useful to approximate *f*.
- Not clear that simulation and emulators help address the most important questions.
- Approximating *f* pointwise rarely ultimate goal; most properties of *f* are nuisance parameters.
- Important questions about f might be answered more directly.
- Heroic simulations and emulators may be distractions.