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Example: Effect of treatment in a randomized controlled
experiment

11 pairs of rats, each pair from the same litter.

Randomly—by coin tosses—put one of each pair into “en-
riched” environment; other sib gets ”normal” environment.

After 65 days, measure cortical mass (mg).

treatment 689 656 668 660 679 663 664 647 694 633 653
control 657 623 652 654 658 646 600 640 605 635 642
difference 32 33 16 6 21 17 64 7 89 -2 11

How should we analyze the data?

(Cartoon of Rosenzweig, M. R., Bennett, E. L., & Diamond, M. C. (1972). Brain

changes in response to experience., 1972. Sci. Am., 226 , 22–29; See also Bennett,

Rosenzweig and Diamond, 1969. Rat Brain: Effects of Environmental Enrichment on

Wet and Dry Weights, Science, 163 , 825–826; Freedman, Pisani and Purves, 2007.

Statistics. W.W. Norton, pp. 498ff. The experiment had 3 levels, not 2, and there were

several trials.)
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Informal Hypotheses

Null hypothesis: treatment has “no effect.”

Alternative hypothesis: treatment increases cortical mass.

Suggests 1-sided test for an increase.
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Test contenders

• 2-sample Student t-test:

mean(treatment) - mean(control)

pooled estimate of SD of difference of means

• 1-sample Student t-test on the differences:

mean(differences)

SD(differences)/
√

11

Better, since littermates are presumably more homoge-

neous.

• Permutation test using t-statistic of differences: same

statistic, different way to calculate P -value. Even better?
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Strong null hypothesis

Treatment has no effect whatsoever—as if cortical mass were

assigned to each rat before the randomization.

Then equally likely that the rat with the heavier cortex will

be assigned to treatment or to control, independently across

littermate pairs.

Gives 211 = 2,048 equally likely possibilities:

difference ±32 ±33 ±16 ±6 ±21 ±17 ±64 ±7 ±89 ±2 ±11

For example, just as likely to observe original differences as

difference -32 -33 -16 -6 -21 -17 -64 -7 -89 -2 -11
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Weak null hypothesis

On average across pairs, treatment makes no difference.
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Assumptions of the tests

• 2-sample t-test: masses are iid sample from normal dis-
tribution, same unknown variance, same unknown mean.
Tests weak null hypothesis (plus normality, independence,
etc.).

• 1-sample t-test on the differences: mass differences are
iid sample from normal distribution, unknown variance,
zero mean. Tests weak null hypothesis (plus normality,
independence, etc.)

• Permutation test: Randomization fair, independent across
pairs. Tests strong null hypothesis.

Assumptions of the permutation test are true by design:
that’s how treatment was assigned.
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Student t-test calculations

Mean of differences: 26.73mg

Sample SD of differences: 27.33mg

t-statistic: 26.73/(27.33/
√

11) = 3.244.

P -value for 1-sided t-test: 0.0044

Why do cortical weights have normal distribution?

Why is variance of the difference between treatment and con-

trol the same for different litters?

Does P -value depend on assuming differences are iid sample

from a normal distribution? If we reject the null, is that

because there is a treatment effect, or because the other

assumptions are wrong?
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Permutation t-test calculations

Could enumerate all 211 = 2,048 equally likely possibilities.

Calculate t-statistic for each.

P -value is

P =
number of possibilities with t ≥ 3.244

2,048

(For mean instead of t, would be 2/2,048 = 0.00098.)

For more pairs, impractical to enumerate, but can simulate:

Assign a random sign to each difference.

Compute t-statistic

Repeat 100,000 times

P ≈
number of simulations with t ≥ 3.244

100,000
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Calculations

simPermuTP <- function(z, iter) {
# P.B. Stark, www.stat.berkeley.edu/~stark 5/14/07
# simulated P-value for 1-sided 1-sample t-test under the
# randomization model.

n <- length(z)
ts <- mean(z)/(sd(z)/sqrt(n)) # t test statistic
sum(replicate(iter, {zp <- z*(2*floor(runif(n)+0.5)-1);

tst <- mean(zp)/(sd(zp)/sqrt(n));
(tst >= ts)

}
)

)/iter
}
simPermuTP(diffr, 100000)
0.0011

(versus 0.0044 for Student’s t distribution)
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Other tests: sign test, Wilcoxon signed-rank test

Sign test: Count pairs where treated rat has heavier cortex,
i.e., where difference is positive.

Under strong null, distribution of the number of positive dif-
ferences is Binomial(11, 1/2). Like number of heads in 11
independent tosses of a fair coin. (Assumes no ties w/i pairs.)

P -value is chance of 10 or more heads in 11 tosses of a fair
coin: 0.0059.

Only uses signs of differences, not information that only the
smallest absolute difference was negative.

Wilcoxon signed-rank test uses information about the order-
ing of the differences: rank the absolute values of the dif-
ferences, then give them the observed signs and sum them.
Null distribution: assign signs at random and sum.
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Still more tests, for other alternatives

All the tests we’ve seen here are sensitive to shifts–the alter-

native hypothesis is that treatment increases response (cor-

tical mass).

There are also nonparametric tests that are sensitive to other

treatment effects, e.g., treatment increases the variability of

the response.

And there are tests for whether treatment has any effect at

all on the distribution of the responses.

You can design a test statistic to be sensitive to any change

that interests you, then use the permutation distribution to

get a P -value (and simulation to approximate that P -value).
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Silliness

Treat ordinal data (e.g., Likert scale) as if measured on a

linear scale; use Student t-test.

Maybe not so silly for large samples. . .

t-test asymptotically distribution-free.

How big is big?
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Back to Rosenzweig et al.

Actually had 3 treatments: enriched, standard, deprived.

Randomized 3 rats per litter into the 3 treatments, indepen-

dently across n litters.

How should we analyze these data?
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Test contenders

n litters, s treatments (sibs per litter).

• ANOVA–the F -test:

F =
BSS/(s− 1)

WSS/(n− s)

• Permutation F -test: use permutation distribution instead
of F distribution to get P -value.

• Friedman test: Rank within litters. Mean rank for treat-
ment i is R̄i.

Q =
12n

s(s + 1)

s∑
i=1

(
R̄i −

s + 1

2

)2
.

P -value from permutation distribution.
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Strong null hypothesis

Treatment has no effect whatsoever—as if cortical mass were

assigned to each rat before the randomization.

Then equally likely that each littermate is assigned to each

treatment, independently across litters.

There are 3! = 6 assignments of each triple to treatments.

Thus, 6n equally likely assignments across all litters.

For 11 litters, that’s 362,797,056 possibilities.
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Weak null hypothesis

The average cortical weight for all three treatment groups

are equal. On average across triples, treatment makes no

difference.
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Assumptions of the tests

• F -test: masses are iid sample from normal distribution,
same unknown variance, same unknown mean for all lit-
ters and treatments. Tests weak null hypothesis.

• Permutation F -test: Randomization was as advertised:
fair, independent across triples. Tests strong null hy-
pothesis.

• Friedman test: Ditto.

Assumptions of the permutation test and Friedman test are
true by design: that’s how treatment was assigned.

Friedman test statistic has χ2 distribution asymptotically.
Ties are a complication.
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F -test assumptions–reasonable?

Why do cortical weights have normal distribution for each

litter and for each treatment?

Why is the variance of cortical weights the same for different

litters?

Why is the variance of cortical weights the same for different

treatments?
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Is F a good statistic for this alternative?

F (and Friedman statistic) sensitive to differences among the

mean responses for each treatment group, no matter what

pattern the differences have.

But the treatments and the responses can be ordered: we

hypothesize that more stimulation produces greater cortical

mass.

deprived =⇒ normal =⇒ enriched
low mass =⇒ medium mass =⇒ high mass

Can we use that to make a more sensitive test?
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A test against an ordered alternative

Within each litter triple, count pairs of responses that are “in
order.” Sum across litters.

E.g., if one triple had cortical masses

deprived 640
normal 660
enriched 650

that would contribute 2 to the sum: 660 ≥ 640, 650 ≥ 640,
but 640 < 650.

Each litter triple contributes between 0 and 3 to the overall
sum.

Null distribution for the test based on the permutation dis-
tribution: 6 equally likely assignments per litter, independent
across litters.
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Quick overview of nonparametrics, robustness

Parameters: related notions

• Constants that index a family of functions–e.g., the nor-

mal curve depends on µ and σ (f(x) = (2π)1/2σ−1e
−(x−µ)2

2σ2 )

• A property of a probability distribution, e.g., 2nd moment,

a percentile, etc.
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Parametric statistics: assume a functional form for the prob-
ability distribution of the observations; worry perhaps about
some parameters in that function.

Non-parametric statistics: fewer, weaker assumptions about
the probability distribution. E.g., randomization model, or
observations are iid.

Density estimation, nonparametric regression: Infinitely many
parameters. Requires regularity assumptions to make infer-
ences. Plus iid or something like it.

Semiparametrics: Underlying functional form unknown, but
relationship between different groups is parametric. E.g., Cox
proportional hazards model.

Robust statistics: assume a functional form for the proba-
bility distribution, but worry about whether the procedure is
sensitive to “small” departures from that assumed form.
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