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How not to do applied statistics

1. Assign a number to everything, even if it’s a meaningless number.

2. Do arithmetic with the numbers as if they all represent the same thing.

3. Optional: make up uncertainties for the numbers. If you do, pretend there’s no difference
between different kinds of uncertainty.

4. Pick a model for the data based on how the data look rather than their connection to the
world. Ignore the sampling design (e.g., experiment, survey, observational study).

5. Give terms in the model the names of things you would like to know. For instance, call a
term “the effect of x on y,” or “the probability of z.”

6. Fit the model to the data. Ideally, use a method that requires high-performance computing.

7. Test hypotheses and construct confidence sets as if the model really generated the data.

8. Repeat for different models and hypotheses until you reject at least one.

9. Publish your “discovery.”
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John Tukey

The combination of some data and an aching desire for an answer does not
ensure that a reasonable answer can be extracted from a given body of data.
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George Box

All models are wrong, but some are useful.

Since all models are wrong the scientist must be alert to what is importantly
wrong. It is inappropriate to be concerned about mice when there are tigers
abroad.
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Me

Many models are importantly wrong.
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Quantifauxcation. Assign a meaningless number, then conclud that because the result is
quantitative, it must mean something.

Type III errors. Answering the wrong question, e.g., testing a statistical hypothesis that
is untethered from the scientific hypothesis.
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Numbers, numbers everywhere, nor any a datum to drink

For ~70 years, fashionable to assign numbers to things to make them “scientific.”

Qualitative arguments considered unscientific.

History, sociology, and econ exalt computation as scientific and objective.

It is objective and rational to take account of imponderable factors. It is
subjective, irrational, and dangerous not to take account of them. As that
champion of rationality, the philosopher Bertrand Russell, would have argued,
rationality involves the whole and balanced use of human faculty, not a rejection
of that fraction of it that cannot be made numerical. –Nature editorial, 1978.
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Procrustes’ quantifauxcation: forcing incommensurables to one scale

• form an “index” that combines a variety of things into a single number, e.g., adding
or averaging “points” on Likert scales

• clinical outcomes for conditions like PTSD: add “severity” of symptoms
• university rankings
• student evaluations

• combine different kinds of uncertainty as if they were all probabilities

• cost-benefit analyses when costs and benefits aren’t all monetary
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Example: Cost-benefit analysis

• often claimed to be the only rational basis for policy

• costs & consequences hard to anticipate, enumerate, or estimate.

• assumes all costs and all benefits can be put on a single, one-dimensional scale,
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Conjoint analysis (Luce and Tukey, 1964)
To put multi-attribute things on a single preference scale involves nontrivial conditions.

Attribute Possible attribute values

Filling peanut butter turkey lamb
Condiment grape jelly mustard mint sauce

Double-cancellation axiom:

If you prefer peanut butter and jelly to turkey and mint sauce, and you prefer
turkey and mustard to lamb and grape jelly, then you must prefer peanut butter
and mustard to lamb and cranberry sauce.
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Example: Risk preferences

“Risk = probability × consequences”

• Human preference orderings are not based on expected returns.

• Preference for “sure things” over bets: many would prefer $1 million for sure over a
10% chance of receiving $20 million

• Loss aversion: many would prefer a 10% chance of winning $1 million over a 50%
chance of winning $2 million with a 50% chance of losing $100 thousand (9.5x
expected return)
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Example: Uncertainty & The Ludic Fallacy: Nassim Taleb (2007)

“The casino is the only human venture I know where the probabilities are known,
[] and almost computable.” . . . [W]e automatically, spontaneously associate
chance with these Platonified games. . . . Those who spend too much time
with their noses glued to maps will tend to mistake the map for the territory. . . .
Probability is a liberal art; it is a child of skepticism, not a tool for people with
calculators on their belts to satisfy their desire to produce fancy calculations
and certainties. Before Western thinking drowned in its “scientific” mentality,
. . . people prompted their brain to think—not compute.
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Lucien LeCam (1977) on treating all uncertainties alike
It is clear that we can be uncertain for many reasons. For instance, we may be uncertain
because (1) we lack definite information, (2) the events involved will occur according
to the results of the spin of a roulette wheel, (3) we could find out by pure logic but
it is too hard. The first type of uncertainty occurs in practically every question. The
second assumes a well-defined mechanism. However, the neo-Bayesian theory seems to
make no real distinction between probabilities attached to the three types. It answers
in the same manner the following questions.
(1) What is the probability that Eudoxus had bigger feet than Euclid?
(2) What is the probability that a toss of a ‘fair’ coin will result in tails?
(3) What is the probability that the 10137 +1 digit of π is a 7?
[] Thus, presumably, when neo-Bayesians state that a certain event A has probability
one-half, this may mean either that he did not bother to think about it, or that he has
no information on the subject, or that whether A occurs or not will be decided by the
toss of a fair coin. The number 1/2 itself does not contain any information about the
process by which it was obtained []. 13



Bias can be manipulated through processes such as anchoring and priming (Tversky &
Kahneman, 1975).

Anchoring affects entire disciplines: Millikan oil drop experiment, speed of light, iron in
spinach

• We’re poor judges of probability: biases from representativeness and availability

• We’re poor judges of weights, even of objects in our hands: bias by the density and
shape of the object—and even its color.

• We’re bad judges of randomness: apophenia and pareidolia

• We’re Over-confident about our estimates and predictions

• Our confidence is unrelated to our actual accuracy
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Nature editorial, 1978

LORD ROTHSCHILD, speaking on British television last week, argued that we should
develop a table of risks so we could compare, say, the risk of our dying in an automobile
accident with the risk of Baader-Meinhoff guerillas taking over the nuclear reactor next
door. Then we would know how seriously to take our risks, be they nuclear power,
damage to the environment or whatever.
. . .
It is fine for Rothschild to demonstrate his agility with arithmetic, converting probabili-
ties from one form to another (and implying that the viewers could not do it) but this
is only the kindergarten of risk.
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More than this, Rothschild confused two fundamental distinct kinds of risk in his
table: known risks-such as car accidents-where the risk is simply calculated from past
events; and unknown risks—such as the terrorists taking over a fast breeder—which
are matters of estimating the future. The latter risks inevitably depend on theory.
Whether the theory is a social theory of terrorism or a risk-tree analysis of fast breeder
failure, it will be open to conjecture. And it ought to be remembered that the history
of engineering is largely a history of unforeseen accidents. Risk estimates can be proved
only by events. Thus it is easy for groups, consciously or unconsciously, to bend their
calculations to suit their own objectives or prejudices. With unknown risks it is as
important to take these into account as to come up with a number.
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Rates are not probabilities: Hydrology, Klemeš (1989)
The automatic identification of past frequencies with present probabilities is the greatest
plague of contemporary statistical and stochastic hydrology. It has become so deeply
engrained that it prevents hydrologists from seeing the fundamental difference between
the two concepts. It is often difficult to put across the fact that whereas a histogram
of frequencies for given quantities . . . can be constructed for any function whether it
has been generated by deterministic or random mechanism, it can be interpreted as a
probability distribution only in the latter case. . . . Ergo, automatically to interpret
past frequencies as present probabilities means a priori to deny the possibility of any
signal in the geophysical history; this certainly is not science but sterile scholasticism.
The point then arises, why are these unreasonable assumptions made if it is obvious
that probabilistic statements based on them may be grossly misleading, especially
when they relate to physically extreme conditions where errors can have catastrophic
consequences? The answer seems to be that they provide the only conceptual framework
that makes it possible to make probabilistic statements, i.e. they must be used if the
objective is to make such probabilistic statements.

17



• In a sequence of random trials with chance p of success in each, the empirical rate
of success is an unbiased estimate of p. Under additional conditions (pairwise
independence or exchangeability, for instance), it converges almost surely to p.

• But the fact that something has a rate doesn’t mean a random process produced it.

Two thought experiments:

1. You are in a group of 100 people. You are told that one person in the group will die
next year. What is the chance it is you?

2. You are in a group of 100 people. You are told that one of them is named Philip.
What is the chance it is you?

Both involve a rate of 1% in a group.
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Probability is in the method of selection, not the existence of a rate

Possible rules:

• Shoot the tallest person
• no probability
• you are or aren’t the tallest person

• Draw lots and shoot whoever gets the short straw
• might be reasonably modeled as random and uniform
• if so, the probability you die is 1%.
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How does probability enter a scientific problem?

• underlying physical phenomenon is random, e.g. radioactive decay and other
quantum effects

• scientist deliberately introduces randomness, e.g., by randomizing treatment
assignments or drawing a random sample

• subjective prior probability Choose a prior distribution for unknowns

• probability model that is supposed to describe a phenomenon, e.g., a regression
model, a Gaussian process model, or a stochastic PDE.

• In what sense, to what level of accuracy, and for what purpose?

• metaphor: claim the phenomenon in question behaves ‘as if’ it is random
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Simulation and probability

In physics, geophysics, climate science, sensitivity analysis, and uncertainty
quantification, there’s a popular impression that probabilities can be estimated in a
‘neutral’ or ‘automatic’ way by doing Monte Carlo simulations: just let the computer
generate the distribution.

But Monte Carlo simulation just estimates numerical values that result from an assumed
distribution. It is a substitute for doing an integral, not a way to uncover laws of Nature.

Doesn’t tell you anything that wasn’t already baked into the simulation.
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Example 1: Probabilistic Seismic Hazard Assessment (PSHA)

Cornell (1968):
In this paper a method is developed to produce [various characteristics of ground
motion] and their average return period . . . The minimum data needed are only
the seismologist’s best estimates of the average activity levels of the various
potential sources of earthquakes . . . The technique to be developed provides
the method for integrating the individual influences of potential earthquake
sources, near and far, more active or less, into the probability distribution of
maximum annual intensity (or peak-ground acceleration, etc.). The average
return period follows directly.
. . .
In general the size and location of a future earthquake are uncertain. They
shall be treated therefore as random variables.
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• basis of seismic building codes in many countries; used to help decide where to
build nuclear power plants and nuclear waste disposal sites

• claims to find the probability of a given level of ground shaking

• models earthquakes as occurring at random in space, time and with random
magnitude (marked point process)

• models ground motion assumed to be random w/ known distribution given quake
occurs

• treats Gutenberg-Richter (G-R) law, the historical spatial distribution of seismicity,
and ground acceleration given the distance and magnitude of an earthquake as
probability distributions

• that earthquakes occur at random is an assumption, not a matter of physics–the
physics is not understood
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• hinges on the metaphor that earthquakes occur as if in a casino game

• as if there is a special deck of cards
• game involves dealing one card per time period
• If the card is blank, no earthquake.
• If the card is 8, magnitude 8 earthquake. Etc.

• tens of thousands of journal pages arguing about how many cards of each kind are
in the deck, how well the deck is shuffled, whether after each draw you replace the
card in the deck and shuffle again before dealing the next card, whether you add
high-numbered cards to the deck if no high card has been drawn in a while, etc.

• have been many destructive earthquakes where PSHA says risk is small
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A different metaphor: earthquakes are like terrorist bombings
• don’t know when or where they’re going to happen or how big they will be
• do know they could hurt people when they do happen, but not how
• some places are more common targets than others (e.g., places near active faults)
• some places are more vulnerable to damage
• no probability per se
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Example 2: Avian-Turbine Interactions.

Wind turbine generators occasionally kill birds, including raptors.

• How many? What species? What design and siting features of the wind turbines
matter? Can you design turbines or wind farms in a way that reduces avian
mortality? What design changes would help?

• Raptors are rare; raptor collisions with wind turbines are rarer.

• Data: look for pieces of birds near the turbines.

• background mortality
• find bird fragments, not birds
• carcasses decompose
• scavengers
• birds may land far from the turbine they hit.
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• Consultant modelled bird collisions as zero-inflated Poisson process with rate that
depends parametrically on selected properties of the turbines.

• collisions are random and independent
• probability distribution same for all birds
• rate follows a hierarchical Bayesian model
• parameters for design and location
• additional smoothing to make parameters identifiable
• estimated the coefficients

• According to the model, when a bird approaches a turbine, it tosses a biased coin.
• heads, the bird hits turbine; tails not
• for each turbine location and design, every bird uses a coin with the same chance of

heads
• birds toss coins independently
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Displacement
The framing changes the subject from “how many birds does this turbine kill?” to “what
are the numerical values of some coefficients in this zero-inflated Poisson regression
model?”

Type III error: testing a statistical model with little connection to the scientific question.

Rayner (2012, p. 120):
Displacement is the term that I use to describe the process by which an object
or activity, such as a computer model, designed to inform management of a real-
world phenomenon actually becomes the object of management. Displacement is
more subtle than diversion in that it does not merely distract attention away from
an area that might otherwise generate uncomfortable knowledge by pointing
in another direction, which is the mechanism of distraction, but substitutes
a more manageable surrogate. The inspiration for recognizing displacement
can be traced to A. N. Whitehead’s fallacy of misplaced concreteness, ‘the
accidental error of mistaking the abstract for the concrete.’
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Example 3: Student’s T-test in RCTs

Scientific null: treatment does not affect the outcome, either subject-by-subject (the
strong null) or on average (the weak null).

Statistical null: all N responses are IID Gaussian (same mean & variance).

• In experiment, the treatment and control groups are dependent: random partition
of single group.

• In statistical null, the groups are independent.

• In the experiment, the only source of randomness is the random allocation to
treatment or control, and nothing is known about distribution of responses.

• In the statistical null, subjects’ responses are random and Gaussian.

Type III error.
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Example 4: gender bias in teaching evaluations
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MacNell, Driscoll, & Hunt, 2014

NC State online course.

Students randomized into 6 groups, 2 taught by primary prof, 4 by GSIs.

2 GSIs: 1 male, 1 female.

GSIs used actual names in 1 section, swapped names in 1 section.

Ratings on 5-point scale

31
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Characteristic M - F perm P t-test P
Overall 0.47 0.12 0.128
Professional 0.61 0.07 0.124
Respectful 0.61 0.06 0.124
Caring 0.52 0.10 0.071
Enthusiastic 0.57 0.06 0.112
Communicate 0.57 0.07 NA
Helpful 0.46 0.17 0.049
Feedback 0.47 0.16 0.054
Prompt 0.80 0.01 0.191
Consistent 0.46 0.21 0.045
Fair 0.76 0.01 0.188
Responsive 0.22 0.48 0.013
Praise 0.67 0.01 0.153
Knowledge 0.35 0.29 0.038
Clear 0.41 0.29 NA 32



R.A. Fisher, 1935
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Scientific null: students assigned at random, blocked design

Statistical null for Student’s T-test: student responses are IID gaussian.

Type III error
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Illustration: ignoring stratification
• Two centers, A and B.
• 4 units per center, randomized 2 to treatment and 2 to control
• Response is a for control in A, a + 1 for treatment in A. Ditto for B.

• Permutation P value is 1/
(4

2
)2 = 1/36 ≈ 0.029

• Student’s T statistic for b − a = 10 is 1/
√

(100/6) ≈ 0.2449; one-sided P-value
0.41
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Example 5: Blair-Loy et al. (2017) interruptions of academic job talks

Do academic audiences interrupt female speakers more often than they interrupt male
speakers?

• 119 job talks from two engineering schools

• fit a zero-inflated negative binomial regression model with coefficients for gender,
speaker’s years since PhD, the proportion of faculty in the department who are
female, and a dummy variable for university, and a dummy variable for department
(CS, EE, or ME).

• statistical null hypothesis: the coefficient of gender in the “positive” model is zero
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The standard choices for modeling count data are a Poisson model, negative
binomial model, or a zero-inflated version of either of these models [55]. We
prefer a zero-inflated, negative binomial (ZINB) model for this analysis . . .
We now estimate ZINB models to address our first research question: do
women get more questions than men during the job talk? (emphasis
added)
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ZINB model:

• in each talk, a biased coin is tossed

• heads, no questions
• tails, toss (possibly) different biased coin repeatedly, independently, until it lands

heads for the kth time.
• number of questions is number of tosses it takes to get kth head on 2nd coin.

• probabilities that each coin lands heads and k depend parametrically on the
covariates

• Scientific null: gender has no effect on the number of questions

• Statistical null: ZINB model is true, and coefficient of gender in the “positive” part
of the ZINB model is zero.

• Type III error; displacement
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Example 6: soccer penalty cards Silberzahn et al. (2018)

• 29 teams comprising 61 “analysts” attempting to answer the same question from
the same data: are soccer referees more likely to give penalties (“red cards”) to
dark-skin-toned players than to light-skin-toned players.

• teams used a wide variety of models and came to different conclusions: 20 found a
“statistically significant positive effect”

• great example of reproducible research: data, models, and algorithms were made
available to the public
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The teams used models and tests including:

Least-squares regression, with or without robust standard errors or clustered standard errors, with
or without weights; multiple linear regression; GLMs, GLMMs, with or without a logit link;
negative binomial regression, with or without a logit link; multilevel regression; hierarchical
log-linear models; linear probability models; logistic regression; Bayesian logistic regression,
mixed-model logistic regression; multilevel logistic regression; multilevel Bayesian logistic
regression, multilevel logistic binomial regression; clustered robust binomial logistic regression;
Dirichlet-process Bayesian clustering; Poisson regression; hierarchical Poisson regression;
zero-inflated Poisson regression; Poisson multilevel modelling; cross-classified multilevel negative
binomial regression; hierarchical generalized linear modeling with Poisson sampling; Tobit
regression; Spearman correlation

• chose 21 distinct subsets of the 14 available covariates
• “round-robin” peer feedback on each team’s initial work, after which the approaches and

models were revised
• 2nd period of discussion and revision
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• scientific null: skin tone does not affect whether referees give penalty flags

• statistical null: red cards are issued according to a parametric probability model,
and the coefficient of skin tone in that model is zero

• Type III error

Unsurprising that the teams came to differing conclusions
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Example 7: IPCC Climate Models

. . . quantified measures of uncertainty in a finding expressed probabilistically
(based on statistical analysis of observations or model results or expert judg-
ment).
. . . Depending on the nature of the evidence evaluated, teams have the option
to quantify the uncertainty in the finding probabilistically. In most cases, level
of confidence. . .
. . . Because risk is a function of probability and consequence, information
on the tails of the distribution of outcomes can be especially important. . .
Author teams are therefore encouraged to provide information on the tails of
distributions of key variables. . .
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• Subjective probability assessments (even by experts) generally untethered to reality

• subjective confidence is unrelated to accuracy.

• mixing measurement errors with subjective probabilities doesn’t work

• climate parameters have unknown values, not probability distributions.
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‘Multi-model ensemble approach’: bogus confidence intervals
• take a “found” group of models, compute mean and SD of their predictions

• treat the mean as the expected value of the outcome and SD as the standard error
of the natural process that is generating climate

• compute a normal confidence interval from the mean and standard deviation

• treat the confidence interval as a prediction interval
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Example 8: The Rhodium Group American Climate Prospectus

Bloomberg Philanthropies, Office of Hank Paulson, Rockefeller Family Fund, Skoll
Global Threats Fund, and TomKat Charitable Trust funded a study that purports to
predict impacts of climate change.

In this climate prospectus, we aim to provide decision-makers in business and
government with the facts about the economic risks and opportunities climate
change poses in the United States.
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• estimates the effects of climate change on mortality, crop yields, energy use, the
labor force, and crime, at the level of individual counties in the United States
through the year 2099.

• predicts that violent crime will increase just about everywhere, with different
increases in different counties.

• In some places, on hot days there is on average more crime than on cool days
• Fit a regression model to the increase.
• Assume that the fitted regression model is a response schedule, i.e., how Nature

generates crime rates from temperature.
• Input average temperature change predicted by a climate model; out comes the

average increase in crime rate.
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Even if you knew exactly what the temperature and humidity would be in every cubic
centimeter of the atmosphere every millisecond of every day, you would have no idea
what the crime rate in the U.S. would be next year, much less in 2099, much less at the
level of individual counties.

And that is before factoring in the uncertainty in climate models.
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