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• US elections neither tamper evident nor resilient.

• Need systems/procedures that can provide strong evidence that the reported
winners really won.

• Every electronic system is vulnerable to bugs, configuration errors, & hacking.

7



• US elections neither tamper evident nor resilient.

• Need systems/procedures that can provide strong evidence that the reported
winners really won.

• Every electronic system is vulnerable to bugs, configuration errors, & hacking.

7



• US elections neither tamper evident nor resilient.

• Need systems/procedures that can provide strong evidence that the reported
winners really won.

• Every electronic system is vulnerable to bugs, configuration errors, & hacking.

7



Security properties of paper

• tangible/accountable

• tamper evident

• human readable

• large alteration/substitution attacks require physical access & many accomplices

Not all paper is trustworthy
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• Hand-marked paper ballots are a record of what the voter did.

• Machine-marked paper ballots are a record of what the machine did.

• BMDs make voters responsible for catching & correcting machine
errors/bugs/hacks.

• Experiments & polling-place observations show few voters check BMD printout;
fewer notice errors.
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Did the reported winner really win?

• Procedure-based vs. evidence-based elections

• sterile scalpel v. patient’s condition

• Any way of counting votes can make mistakes

• Every electronic system is vulnerable to bugs, configuration errors, & hacking

• Did error/bugs/hacking cause the wrong candidate(s) to appear to win?
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Voting system properties needed to justify public trust

• (Strong) Software Independence

• Contestability

• Defensibility

DREs, BMDs, online voting have none of these properties.
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Risk-Limiting Audits (RLAs, Stark, 2008)

• If there’s a trustworthy paper record of votes, can check whether reported winner
really won.

• Can manually count

• If you accept a controlled risk of not correcting a wrong reported outcome, can save
effort

16



A risk-limiting audit has a known maximum chance of not correcting the reported
outcome if it’s wrong & never changes correct outcomes.

Risk limit: largest possible chance of not correcting a wrong reported outcome, no
matter where or how errors/problems occurred.

Establishing whether paper trail is trustworthy involves other processes, generically,
compliance audits along w/ thorough canvass, ballot accounting, pollbook/participation
reconciliation, eligibility verification, demonstrably secure chain of custody, etc.

DRE & BMD printout is not trustworthy, no matter how well it’s protected.
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RLA pseudo-algorithm

while (!(full handcount) && !(strong evidence outcome is correct)) {
examine more ballots

}

if (full handcount) {
handcount result is final

}
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Risk-Limiting Audits

• Endorsed by NASEM, PCEA, ASA, LWV, CC, VV, . . .

• ~60 pilot audits in AK, CA, CO, GA, IN, KS, MI, MT, NJ, OH, OR, PA, RI, WA,
WY, VA, DK.

• CA counties: Alameda, El Dorado, Humboldt, Inyo, Madera, Marin, Merced,
Monterey, Napa, Orange, San Francisco, San Luis Obispo, Santa Clara, Santa Cruz,
Stanislaus, Ventura, Yolo.

• Routine statewide in CO since 2017. Statewide audits in AK, KS, WY in 2020.

• Laws in CA, CO, GA, NV, NJ, OH, OR, RI, TX, VA, WA
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Role of math/stat

• Guarantee a large chance of correcting wrong outcomes; minimize work if reported
outcome is correct.

• When can you stop inspecting ballots?

• When there’s strong enough evidence that continuing is pointless

• Frame audits as sequential hypothesis tests

• Null hypothesis: one or more reported outcomes is wrong.
• Significance level: risk limit
• Frame hypothesis quantitatively
• Can reduce to canonical problem: test whether mean of finite, bounded population is
≤ 1/2
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bi is ith ballot card, N cards in all.

1candidate(bi ) :=
{

1, ballot i has a mark for candidate
0, otherwise.

AAlice,Bob(bi ) := 1Alice(bi )− 1Bob(bi ) + 1
2 ∈ [0, 1].

mark for Alice but not Bob, AAlice,Bob(bi ) = 1.

mark for Bob but not Alice, AAlice,Bob(bi ) = 0.

marks for both (overvote) or neither (undervote) or doesn’t contain contest,
AAlice,Bob(bi ) = 1/2.
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Āb
Alice,Bob := 1

N

N∑
i=1

AAlice,Bob(bi ).

Mean of a finite list of N bounded numbers.

Alice won iff Āb
Alice,Bob > 1/2.
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Plurality & Approval Voting

K ≥ 1 winners, C > K candidates in all.

Candidates {wk}Kk=1 are reported winners.

Candidates {`j}C−K
j=1 reported losers.

Outcome correct iff

Āb
wk,`j > 1/2, for all 1 ≤ k ≤ K , 1 ≤ j ≤ C − K

K (C − K ) inequalities.

Same approach works for D’Hondt & other proportional representation schemes. (Stark
& Teague 2015)
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Super-majority

f ∈ (0, 1].

Alice won iff

(votes for Alice) > f × (valid votes for anyone)

Set

A(bi ) :=


1
2f , bi has a mark for Alice and no one else
0, bi has a mark for exactly one candidate, not Alice
1
2 , otherwise.

Alice won iff
Āb > 1/2.
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Borda count, STAR-Voting, & other additive weighted schemes

Winner is the candidate who gets most “points” in total.

sAlice(bi ): Alice’s score on ballot i .

scand(bi ): another candidate’s score on ballot i .

s+: upper bound on the score any candidate can get on a ballot.

Alice beat the other candidate iff Alice’s total score is bigger than theirs:

AAlice,c(bi ) := sAlice(bi )− sc(bi ) + s+

2s+ .

Alice won iff Āb
Alice,c > 1/2 for every other candidate c.
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Ranked-Choice Voting, Instant-Runoff Voting (RCV/IRV)

2 types of assertions (Blom et al. 2018):

1. Candidate i has more first-place ranks than candidate j has total mentions.
2. After a set of candidates E have been eliminated from consideration, candidate i is

ranked higher than candidate j on more ballots than vice versa.

Both can be written Āb > 1/2.

Finite set of such assertions implies reported outcome is right.

More than one set suffices; can optimize expected workload.
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Auditing assertions

Test complementary null hypothesis Āb ≤ 1/2 sequentially.

• Audit until either all complementary null hypotheses about a contest are rejected at
significance level α or until all ballots have been tabulated by hand.

• Yields a RLA of the contest in question at risk limit α.

• No multiplicity adjustment needed.

29



Sequential tests (Wald, 1945) and martingales

Key object: nonnegative (super)martingale

Sequence of rvs (Zj), j = 1, . . . s.t.

• E|Zj | <∞

• E(Zj+1|Z1, . . . ,Zj) = (≤)Zj

• P(Zj ≥ 0) = 1

30



Ville’s inequality (1939)

If (Zj) is a nonnegative supermartingale, then for any α ∈ (0, 1] and all J ∈ {1, . . . ,N},

Pr
(

max
1≤j≤J

Zj ≥ 1/α
)
≤ α E|ZJ |.
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ALPHA (Stark, 2022)

Test θ ≤ µ against the alternative θ > µ.

• X j := (X1, . . . ,Xj); Xi ∈ [0, ui ].

• µj := E(Xj |X j−1) computed under the null θ = µ.

• ηj = ηj(X j−1), j = 1, . . ., a predictable sequence: can’t depend on Xk for k ≥ j .

T0 := 1;

Tj := Tj−1u−1
j

(
Xj
ηj
µj

+ (uj − Xj)
uj − ηj
uj − µj

)
, j = 1, . . . . (1)

(Tj) is a nonnegative supermartingale w/ expected value ≤ 1 if θ ≤ µ.

Thus if θ ≤ µ,
P{max

j
Tj ≥ 1/α} ≤ α.
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• Set audit parameters
• risk limit α ∈ (0, 1); # cards N, sampling method, ui , η0

• Pick η(i ,X i−1) ∈ (µi , ui ], where µi := E(Xi |X i−1) is computed under the null.
• Initialize variables

• j ← 0: sample number
• T ← 1: test statistic
• S ← 0: sample sum
• m = 1/2: population mean under the null

• While T < 1/α and not all ballot cards have been audited:
• draw a ballot card at random
• j ← j + 1
• determine Xj by applying assorter to selected card
• if m < 0, T ←∞; else T ← Tu−1

j

(
Xj

η(j,S)
m + (uj − Xj) u−η(j,S)

uj −m

)
;

• S ← S + Xj

• if sampling w/o replacement, m← (N/2− S)/(N − j + 1)
• if desired, break & conduct a full hand count

34



Comparison audits

Use system’s interpretation of individual ballots or batches of ballots.

Like checking an expense report.

bi is ith ballot, ci is cast-vote record for ith ballot.

A an assorter.

overstatement error for ith ballot is

ωi := A(ci )− A(bi ) ≤ A(ci ) ≤ u,

where u is an upper bound on the value A assigns to any ballot card or CVR.
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v := 2Āc − 1, reported assorter margin.

B(bi , c) := (1− ωi/u)/(2− v/u) > 0, i = 1, . . . ,N.

B assigns non-negative numbers to ballots.

Reported outcome correct iff
B̄ > 1/2.
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Stratified sampling

Cast ballots are partitioned into S ≥ 2 strata.

Stratum s contains Ns cast ballots.

Let Āb
s denote the mean of the assorter applied to just the ballot cards in stratum s.

Then

Āb = 1
N

S∑
s=1

Ns Āb
s =

S∑
s=1

Ns
N Āb

s .

Can reject the hypothesis Āb ≤ 1/2 if we can reject the hypothesis⋂
s∈S

{Ns
N Āb

s ≤ βs

}
for all (βs)S

s=1 s.t.
∑S

s=1 βs ≤ 1/2.

Union-Intersection Test
37



Fisher’s Combining Function

{Ps(βs)}Ss=1 are independent random variables.

If
⋂

s∈S

{
Ns
N Āb

s ≤ βs
}
, distribution of

−2
S∑

s=1
ln Ps(βs)

is dominated by chi-square distribution with 2S degrees of freedom.

Low-dimensional optimization problem to maximize P-value over (βs)S
s=1.
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Sample design

• individual ballots?

• groups of ballots?

• stratify? (law, logistics, equipment capabilities, . . . )

• sampling probabilities?

• w/ replacement? w/o replacement? Bernoulli?

• fully sequential? escalation schedule?
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Open research questions

• What is the class of social choice functions that can be audited with SHANGRLA?

• If there are sufficient conditions, are there also necessary and sufficient conditions?

• Are all sets of necessary and sufficient conditions equally expensive to audit?

• Can “round-by-round” sampling reduce sample sizes?
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Wrinkles

• ~20% of U.S. voters don’t vote on paper

• States adopting universal-use BMDs: paper trail hackable/untrustworthy

• inadequate rules for chain of custody, ballot accounting, pollbook reconciliation,
eligibility verification, . . .

• need transparent high-quality randomness

• public ceremony of die rolls, published crypto-quality PRNG

• missing ballots; imperfect manifests (Bañuelos & Stark 2012)

• producing CVRs linked to ballots while preserving vote anonymity; redacted CVRs

• preserve privacy but ensure the public can confirm audit didn’t stop too soon

41
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Open-source software

• auditTools
• ballotPollTools
• SUITE
• SHANGRLA
• ALPHA
• Arlo
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https://www.stat.berkeley.edu/~stark/Vote/auditTools.htm
https://www.stat.berkeley.edu/~stark/Vote/ballotPollTools.htm
https://github.com/pbstark/CORLA18
https://github.com/pbstark/SHANGRLA
https://github.com/pbstark/ALPHA
https://github.com/votingworks/arlo


Evidence-Based Elections: 3 C’s

• Voters CREATE complete, durable, verified audit trail.

• LEO CARES FOR the audit trail adequately to ensure it remains complete and
accurate.

• Verifiable audit CHECKS reported results against the paper
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