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I
n the polarized climate change debate, cost-ben-
efit analyses of policy options are taking on an 
increasingly influential role. These analyses have 
been presented by authoritative scholars as a 
useful contribution to the debate. 

But models of climate—and especially models 
of the impact of climate policy—are theorists’ tools, 
not policy justification tools. The methods used to 
appraise model uncertainties give optimistic lower 
bounds on the true uncertainty, at best. Even in 
the finest modeling exercises, uncertainty in model 
structure is presented as known and manageable, 
when it is likely neither. Numbers arising from these 
modeling exercises should therefore not be presented 
as “facts” providing support to policy decisions.

Building more complex models of climate will 
not necessarily reduce the uncertainties. Indeed, 
if previous experience is a guide, such models will 
reveal that current uncertainty estimates are unreal-
istically small. 

The fate of the evidence
Climate change is the quintessential “wicked 
problem:” a knot in the uncomfortable area where 
uncertainty and disagreement about values affect 
the very framing of what the problem is. The issue of 
climate change has become so resonant and fraught 
that it speaks directly to our individual political and 
cultural identities. 

Scientists and other scholars often use non- 
scientific and value-laden rhetoric to emphasize to 
non-expert audiences what they believe to be the 
implications of their knowledge. For example, in 
Modelling the Climate System: An Overview, Gabriele 
Gramelsberger and Johann Feichter—after a sober 
discussion of statistical methods applicable to 
climate models—observe that “if mankind is unable 
to decide how to frame an appropriate response to 
climate change, nature will decide for both—environ-
mental and economic calamities—as the economy 
is inextricably interconnected with the climate.” 
Historians Naomi Oreskes and Erik M. Conway, 
in their recent book The Collapse of Western Civi-
lization (2014), paint an apocalyptic picture of the 
next 80 years, beginning with the “year of perpetual 
summer” in 2023, and mass-imprisonment of 
“alarmist” scientists in 2025. Estimates of the impact 
of climate change turn out to be far too cautious: 
global temperatures increase dramatically and the 
sea level rises by eight meters, resulting in plagues 
of devastating diseases and insects, mass-extinction, 
the overthrow of governments, and the annihilation 
of the human populations of Africa and Australia. In 
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the aftermath, survivors take the names of climate 
scientists as their middle names in recognition of 
their heroic attempts to warn the world. 

That the Earth’s climate is changing, partly or 
largely because of anthropogenic emissions of 
CO2 and other greenhouse gases, is not the core 
of the dispute. Instead, the focus has moved to the 
more difficult questions of “what will be the conse-
quences?” and “what is the cost of offsetting climate 
change?” Opposing factions use scientific uncer-
tainty instrumentally either to deny or to support 
the urgency of action to mitigate adverse outcomes. 
In their previous book, Merchants of Doubt, Oreskes 
and Conway talk of uncertainty amplification by 
unscrupulous stakeholders and draw parallels 
between the denial of the health effects of smoking 
by the tobacco lobby and the denial of climate change 
by climate sceptics. Conversely, climate scientist 
Richard Lindzen, a possible source of Michael Crich-
ton’s novel State of Fear, compares climate change 
to eugenics at the beginning of the 20th century: a 
wrong idea vigorously supported by scientists. In the 
case of eugenics, this included some of the founding 
fathers of statistics. 

In this battlefield of norms and worldviews, what 
is the fate of scientific evidence? 

Given the economic and societal ramifications 
of climate change, it is not surprising that several 
disciplines claim to provide certainties and solutions. 
Among these, computer modeling is perhaps the 
most visible, pervasive, and opaque.

A recent example that rests on such models is 
the American Climate Prospectus: Economic Risks 
in the United States, a study commissioned by the 
Risky Business Project, a non-profit group chaired 
by former New York mayor Michael Bloomberg, 
former U.S. Treasury Secretary Henry Paulson, and 
environmental philanthropist Tom Steyer. The report 
invokes a broad battery of models for the impact of 
climate change, predicting when, where, and how 
much temperature variation to expect and what the 
costs will be to address the consequences. 

The claimed precision and resolution of these 
modeling efforts are staggering. The Risky Business 
report forecasts—at the level of individual counties 
in the U.S.—energy costs and demand, labor 
supply, mortality, violent crime rates, and real estate 
property prices up to the year 2100. (Evidently, these 
investigators were not enlisted to predict the collapse 
of real estate prices from subprime mortgage crisis 
that triggered the recent recession, or that economic 
catastrophe might have been avoided.) The report 
presents the amount of computer power and data 

generated as evidence of the scientific legitimacy of 
the enterprise. The authors note, however, that out of 
an abundance of caution they did not model deterio-
ration in cognitive performance as temperatures rise.

Other models, such as those reported in a 2013 
Nature paper by Camilo Mora and colleagues, predict 
when the mean climate in various locations will 
move outside the range of historical variability under 
alternative greenhouse gas emissions scenarios, 
prompting the Washington Post headline, “D.C. 
climate will shift in 2047.”

To quantify the uncertainty in model predic-
tions—and especially in the response to changes 
in drivers such as anthropogenic CO2—requires 
quantifying the uncertainty in the assumptions of 
the model, the structure of the model, the physical 
approximations in the model, the data used to cali-
brate the model, and the parameters of the model. As 
a result, forecasts of global average temperature even 
a few years into the future are extremely uncertain, 
even at the level of global averages—and likely much 
more so at the level of counties or cities. For example, 
in the fourth assessment report of the Intergovern-
mental Panel on Climate Change (IPCC), forecasts 
for the period 2071-2100 generated from 12 different 
climate models predict that England will experience 
anywhere from a 60 percent decrease to a 10 percent 
increase in summer precipitation. Our own technical 
research has shown that if one accounts for all the 
uncertainties built into Nicholas Stern’s well-regarded 
and influential The Economics of Climate Change, 
the uncertainty in the cost of climate damage is so 
large as to preclude any meaningful conclusion as to 
the urgency to act at the present time to counteract 
it. The same critique applies to those who, like 
William Nordhaus, conclude from the same type of 
cost-benefit analyses that action can be delayed, in 
contrast to Stern. 

Some major climate modeling exercises strive to 
give a level-headed assessment of uncertainty. The 
UK Meteorological Office attempted to quantify the 
overall uncertainty in climate forecasts provided 
by their HadSM3 model, using simple numerical 
approximations of the more complex, but still 
approximate, numerical climate model to account for 
the uncertainty in a wide range of model parameters. 
This is laudable, but such “emulators” of climate 
models have their own large uncertainties as approx-
imations of the already-approximate, high-dimen-
sional models.

Likewise, the fifth assessment report of the IPCC 
gives qualitative descriptions of uncertainty for fore-
casts and parameters. For example, the assessment 
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report states, “Equilibrium climate sensitivity is 
likely in the range 1.5°C to 4.5°C (high confidence), 
extremely unlikely less than 1°C (high confidence), 
and very unlikely greater than 6°C (medium confi-
dence).” These qualifiers reflect the type, amount, 
quality, and consistency of the evidence, using 
probabilistic language to describe uncertainty and 
expert judgment. Unfortunately, the probabilistic 
assessments appear to rely on stylized, untestable 
assumptions without an empirical basis, and the 
expert judgments are, at the end of the day, opinions 
rather than facts—opinions influenced by the very 
models whose reliability is in question. Indeed, 
the 1.5°C to 4.5°C uncertainty range has persisted 
through 30 years of advancing climate science; as 
long ago as 1998, Jeroen van der Sluijs and others 
showed that the range was arrived at through what 
amounts to a back-of-the-envelope estimate whose 
stability over time is much more a social and political 
phenomenon than the result of any sound statistical 
method.

Although climate models have become more 
complex and techniques for evaluating their uncer-
tainty have evolved in the past decades, quantifying 
their uncertainty usefully in climate models remains 
impossible. In many cases little or no information is 
available to justify even crude ranges of uncertainty 
assumed for various inputs. “Expert opinion” is not a 
substitute for data or tested physical theory. 

When the uncertainties are uncertain
It may be possible, at least in principle, to quantify 
the uncertainties of inputs to the model—the range 
of plausible values of a given driver. But “structural 
uncertainty,” which concerns the choice of variables 
and processes to include in the model, as well as how 
the variables and processes are characterized mathe-
matically and how they interact, is likely a larger 
source of uncertainty.

A variety of methods have been proposed in 
recent years that, according to their proponents, 
can explore structural uncertainty, thereby giving a 
full accounting of forecast uncertainties. The most 
common method, which uses the results of multiple 
climate models from various research institutes, is 
based on the assumption that differences between the 
results of different climate models are a reasonable 
approximation of the structural uncertainty of a 
particular model as a representation of the real 
world. This amounts to assuming that the biases of 
different models average out over the “ensemble,” 
whereas in fact, the models are likely to share similar 
biases, since they involve similar approximations, 

similar algorithms, and similar training data.
To understand the quantification problems posed 

by the structural uncertainties, let us investigate the 
analysis of uncertainty in a climate model given by 
the UK Meteorological Office in 2009’s UK Climate 
Projections (UKCP09) Science Report: Climate Change 
Projections. In this nearly 200-page document, the 
uncertainties from many sources are explained, 
and their effects propagated through to the model 
results, ending in “probabilistic” forecasts of climate 
change. The report states, “[although] a number of 
methods for probabilistic climate projection have 
been published in the research literature, we are 
not aware of any that have been designed to sample 
uncertainties as comprehensively as is done in 
UKCP09.” This suggests that UKCP09 represents the 
state-of-the-art in uncertainty analysis of climate 
models as of 2009.

UKCP09 seeks to sample both parametric and 
structural uncertainties. Sampling parametric uncer-
tainties is done by constructing a “perturbed physics 
ensemble,” which is simply a collection of model runs 
of variants of the Met Office’s climate model, where 
each run has different, but plausible, values assigned 
to variables. For example, the model may be run 
several times with different values for temperature 
and water vapor in a given area to determine future 
cloud cover. The distribution of input values is an 
invention constructed by eliciting opinions from 
experts. Running the model many times, using many 
different variables results in some climate simula-
tions that are more realistic than others, so each 
model variant is additionally weighted according to 
its performance in predicting recent climate observa-
tions and in hindcasts over the past 90 years. In the 
case of cloud cover, if the model output bears little 
resemblance to observed cloud cover in a particular 
area, that projection is given less weight than one 
that more accurately describes observed cloud cover. 
The perturbed physics ensemble thus produces a 
set of projections that have, according to the report, 
statistically knowable parametric uncertainties that 
can be described in terms of probability. However, 
the reporting obscures the fact that the probability 
distribution is an input, not an output.

UKCP09 also attempts to evaluate structural 
uncertainties in its model. It does so by comparing 
its ensemble of predictions to those of alternative 
climate models from other research groups. This 
approach is based on the assumption that “the effects 
of structural differences between models can be 
assumed to provide reasonable a priori estimates 
of possible structural differences between [the 
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model] and the real world.” That is, it assumes that 
predictions from members of the ensemble somehow 
bracket the truth.

This assumption has no basis. UKCP09’s authors 
compare the projections of their ensemble with those 
of the other climate models and then estimate the 
structural uncertainty as a probability distribution of 
those projections, effectively treating the ensemble 
of models as if they were a random sample of all 
possible models. 

For instance, for the UKCP09 to project future 
rainfall in a particular area, the authors use the Met 
Office climate models to run the perturbed physics 
ensemble with many different variables that might 
affect future rainfall to generate a range of possible 
outcomes. These are then judged by how well these 
outcomes conform to observed rainfall to produce 
an initial probability distribution—say, a 90 percent 
probability that summer rainfall in 2050 will decrease 
by less than 40 percent. This distribution is compared 
to the rainfall projections from alternative climate 
models, which have their own uncertainties—but 
which are assumed to be uncertain in their own 
distinct way—so that the predictions of the ensemble 
are, overall, unbiased. This, according to the authors, 
allows for the quantification of both parametric and 
structural uncertainty in the model projections of 
future rainfall. But there is no reason to think that 
the variability across the ensemble is a probability 
distribution at all, much less a distribution centered 
at the “real” answer. 

This approach may give lower bounds on the 
uncertainty, but cannot give defensible upper bounds, 
for several reasons. First, such “ensembles” are not 
in any sense representative of the range of possible 
(and plausible) models that fit the data. Second, the 
structural uncertainties of the models considered are 
related: the models generally rely on similar physical 
approximations, similar numerical methods and 
algorithms, similar parameterizations, and similar 
calibration data. Climate models reflect, to differing 
degrees and with varying approaches, climate 
science’s best understanding of the processes that 
govern the Earth’s climate. But some processes, such 
as aspects of the methane cycle and the feedback 
effects of clouds, are poorly understood and not 
accounted for reliably in current climate models. So 
models share common errors whose magnitudes are 
simply not known.

The errors in the ensemble of model runs with 
differing variables (using the Met Office’s climate 
models) are not statistically independent—or even 
random. This fact is acknowledged in the UKCP09 

report, which states, “our estimates of discrepancy 
[structural uncertainty] can be viewed as a likely 
lower bound to the true level of uncertainty asso-
ciated with structural model errors.” Furthermore, 
the structural uncertainty is estimated, in part, 
by comparing the model with other models in 
hindcasting historical climate change. Since these 
models rely on similar modeling assumptions and 
approximations and are calibrated to the same 
historical observations, one would expect their output 
to be similar—and to have similar errors and biases. 
The biases of different models are unlikely to offset 
each other. The models do not provide independent 
estimates of climate change.

The Met Office also performed sensitivity analysis 
to assess the relative impact of assumptions about 
various inputs on the uncertainty of model outputs. 
But UCKP09’s sensitivity analysis relies on the 
assumed randomness of the input parameters, among 
other things. As the report puts it:

The key point is that although the UKCP09 
probabilistic projections provide estimates of 
uncertainties in future climate change, it is also 
inevitable that the probabilities are themselves 
uncertain. If the uncertainties in the probabil-
ities are sufficiently small compared with the 
uncertainties quantified by the probabilities, 
then the UKCP09 results are likely to be 
sufficiently reliable to be used in support of 
assessments of impacts, vulnerability, or 
adaptation. 

This neglects the fact that the “uncertainties in the 
probabilities” are also assumptions—not a matter of 
physics or measurement error. 

Finally, the sensitivity analysis varies only a subset 
of the assumptions and only one at a time. That 
precludes interactions among the uncertain inputs, 
which may be highly relevant to climate projections. 
Elsewhere we have called these styles of sensitivity 
analysis “perfunctory.” In multidimensional spaces, 

Overall, there is a worrying 
tendency in climate science  
to claim that model 
uncertainties are quantifiable 
and manageable, but there 
is little or no statistical basis 
in the methodology of 
estimating uncertainty. 
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varying one factor at a time is tantamount to 
counting uncertainties instead of weighing them. 

Overall, there is a worrying tendency in climate 
science to claim that model uncertainties are 
quantifiable and manageable, but there is little or no 
statistical basis in the methodology of estimating 
uncertainty, especially structural uncertainty. The 
evidence suggests that even the quantifiable uncer-
tainties are significantly underestimated. Used in 
this way, models become, in the words of a classic 
1993 paper by Silvio Funtowicz and Jerome Ravetz, 
“substitutes for disciplined thought and scientific 
rigor.”

Scientific insight is not policy evidence
Economist Frank Knight distinguished between risk 
and uncertainty in a celebrated 1921 work entitled 
Risk, Uncertainty, and Profit. According to Knight, 
risk corresponds to the possibility of applying proba-
bilistic reasoning and the calculus of probabilities 
(such as when playing roulette), whereas uncertainty 
corresponds to the real-life situations where such 
a computation is impossible, simply because “we 
do not know what we do not know.” Applied to the 
economy, profit should accrue to one who accepts 
inescapable uncertainty, not to one who can compute 
risks. Intellectually, Knight’s position was close to 
that of John Maynard Keynes, in denying that our 
thinking can be described by a probability distri-
bution over all possible future events. The hubris of 
modeling “epistemic uncertainty”—the unknown 
unknowns—as a probability distribution lies, in part, 
in assuming that we know a great deal about what we 
do not know.

Brian Wynne, a leading risk theoretician, 
expanded Knight’s framework by distinguishing 
between:

RISK - Know the odds. 
UNCERTAINTY - Don’t know the odds: may 
know the main parameters. May reduce 
uncertainty but increase ignorance. 
IGNORANCE - Don’t know what we don’t 
know. Ignorance increases with increased 
commitments based on given knowledge. 
INDETERMINACY - Causal chains or networks 
open.

Wynne elaborates: “Science can define a risk, 
or uncertainties, only by artificially ‘freezing’ a 
surrounding context that may or may not be this 
way in real-life situations. The resultant knowledge 
is therefore conditional knowledge, depending on 
whether these pre-analytical assumptions might turn 

out to be valid. But this question is indeterminate—
for example, will the high quality of maintenance, 
inspection, operation, etc., of a risky technology be 
sustained in future, multiplied over replications, 
possibly many all over the world?”

Yet some experts seem convinced that they can 
model the structural uncertainty of climate models 
and refuse to make the Knightian distinction 
between risk and uncertainty, let alone ignorance 
and indeterminacy. In truth, no one knows how 
well climate models can forecast climate change: 
estimates of uncertainty are themselves almost 
entirely uncertain. One only has to examine the 
IPCC’s recent assessment report to see this: of the 
114 models in the ensemble, 111 failed to predict the 
recent 15-year slowdown in the increase of global 
mean surface temperature, many by an order of 
magnitude. Although natural decadal variability may 
explain this to some extent, and the long-term trend 
might still be valid, it does not inspire confidence in 
the accuracy of model forecasts.

Research is improving our understanding of 
the complex processes that affect the climate. Does 
this, coupled with increasing computing power, 
mean we will eventually have models that provide 
accurate forecasts of climate change and the costs 
of its effects? No. Even proponents of model-based 
assessment of climate impacts admit that the more 
one understands climate, the more model predic-
tions may reveal that current estimates of uncer-
tainty are unrealistically small. The UKCP09 report 
states that although they hope that better modeling 
will eventually reduce uncertainties, “this cannot be 
guaranteed as the introduction of processes not yet 
included (for example, feedbacks from the methane 
cycle), or as yet unknown, could have the opposite 
effect.” 

Our theoretical and observational knowledge give 
us strong reasons to be concerned about the conse-
quences of climate change and to act to mitigate its 
future effects. Modeling the economic cost of climate 
change necessarily requires accurate forecasts of 
the magnitude and locations of its various effects 
(which aren’t available). But, as detailed in a recent 
article by Richard A. Rosen and Edeltraud Guenther, 
extra layers of uncertainty are added because of the 
need for assumptions about the future growth of the 
economy and population—not to mention the highly 
subjective “discounting” of future costs and benefits 
against present ones, the uncertainty in future 
technologies, and the uncertainty of future changes 
in production and consumption patterns.

A good demonstration of the volatility of these 
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cost estimates is that even when using the same model, 
different teams cannot agree on the urgency and 
severity of action. Much of the difference is due to 
the assumed form of the function that relates damage 
to surface temperature. Different research teams are 
apparently able to propose different functions that are 
equally plausible, since there is little or no evidence 
to constrain them, as inadvertently shown in a recent 
paper by Simon Dietz and Nicholas Stern that tries 
to show that models used by the economist William 
Nordaus to suggest less urgency to act on climate are 
consistent with an interpretation of more urgency. 

Given their uncertainties, the value of climate 
models to the policy debate depends on the important 
difference between policy simulation (performed by 
scholars to gain insight in their discipline) and policy 
justification (where the same scholars or other parties 
produce evidence to support adopting a specific 
policy). The difference between scientific insight and 
evidence for policymaking is profound. Indeed, in 
policymaking, the question raised by some model-
based “facts” is whether, in the face of such substantial 
uncertainty, they are scientific at all. Yet when these 
numbers enter the policy world, often through the 
media, they look and sound like incontrovertible 
facts. The Financial Times recently published an 
article by its chief economic commentator Martin 
Wolf, who considers as “plausible” economic models 
suggesting “that the aggregate loss of world output by 
2030, under the low-carbon option, would be equiv-
alent to a one-year hiatus in economic growth.” If 
models are judged by their plausibility—by definition 
a non-quantitative attribute—why should we derive 
from these models quantitative information? And  
why should this information be relevant for policy? 

A parallel could be drawn here with long-term 
weather forecasts. A story is told by Nobel Laureate 
Kenneth Arrow, who was asked to provide weather 
forecasts one month in advance during World War II:

The statisticians among us subjected these 
forecasts to verification and they differed in no 
way from chance. The forecasters themselves 
were convinced and requested that the forecasts 
be discontinued. The reply read approximately 
like this: “The commanding general is well 
aware that the forecasts are no good. However, 
he needs them for planning purposes.”

Climate models, by augmenting our scientific 
intuition, may help us to understand climate, though 
we might question whether the cost in time and 
resources absorbed by these exercises might be 
deployed better elsewhere. But when we attribute to 

them predictive capabilities and attempt to introduce 
them, through political processes, into our policy 
planning, the numbers pollute the debates with a 
spurious impression of rationality, prediction, and 
control. One danger for society is that we will be 
condemned to endless debates over uncertainties, 
with models deployed to support various competing 
positions about which policy pathways to follow. 
Another, just as serious, is that, with excessive 
confidence in our ability to model the future, we will 
commit to policies that reduce, rather than expand, 
available options and thus our ability to cope with 
the unknown unknowns of our future. 
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chair, Department of Statistics, University of Califor-
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