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It is unusual to win a lottery prize worth $600 or more. No one we know has. But
ten people have each won more than 80 such prizes in the Florida Lottery. This seems
fishy. Someone might get lucky and win the Mega Millions jackpot (a 1-in-259 million
chance) having bought just one ticket. But it’s implausible that a gambler would win
many unlikely prizes without having bet very many times.

How many? We pose an optimization problem whose answer gives a lower bound
on any sensible estimate of an alleged gambler’s spending: over all possible combi-
nations of Florida Lottery bets, what is the minimum amount spent so that, if every
Florida resident spent that much, the chance that any of them would win so many
times is still less than one in a million? If that amount is implausibly large compared
to that gambler’s means, we have statistical evidence that she is up to something.

Solving this optimization problem in practice hinges on two math facts:

• an inequality that lets us bound the probability of winning dependent bets in some
situations in which we do not know precisely which bets were made, and

• log-concavity of the regularized Beta function, which lets us show that any local
minimizer attains the global minimal value.

We conclude that 2 of the 10 suspicious gamblers could just be lucky. The other 8
are chiseling or spending implausibly large sums on lottery tickets. These results were
used by one of us (LM) to focus on-the-ground investigations and to support an exposé
of lax security in the Florida lottery [19]. We describe what those investigations found,
and the policy consequences in Florida and other states.

How long can a gambler gamble?

Is there a non-negligible probability that a pathological gambler of moderate means
could win many $600+ prizes? If not, we are done: our suspicion of these 10 gamblers
is justified.
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So, suppose a gambler starts with a bankroll of S0 and buys a single kind of lottery
ticket over and over again. If he spends his initial bankroll and all his winnings, how
much would he expect to spend in total and how many prizes would he expect to collect
before going broke?

Let the random variable X denote the value of a ticket, payoff minus cost. We
assume that

E(X) < 0, (1)

because that is the situation in the games where our suspicious winners claimed prizes.
(It does infrequently happen that lottery tickets can have positive expectation, see [14]
or [1].) Assumption (1) and the Law of Large Numbers say that a gambler with a finite
bankroll eventually will run out of money, with probability 1. The question is: how
fast?

Write c > 0 for the cost of the ticket, so that

P(X ≥ −c) = 1 and P(X = −c) �= 0. (2)

To illustrate our assumptions and notation, let’s look at a concrete example of a Florida
game, Play 4. It is based on the numbers or policy game formerly offered by organized
crime, described in [16] and [22]. Variations on it are offered in most states that have
a lottery.

Example 1. (Florida’s Play 4 game) Our ten gamblers claimed many prizes in
Florida’s Play 4 game, although in 2012 it only accounted for about 6% of the Florida
Lottery’s $4.45 billion in sales. Here are the rules, simplified in ways that don’t change
the probabilities.

The Lottery draws a 4-digit random number twice a day. A gambler can bet on the
next drawing by paying c = $1 for a ticket, picking a 4-digit number, and choosing
“straight” or “box.”

If the gambler bets “straight,” she wins $5000 if her number matches the next 4-digit
number exactly (which has probability p = 10−4). She wins nothing otherwise. The
expected value of a straight ticket is E(X) = $5000 × 10−4 − $1 = −$0.50.

If a gambler bets “box,” she wins if her number is a permutation of the digits in the
next 4-digit number the Lottery draws. She wins nothing otherwise. The probability of
winning this bet depends on the number of distinguishable permutations of the digits
the gambler selects.

For instance, if the gambler bets on 1112, there are 4 possible permutations, 1112,
1121, 1211, and 2111. This bet is a “4-way box.” It wins $1198 with probability
1/2500 = 4 × 10−4, since 4 of the 10,000 equally likely outcomes are permutations
of those four digits. If the gambler bets on 1122, there are 6 possible permutations of
the digits; this bet is called a “6-way box.” It wins $800 with probability 6 × 10−4.
(The 6-way box is relatively unpopular, accounting for less than 1% of Play 4 tickets.)
Buying such a ticket has expected value E(X) ≈ −$0.52. Similarly, there are 12-way
and 24-way boxes.

In the abstract setting, the gambler’s bankroll after t bets is

St := S0 + X1 + X2 + · · · + Xt ,

where X1, . . . , Xt are i.i.d. (independent, identically distributed) random variables
with the same distribution as X , and Xi is the net payoff of the i th ticket. The gambler
can no longer afford to keep buying tickets after the T th one, where T is the smallest
t ≥ 0 for which St < c.
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Proposition 1. In the notation of the preceding paragraph,

S0 − c

|E(X)| < E(T ) ≤ S0

|E(X)| ,

with equality on the right if S0 and all possible values of X are integer multiples of c.

In most situations, S0 is much larger than c, and the two bounds are almost identical.
In expectation, the gambler spends a total of cE(T ) on tickets, including all of his
winnings, which amount to cE(T ) − S0.

Proof. By the definition of T and (2),

0 ≤ E(ST ) < c, (3)

with equality on the left in case S0 and X are integer multiples of c. Now the crux is
to relate E(T ) to E(ST ). If T were constant (instead of random), then T = ET and we
could simply write

E(ST ) = E

(
S0 +

ET∑
i=1

Xi

)
= S0 + E(T )E(X). (4)

Combining (4) with (3) would give the claim. The key is that equation (4) holds even
though T is random—this is Wald’s equation (see, e.g., [9, §5.4]). The essential prop-
erty is that T is a stopping time, i.e., for every k > 0, whether or not one places a kth
bet is determined just from the outcomes of the first k − 1 bets.

You might recognize that in this discussion that we are considering a version of the
gambler’s ruin problem but with an unfair bet and where the house has infinite money;
for bounds on gambler’s ruin without these hypotheses, see, e.g., [10].

A ticket with just one prize The proposition lets us address the question from the
beginning of this section. Suppose a ticket pays j with probability p and nothing other-
wise; the expected value of the ticket, E(X) = pj − c, is negative; and j is an integer
multiple of c. If a gambler starts with a bankroll of S0 and spends it all on tickets, suc-
cessively using the winnings to buy more tickets, then by Proposition 1 the gambler
should expect to buy E(T ) = S0/(c − pj) tickets, which means winning

cE(T ) − S0

j
= pS0

c − pj
.

prizes.

Example 2. How many prizes might a compulsive gambler of “ordinary” means
claim? Surely some gamblers have lost houses, so let us say he starts with a bankroll
worth S0 = $175,000, an amount between the median list price and the median sale
price of a house in Florida [24]. If he always buys Play 4 6-way box tickets and recy-
cles his winnings to buy more tickets, the previous paragraph shows that he can expect
to win about

pS0/(c − pj) = 6 × 17.5/0.52 ≈ 202 times.

This is big enough to put him among the top handful of winners in the history of the
Florida lottery.

Hence, the number of wins alone does not give evidence that a gambler cheated.
We must take into account the particulars of the winning bets.
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A toy version of the problem

From here on, a “win” means a win large enough to be recorded; for Florida, the
threshold is $600. Suppose for the moment that a gambler only buys one kind of lottery
ticket, and that each ticket is for a different drawing, so that wins are independent.
Suppose each ticket has probability p of winning.

A gambler who buys n tickets spends cn and, on average, wins np times. This is
intuitively obvious, and follows formally by modeling a lottery bet as a Bernoulli trial
with probability p of success: in n trials we expect np successes.

We don’t know n, and the gambler is unlikely to tell us. But based on the calculation
in the preceding paragraph, we might guess that a gambler who won W times bought
roughly W/p tickets. Indeed, an unbiased estimate for n is n̂ := W/p, corresponding
to the gambler spending cn̂ on tickets. Since p is very small, like 10−4, the number n̂
is big—and so is the estimated amount spent, cn̂. (Note that this estimate includes any
winnings “reinvested” in more lottery tickets.)

A gambler confronted with n̂ might quite reasonably object that she is just very
lucky, and that the true number of tickets she bought, n, is much smaller. Under the
assumptions in this section, her tickets are i.i.d. Bernoulli trials, and the number of
wins W has a binomial distribution with parameters n and p, which lets us check the
plausibility of her claim by considering

D(n; w, p) := probability of at least w

wins with n tickets
=

n∑
k=w

(
n

k

)
pk(1 − p)n−k . (5)

Modeling a lottery bet as a Bernoulli trial is precisely correct in the case of games
like Play 4. But for scratcher games, there is a very large pool from which the gambler
is sampling without replacement by buying tickets; as the pool is much larger than
the values of n that we will consider, the difference between drawing tickets with and
without replacement is negligible.

Example 3. (Louis Johnson) Of the 10 people who had won more than 80 prizes each
in the Florida Lottery, the second most-frequent prize claimant was Louis Johnson. He
claimed W = 57 $5,000 prizes from straight Play 4 tickets (as well as many prizes
in many other games that we ignore in this example). We estimate that he bought
n̂ = W/p = 570,000 tickets at a cost of $570,000.

What if he claimed to only have bought n = 175,000 tickets? The probability of
winning at least 57 times with 175,000 tickets is

D(175000; 57, 10−4) ≈ 6.3 × 10−14.

For comparison, by one estimate there are about 400 billion stars in our galaxy [15].
Suppose there were a list of all those stars, and two people independently pick a star
at random from that list. The chance they would pick the same star is minuscule, yet it
is still 40 times greater than the probability we just calculated. It is utterly implausible
that a gambler wins 57 times by buying 175,000 or fewer tickets.

What this has to do with Joe DiMaggio

The computation in Example 3 does not directly answer whether Louis Johnson is
lucky or up to something shady. The most glaring problem is that we have calculated
the probability that a particular innocent gambler who buys $175,000 of Play 4 tickets
would win so many times. The news media have publicized some lottery coincidences
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as astronomically unlikely, yet these coincidences have turned out to be relatively un-
surprising given the enormous number of people playing the lottery; see, for example,
[7, esp. p. 859] or [23] and the references therein.

Among other things, we need to check whether so many people are playing Play 4
so frequently that it’s reasonably likely at least one of them would win at least 57 times.
If so, Louis Johnson might be that person, just like with Mega Millions: no particular
ticket has a big chance of winning, but if there are enough gamblers, there is a big
chance someone wins.

We take an approach similar to how baseball probability enthusiasts attempt to
answer the question, Precisely how amazing was Joe DiMaggio? Joe DiMaggio is
famous for having the longest hitting streak in baseball: he hit in 56 consecutive games
in 1941. (The modern player with the second longest hitting streak is Pete Rose, who
hit in 44 consecutive games in 1978.) One way to frame the question is to consider the
probability that a randomly selected player gets a hit in a game, and then estimate the
probability that there is at least one hitting streak at least 56 games long in the entire
history of baseball. If a streak of 56 or more games is likely, then the answer to the
question is “not so amazing”; DiMaggio just happened to be the person who had the
unsurprisingly long streak. If it is very unlikely that there would be such a long streak,
then the answer is: DiMaggio was truly amazing. (The conclusions in DiMaggio’s case
have been equivocal, see the discussion in [13, pp. 30–38].)

Let’s apply this reasoning to Louis Johnson’s 57 Play 4 wins (Example 3). Suppose
that N gamblers bought Play 4 tickets during the relevant time period, each of whom
spent at most $175,000. Then an upper bound on the probability that at least one such
gambler would win at least 57 times is the chance of at least one success in N Bernoulli
trials, each of which has probability no larger than p ≈ 6.3 × 10−14 of success. (Louis
Johnson represents a success.) The trials might not be independent, because different
gamblers might bet on the same numbers for the same game, but the chance that at
least one of the N gamblers wins at least 57 times is at most N p by the Bonferroni
bound (for any set of events A1, . . . , AN , P(∪N

i=1 Ai ) ≤ ∑N
i=1 P(Ai )).

What is N? Suppose it’s the current population of Florida, approximately 19 mil-
lion. Then the chance at least one person would win at least 57 times is no larger than
19 × 106 × 6.3 × 10−14 = 0.0000012, just over one in a million.

This estimate is crude because the estimated number of gamblers is very rough and
of course the estimate is not at all sharp (it gives a lot away in the direction of making
the gambler look less suspicious) because most people spend nowhere near $175,000
on the lottery. We are giving even more away because Louis Johnson won many other
bets (his total winnings are, of course, dwarfed by the expected cash outlay). Consid-
ering all these factors, one might reasonably conclude that either Louis Johnson has a
source of hidden of money—perhaps he is a wealthy heir with a gambling problem—or
he is up to something.

Example 4. (Louis Johnson 2) In Example 3 we picked the $175,000 spending level
almost out of thin air, based on Florida house prices as in Example 2. Instead of starting
with a limit on spending and deducing the probability of a number of wins, let’s start
with a probability, ε = 5 × 10−14, and infer the minimum spending required to have at
least that probability of so many wins.

If Johnson buys n tickets, then he wins at least 57 times with probability D(n; 57,

10−4). We compute n0, the smallest n such that

D(n; 57, 10−4) ≥ ε,

which gives n0 = 174,000.
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Using the Bonferroni bound again, we find that the probability, if everyone in
Florida spent $174,000 on straight Play 4 tickets, the chance that any of them would
win 57 times or more is less than one in a million.

Multiple kinds of tickets

Real lottery gamblers tend to wager on a variety of games with different odds of win-
ning and different payoffs. Suppose they place b different kinds of bets. (It might feel
more natural to say “games,” but a gambler could place several dependent bets on a
single Play 4 drawing: straight, several boxes, etc.)

Number the bets 1, 2, . . . , b. Bet i costs ci dollars and has probability pi of win-
ning. The gambler won more than the threshold on bet i wi times. We don’t know
ni , the number of times the gambler wagered on bet i . If we did know the vector
�n = (n1, n2, . . . , nb), then we might be able to calculate the probability:

P(�n; �w, �p) :=
(probability of winning at least wi times on bet i with

ni tickets, for all i

)
. (6)

As in Example 4, we can find a lower bound on the amount spent to attain wi wins on
bet i , i = 1, . . . , b, by solving

�c · �n∗ = min
�n

�c · �n such that ni ≥ wi and P(�n; �w, �p) ≥ ε. (7)

For a typical gambler that we study, this lower bound �c · �n∗ will be in the millions
of dollars. Thinking back to the “Joe DiMaggio” justification for why (7) is a lower
bound, it is clear that not every resident of Florida would spend so much on lottery
tickets, and our gut feeling is that a more refined justification would produce a larger
lower bound for the amount spent.

But how can we find P(�n; �w, �p)? If the different bets were on independent events
(say, each bet is a different kind of scratcher ticket), then

P(�n; �w, �p) =
b∏

i=1

(probability of winning at least wi

times on bet i with ni tickets

)
=

b∏
i=1

D(ni ; wi , pi ). (8)

But gamblers can make dependent bets, in which case (8) does not hold. Fortunately,
it is possible to derive an upper bound for the typical case, as we now show.

No dependent wins is almost as good as independent bets

For most of the 10 gamblers, we did not observe wins on dependent bets, such as a win
on a straight ticket and a win on a 4-way box ticket for the same Play 4 drawing. We
seek to prove Proposition 2 (below), which gives an upper bound on the probability
that we observe at least so many wins but no wins on dependent bets.

Abstractly, we envision a finite number d of independent drawings, such as a
sequence of Play 4 drawings. For each drawing j , j = 1, . . . , d, the gambler may
bet any amount on any of b different bets (such as 1234 straight, 1344 6-way box,
etc.), whose outcomes—for drawing j—may be dependent, but whose outcomes on
different draws are independent. We write pi for the probability that a bet on i wins in
any particular drawing; pi is the same for all drawings j .

For i = 1, . . . , b and j = 1, . . . , d, let ni j ∈ {0, 1} be the indicator that the gambler
wagered on bet i in drawing j , so that i th row sum, ni := ∑

j ni j , is the total number
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of bets on i . We call the entire system of bets B, represented by the b-by-d zero-one
matrix B = [ni j ].

Proposition 2. Suppose that, for each i , a gambler wagers on bet i in ni different
drawings, as specified by B, above. Given the bets B, consider the events

Wi := (gambler wins bet i at least wi times with bets B),

and the event

I := (in each drawing j , the gambler wins at most one bet).

Then

P(I ∩ W1 ∩ · · · ∩ Wb) ≤
b∏

i=1

P(Wi). (9)

In our case, P(Wi) = D(ni ; wi , pi), so we restate (9) as

P(I ∩ W1 ∩ · · · ∩ Wb) ≤
b∏

i=1

D(ni ; wi , pi ). (10)

Proposition 2 is intuitively plausible: even though the bets are not independent,
the drawings are, and event I guarantees that any single drawing helps at most one
of the events {Wi } to occur. We prove Proposition 2 as a corollary of an extension
of a celebrated result, the BKR inequality, named for van den Berg–Kesten–Reimer,
conjectured in [4], and proved in [21] and [3] (or see [5]). The remainder of this section
provides the details. The original BKR inequality is stated as Theorem 1. We separate
the purely set-theoretic aspects of the discussion, from the probabilistic aspects.

The BKR operation � Let S be an arbitrary set, and write Sd for the Cartesian
product of d copies of S. Since our application is probability, we call an element
ω = (ω1, . . . , ωd) ∈ Sd an outcome, and we call any A ⊆ Sd an event.

For a subset J ⊆ {1, . . . , d} and an outcome ω ∈ Sd , the J -cylinder of ω,
denoted (J, ω), is the collection of ω′ ∈ Sd such that ω′

j = ω j for all j ∈ J . For
events A1, A2, . . . , Ab, let A1 � A2 � · · · � Ab ⊆ Sd be the set of ω for which there
exist pairwise disjoint J1, J2, . . . , Jb ⊆ {1, . . . , d} such that (Ji , ω) ⊆ Ai for all i . The
case b = 2, where one combines just two events, is the context for the original BKR
inequality as in [4, p. 564]; the operation with b > 2 is new and is the main study of
this section.

Here is another definition of � that might be more transparent. Given an event
A ⊆ Sd and a subset J ⊆ {1, . . . , d}, define the event

[A]J := {ω ∈ A | (J, ω) ⊆ A} =
⋃

{ω|(J,ω)⊆A}(J, ω).

Informally, [A]J consists of the outcomes in A, such that by looking only at the coordi-
nates indexed by J , one can tell that A must have occurred. Evidently, for A, B ⊆ Sd ,

A ⊆ B implies [A]J ⊆ [B]J and J ⊆ K implies [A]J ⊆ [A]K . (11)

The definition of � becomes�
1≤i≤b

Ai :=
⋃

pairwise disjoint J1, . . . , Jb ⊆ {1, . . . , d}
[A1]J1 ∩ [A2]J2 ∩ · · · ∩ [Ab]Jb . (12)
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We read the above definition as “
�

1≤i≤b Ai is the event that all b events occur, with b
disjoint sets of reasons to simultaneously certify the b events.” Informally, the outcome
ω, observed only on the coordinate indices in Ji , supplies the “reason” that we can
certify that event Ai occurs.

Our notation
�

1≤i≤b Ai ≡ A1 � A2 � · · · � Ab is intentionally analogous to the no-
tations for set intersection,

⋂
1≤i≤b Ai ≡ A1 ∩ A2 ∩ · · · ∩ Ab, and set union,

⋃
1≤i≤b Ai

≡ A1 ∪ A2 ∪ · · · ∪ Ab. The multi-input operator
�

is, like set intersection
⋂

and set
union

⋃
, fully commutative, i.e., unchanged by any re-ordering of the inputs. Unlike

intersection and union, � is not associative, as we now show.

Example 5. Take S = {0, 1}, d = 3, and

A = (0, ∗, ∗) ∪ (1, 0, ∗), B = (0, ∗, ∗) ∪ (1, 1, ∗), C = (∗, 0, 1),

where we write for example (1, 0, ∗) = {(1, 0, 0), (1, 0, 1)} = ({1, 2}, (1, 0, s)) for
s = 0, 1 and (0, ∗, ∗) = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)}. Note that |A| = |B|
= 6. Then A � B = (0, ∗, ∗), (A � B) � C = {(0, 0, 1)}—using J1 = {1} and
J2 = {2, 3} in (12)—but B � C = {(0, 0, 1)} and A � (B � C) = ∅. Also,
A � B � C = ∅.

The connection between lottery drawings and � Before continuing to discuss the
BKR operation � in the abstract, we consider what it means for lottery drawings. We
take S = {0, 1, . . . , 2b − 1} to encode the results of a single draw: an element s ∈ S
answers, for each of the b bets, whether that bet wins or not. The sample space for our
probability model is Sd ; the j th coordinate ω j reports the results of the b bets on the
j th draw.

It is easy to see that, in the notation of Proposition 2,

(I ∩ W1 ∩ · · · ∩ Wb) ⊆
b�
1

Wi . (13)

Indeed, given an outcome ω ∈ I ∩ W1 ∩ · · · ∩ Wb, we can take, for i = 1 to b,
Ji := { j | on draw j , bet i wins and ni j = 1}. Since ω ∈ I , the sets J1, . . . , Jb are mu-
tually disjoint; and since ω ∈ Wi , |Ji | ≥ ni . Hence, (Ji , ω) ⊆ Wi , and thus ω ∈ [Wi ]Ji ,
for i = 1 to b.

Example 6. The left hand side of (13) can be a strict subset of the right hand side. For
example, with b = 2 bets and d = 2 draws, suppose that w1 = w2 = 1 and the gambler
lays both bets on both draws. The outcome where both bets win on both draws is not
in the left side of (13) but is in W1 � W2.

To write this example out fully, we think of the binary encoding, S = {0, 1, 2, 3}
corresponding to {00, 01, 10, 11}, so that, for example, 0 ∈ S represents a draw where
both bets lose, 1 ∈ S represents the outcome 01 where the first bet loses and the second
bet wins, 2 ∈ S represents the outcome 10 where the first bet wins and the second bet
loses, and 3 ∈ S represents the outcome 11 where both bets win.

The event I is the set of ω = (ω1, ω2) for which no coordinate ω j is equal to 3. The
event W1 is the set of ω such that at least one of the coordinates is equal to 2 or 3, and
the event W2 is the set of ω such that at least one of the coordinates is equal to 1 or 3.
Certainly,

I ∩ W1 ∩ W2 = {(1, 2), (2, 1)},
yet

W1 � W2 = {(1, 2), (2, 1), (1, 3), (2, 3), (3, 1), (3, 2), (3, 3)}.
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Set theoretic considerations related to the BKR inequality It is obvious that, for
events B1, . . . , Br ⊆ Sd and J ⊆ {1, · · · , d},[⋂

1≤i≤r
Bi

]
J

=
⋂

1≤i≤r

[Bi ]J and
[⋃

1≤i≤r
Bi

]
J

⊇
⋃

1≤i≤r

[Bi ]J . (14)

For unions, the containment may be strict, as in Example 5, where A ∪ B = Sd hence
[A ∪ B]{1} = Sd , whereas [A]{1} = [B]{1} = (0, ∗, ∗).

Lemma 1. (Composition of cylinder operators) For A ⊆ Sd and J, K ⊆ {1, · · · , d},
[[A]J ]K = [A]J∩K .

Proof. Suppose first that ω ∈ [[A]J ]K . That is, (K , ω) ⊆ [A]J : if ω′′ ∈ Sd agrees
with ω on K , then (J, ω′′) ⊆ A. We must show that ω is in [A]J∩K ; i.e., if ω′′ is in
(J ∩ K , ω), then ω′′ is in A.

Given ω′′ ∈ (J ∩ K , ω), pick ω′ to agree with ω on K and ω′′ on Sd \ K . Then ω′

agrees with ω′′ on (Sd \ K ) ∪ (J ∩ K ), so on J , i.e., ω′′ ∈ A, proving ⊆.
We omit the proof of the containment ⊇, which is easier.

Proposition 3. For A1, A2, . . . , Ab ⊆ Sd, we have

b�
1

Ai ⊆ (· · · ((A1 � A2) � A3) · · · � Ab−1) � Ab.

Proof. By induction, using (11), it suffices to prove that(
b�
1

Ai

)
⊆
(

b−1�
1

Ai

)
� Ab.

With unions over K ⊆ {1, . . . , d} and pairwise disjoint J1, J2, . . .,(
b−1�

1

Ai

)
� Ab =

⋃
K

([
b−1�
i=1

Ai

]
K

∩ [Ab]K c

)
(15)

=
⋃

K

⎛
⎝
⎡
⎣ ⋃

J1,...,Jb−1

b−1⋂
i=1

[Ai ]Ji

⎤
⎦

K

∩ [Ab]K c

⎞
⎠ (16)

⊇
⋃

K

⎛
⎝
⎛
⎝ ⋃

J1,...,Jb−1

b−1⋂
i=1

[[Ai ]Ji ]K

⎞
⎠ ∩ [Ab]K c

⎞
⎠ (17)

=
⋃

K

⎛
⎝
⎛
⎝ ⋃

J1,...,Jb−1

b−1⋂
i=1

[Ai ]Ji ∩K

⎞
⎠ ∩ [Ab]K c

⎞
⎠ (18)

=
⋃

K1,...,Kb

b⋂
i=1

[Ai ]Ki =
b�
1

Ai . (19)

The justifications are as follows. Line (15) follows by using a b = 2 version of
the definition (12), where K c denotes the complement of K . Line (16) follows by
using the definition (12) with b replaced by b − 1. The set inclusion in line (17)
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results from applying both parts of (14). Line (18) follows by applying Lemma 1
on the composition of cylinder operators. Line (19) is just relabeling the indices:
the previous line is a union, indexed by pairwise disjoint J1, . . . , Jb−1, and a set
K ; for i = 1 to b − 1, Ki = Ji ∩ K , and for index b, we take Kb = K c—the
set of possible indices α = (J1 ∩ K , . . . , Jb−1 ∩ K , K c) is identical to the set of
α = (K1, . . . , Kb), with i �= j implies Ki ∩ K j = ∅.

Probability considerations related to the BKR inequality References to the BKR
inequality were given just after Equation (10).

Theorem 1. (The original BKR inequality) Let S be a finite set, and let P be a prob-
ability measure on Sd for which the d coordinates are mutually independent. (The co-
ordinates might have different distributions.) For any events A, B ⊆ Sd, with the event
A � B as defined by (12),

P(A � B) ≤ P(A)P(B).

Corollary 1. Under the hypotheses of Theorem 1, for b = 2, 3, . . . and A1, . . . ,

Ab ⊆ Sd,

P(A1 � A2 � · · · � Ab) ≤
b∏

i=1

P(Ai ). (20)

Proof. For b = 2, (20) is the original BKR inequality. For b ≥ 3, we apply Propo-
sition 3 to see that

P(A1 � · · · � Ab) ≤ P((· · · ((A1 � A2) � A3) · · · � Ab−1) � Ab).

Applying the b = 2 case and induction proves the claim.

We can now prove Proposition 2, which from our new perspective is a simple corol-
lary of the extended BKR inequality, Corollary 1.

Proof of Proposition 2 In view of the containment (13), we have

P(I ∩ W1 ∩ · · · ∩ Wb) ≤ P

(
b�
1

Wi

)
,

and by Corollary 1

P

(
b�
1

Wi

)
≤
∏

P(Wi).

The optimization problem we actually solve

In order to exploit the material in the previous section, we replace definition (6) of P
with

P(�n; �w, �p) :=
(

probability of winning at least wi times on bet i with
ni tickets, for all i , and no wins on dependent bets

)
;

from Proposition 2, we know that then

P(�n; �w, �p) ≤
b∏

i=1

D(ni ; wi , pi ). (21)
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We will find a lower bound �c · �n∗ on the amount spent by a gambler who did not
win dependent bets by solving not (7), but rather

�c · �n∗ = min
�n

�c · �n such that ni ≥ wi and
b∏

i=1

D(ni ; wi , pi ) ≥ ε. (22)

We also relax the requirement that the numbers of bets, the ni ’s, be integers and we
extend the domain of D to include positive real values of ni as in [2, p. 945, 26.5.24]

D(n; w, p) = Ip(w, n − w + 1), where Ix(a, b) :=
∫ x

0 ta−1(1 − t)b−1 dt∫ 1
0 ta−1(1 − t)b−1 dt

(23)

is the regularized Beta function. The function Ix , or at least its numerator and de-
nominator, are available in many scientific computing packages, including Python’s
SciPy library. Extending the domain of the optimization problem to nonintegral ni

can only decrease the lower bound �c · �n∗, and it brings two benefits, which we now
describe.

In our examples,
∏

D(wi ; wi , pi) is much less than ε, and consequently n∗
i > wi

for some i . As D(n; w, p) is monotonically increasing in n, we have an equality∏
D(n∗

i ; wi , pi ) = ε. This is the first benefit, and it implies by (21) an inequality
P(�n∗; �w, �p) ≤ ε. Therefore, as in the discussion of Joe DiMaggio, if all N people in
the gambling population spent at least �c · �n∗ on tickets, the probability that one or more
of the gamblers would win at least wi times on bet i for all i is at most Nε. To say
it differently: the solution �c · �n∗ to (22) is an underestimate of the minimum plausible
spending required to win so many times.

The second benefit of extending the domain of the optimization problem is to make
the problem convex instead of combinatorial. The convexity allows us to show that any
local minimum (as found by the computer) attains the global minimal value.

Proposition 4. A local minimizer �n∗ for the optimization problem (22) (relaxed to
include noninteger values of ni ) attains the global minimal value.

Proof. We shall show that the set of values of �n over which we optimize, the feasible
set,

{�n ∈ R
b | ni ≥ wi for all i

} ∩
{
�n ∈ R

b |
∏

i
D(ni ; wi , pi ) ≥ ε

}
, (24)

is convex. As the objective function �c · �n is linear in �n, the claim follows.
The first set in (24) defines a polytope, which is clearly convex. Because the

intersection of two convex sets is convex, it remains to show that the second set is also
convex.

The logarithm is a monotonic function, so taking the log of both sides of an inequal-
ity preserves the inequality, and we may write the second set in (24) as{

�n ∈ R
b |

∑
i
log D(ni ; wi , pi ) ≥ log ε

}
. (25)

For 0 ≤ x ≤ 1 and α, β positive, the function

β �→ log Ix(α, β)

is concave by [12, Cor. 4.6(iii)]. Hence log D(ni ; wi , pi ) is concave for ni ≥ wi . A
sum of concave functions is concave, so the set (25) is convex, proving the claim.
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Example 7. (Louis Johnson 3) If we solve (22) for Louis Johnson’s wins—including
not only his Pick 4 wins but also many of his prizes from scratcher games—we find a
minimum amount spent of at least $2 million for ε = 5 × 10−14.

Monotonicity Some of the gamblers we studied for the investigative report claimed
prizes in more than 50 different lottery games. In such cases it is convenient to solve
(22) for only a subset of the games to ease computation by reducing the number of
variables. Since removing restrictions results in minimizing the same function over a
set that strictly includes the original set, the resulting “relaxed” optimization problem
still gives a lower bound for the gambler’s minimum amount spent.

The man from Hollywood

Louis Johnson’s astounding 252 prizes is beaten by a man from Hollywood, Florida,
whom we refer to as “H.” During the same time period, H claimed 570 prizes, more
than twice as many as Johnson did. Yet Mower’s news report [19] stimulated a law
enforcement action against Johnson but not against H. Why?

All but one of H’s prizes are in Play 4, which is really different from scratcher
games: if you buy $100 worth of scratcher tickets for a single $1 game, this amounts
to 100 (almost) independent Bernoulli trials, each of which is like playing a single $1
scratcher ticket. In Play 4, you can bet any multiple of $1 on a number to win a given
drawing; if you win (which happens with probability p = 10−4), then you win 5000
times your bet. If you bet $100 on a single Play 4 draw, your odds of winning remain
10−4, but your possible jackpot becomes $500,000, and if you win, the Florida Lottery
records this in the list of claimed prizes as if it were 100 separate wins. Clearly, these
are wins on dependent bets.

So, to infer how much H had to spend on the lottery for his wins to be unsurprising,
first we have to estimate how much he bet on each drawing. Unfortunately, we cannot
deduce this from the list of claimed prizes, because it includes the date the prize was
claimed but not the specific drawing the ticket was for. (Louis Johnson’s Play 4 prizes
were all claimed on distinct dates, so it is reasonable to assume they were bets on
different draws.) The Palm Beach Post paid the Florida Lottery to retrieve a sample
of H’s winning tickets from their archives. We think H’s winning plays were as in
TABLE 1.

TABLE 1: H’s Play 4 wins during 2011–2013

Date Number played Amount wagered

12/6/2011 6251 $52
?? ???? $1

11/11/2012 4077 $101
12/31/2012 1195 $2

2/4/2013 1951 $212
3/4/2013 1951 $200

To find a lower bound on the amount H spent by solving the optimization problem
(22), we imagine that he played several different Play 4 games, distinguished by their
bet size. For simplicity, let us pretend that a player can bet $1, $50, $100, or $200, and
suppose we observed H winning these bets 2, 1, 1, and 2 times, respectively. Using
these as the parameters in (22) and the same probability cutoff ε = 5 × 10−14 gives a
minimum amount spent of just $96,354.
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But we can find a number tied more closely to H’s circumstances. In 2011–2013 he
claimed $2.84 million in prizes. These are subject to income tax. If his tax rate was
about 35%, he would have taken home about $1.85 million. If he spent that entire sum
on Play 4 tickets, what is the probability that he would have won so much? We can find
this by solving the following optimization problem with p = 10−4, �w = (2, 1, 1, 2),
and �c = (1, 50, 100, 200):

max
�n

4∏
i=1

D(ni ; wi , p) s.t. wi ≤ ni and �c · �n ≤ 1.85 × 106.

The solution is about 0.0016, or one-in-625: it is plausible that H was just lucky. That’s
because he made large, dependent bets, while we know from the examples above that
betting a similar sum on smaller, independent bets is less likely to succeed.

This illustrates a principle of casino gambling from [8, p. 170] or [18, #37]: bold
play is better than cautious play. If you are willing to risk $100 betting red-black on
a game of roulette, and you only care about doubling your money at the end of the
evening, you are better off wagering $100 on one spin and then stopping, rather than
placing 100 $1 bets.

The real world

How did this paper come to be? One of us, Lawrence Mower, is an investigative re-
porter in Palm Beach, Florida. His job is to find interesting news stories and spend 4–6
months investigating them. He wondered whether something might be going on with
the Florida Lottery, so he obtained the list of prizes and contacted the other three of us
to help analyze the data. Below we describe some of the nonmathematical aspects.

What some people get up to Various schemes can result in someone claiming many
prizes.

Clerks at lottery retailers have been known to scratch the wax on a ticket lightly
with a pin, revealing just enough of the barcode underneath to be able to scan it, as
described in [17, paragraph 75]. If they scan it and it’s not a winner, they’ll sell it to a
customer, who may not notice the very faint scratches on the card. Lottery operators
in many states replaced the linear barcode with a 2-dimensional barcode to make this
scam more difficult, but it still goes on: a California clerk was arrested for it on 9/25/14.

Sometimes gamblers will ask a clerk to check whether a ticket is a winner. If it is,
the clerk might say it’s a loser, or might say the ticket is worth less than it really is,
then claim the prize at the lottery office—and become the recorded winner. Of course,
most clerks are honest, but this scheme is popular; see, for example, [17, paragraphs
47, 48, 80, 146].

Another angle, ticket aggregation, goes as follows. A gambler who wins a prize of
$600 or more may be reluctant to claim the prize at the lottery office. The office might
be far away; the gambler might be an illegal alien; or the gambler might owe child
support or back taxes, which the lottery is required to subtract from the winnings. In
such cases, the gambler might sell the winning ticket to a third party, an aggregator,
who claims the prize and is recorded to be the winner. The aggregator pays the gambler
less than face value, to cover income tax (paid by the aggregator) and to provide the
aggregator a profit. The market rate in Florida is $500–$600 for a $1000 ticket.

Some criminals have acted as aggregators to launder money. They pay the gambler
in cash, but the lottery pays them with a check, “clean” money because it is already in
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the banking system. Notorious Boston mobster Whitey Bulger [6] and Spanish politi-
cian Carlos Fabra [11] are alleged to have used this dodge.

When questioned by Mower, some of our suspects confessed to aggregating tickets,
which is a crime in Florida (Florida statute 24.101, paragraph 2).

Outcomes in Florida Before Mower’s story appeared, he interviewed Florida Lot-
tery Secretary Cynthia O’Connell about these gamblers. She answered that they could
be lucky: “That’s what the lottery is all about. You can buy one ticket and you become
a millionaire” [19]. Our calculations show that for most of these 10 gamblers, this is an
implausible claim. O’Connell and the Florida Lottery have since announced reforms
to curb the activities highlighted here [20]. They stopped lottery operations at more
than 30 stores across the state and seized the lottery terminals at those stores.

More news stories and outcomes in other states Further stories about “too fre-
quent” winners have now appeared in California (KCBS Los Angeles 10/30/14,
KPIX CBS San Francisco 10/31/14), Georgia (Atlanta Fox 5 News 9/12/14, At-
lanta Journal-Constitution 9/18/14), Indiana (ABC 6 Indianapolis, 2/19/15), Iowa
(The Gazette, 1/23/15), Kentucky (WLKY, 11/20/14), Massachusetts (Boston Globe,
7/20/14), Michigan (Lansing State Journal, 11/18/14), New Jersey (Asbury Park Press,
12/5/14 & 2/18/15; USA Today, 2/19/15), Ohio (Dayton Daily News 9/12/14), and
Pennsylvania (CBS Philly 5/19/15). In Massachusetts, ticket aggregation is not illegal
per se. In California, the lottery makes no effort to track frequent winners.

In Georgia, ticket aggregation is illegal but the law had not been enforced. The
practice was so widespread that elementary calculations (much simpler than those
presented in this article) cast suspicion on 125 people. This gap in enforcement, in
principle easy to detect, came to light as a consequence of the much more challeng-
ing investigation in Florida described here. This led to a change in policy announced
by the Georgia Lottery Director, Debbie Alford, on 9/18/14: “We believe that most
of these cases involved retailers agreeing to cash winning tickets on behalf of their
customers—a violation of law, rules, and regulations.”
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From the Files of
Past MAGAZINE Editors

Allen Schwenk 2006–2008

Perhaps the most memorable interaction former MAGAZINE editor Allen
Schwenk had with a mathematical crank was with a retired physics professor, who
expressed interest in number theory, and mentioned problems and number theorists that
convinced Schwenk that while the author may be a mathematical amateur, surely he
was well read. After being encouraged to submit his manuscript, Schwenk received 40
separate messages from him the next morning, each one an intended submission. The
most intriguing title: “A Short Proof of Fermat’s Last Theorem.” The proof is a classic.
Here it is. We know that x2 + y2 = z2 has many solutions in positive integers, and
we may assume, without loss of generality, that 1 ≤ x < y < z. Now for any n ≤ 3,
multiply by yn−2 to get x2 yn−2 + yn = z2 yn−2.

Since xn−2 < yn−2 < zn−2, we deduce that xn + yn = x2xn−2 + yn < x2 yn−2

+ yn = z2 yn−2 < z2zn−2 = zn . A sample of two or three other files proved to be of
similar quality.
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