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Sharper p-Values for Stratified Election Audits
Michael J. Higgins, Ronald L. Rivest, and Philip B. Stark

Abstract
Vote-tabulation audits can be used to collect evidence that the set of winners of an election

(the outcome) according to the machine count is correct — that it agrees with the outcome that a
full hand count of the audit trail would show. The strength of evidence is measured by the p-value
of the hypothesis that the machine outcome is wrong. Smaller p-values are stronger evidence that
the outcome is correct.

Most states that have election audits of any kind require audit samples stratified by county
for contests that cross county lines. Previous work on p-values for stratified samples based on the
largest weighted overstatement of the margin used upper bounds that can be quite weak. Sharper
p-values can be found by solving a 0-1 knapsack problem. For example, the 2006 U.S. Senate race
in Minnesota was audited using a stratified sample of 2–8 precincts from each of 87 counties, 202
precincts in all. Earlier work (Stark 2008b) found that the p-value was no larger than 0.042. We
show that it is no larger than 0.016: much stronger evidence that the machine outcome was correct.

We also give algorithms for choosing how many batches to draw from each stratum to reduce
the counting burden. In the 2006 Minnesota race, a stratified sample about half as large — 109
precincts versus 202 — would have given just as small a p-value if the observed maximum
overstatement were the same. This would require drawing 11 precincts instead of 8 from the largest
county, and 1 instead of 2 from the smallest counties. We give analogous results for the 2008 U.S.
House of Representatives contests in California.

KEYWORDS: post-election audits, knapsack problem
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1 Introduction
Votes are often tallied by machines, but—at least in many jurisdictions—the correct

electoral outcome of an election is defined to be the outcome that a full hand count

of the audit trail would show. There are many reasons a hand count might show a

different electoral outcome than a machine count, including defects in the hardware

or software of the machines, accidental misconfiguration, voter error, pollworker

error, or malfeasance. Even if the vote tabulation machines function “correctly,”

the machine interpretation of a voter-marked paper ballot may differ from how a

human would interpret the ballot in a hand count.

In post-election audits, also known as “vote-tabulation” audits, batches of

ballots are selected and counted by hand. The hand-count subtotals are compared

with the machine-count subtotals for each audited batch, and any differences be-

tween the machine count and hand count are noted. Most mandated post-election

audits stop here.

In contrast, risk-limiting audits (Stark, 2008a,b, 2009a,b,c, Miratrix and

Stark, 2009) guarantee a large chance of a full hand count whenever the machine

outcome is wrong, no matter why the outcome is wrong. A full hand count reveals

the true outcome (by definition), thereby correcting the machine outcome if the ma-

chine outcome was wrong. The risk is the largest chance that the audit will fail to

correct an outcome that is wrong.

Risk-limiting audits generally proceed by taking an initial sample that is big

enough to give strong evidence that the outcome is correct, provided the sample

does not find much error in the machine count. If the initial sample does not turn

out to give strong evidence (because it finds too much error), the sample is enlarged.

This continues until either there is sufficiently strong evidence that the outcome is

correct, or until all the votes have been counted by hand.

Evidence is measured by the p-value of the hypothesis that the machine-

count outcome is incorrect. The p-value is the maximum chance that the audit

would reveal “as little” error as it did reveal, on the assumption that the machine

outcome is wrong. The maximum is taken over all ways that the outcome could be

wrong. Smaller p-values are stronger evidence. A risk-limiting audit stops short of

a full hand count only if the p-value becomes less than the risk limit α . This ap-

proach to auditing amounts to a sequential test of the hypothesis that the outcome

is wrong. Defining “as little” amounts to specifying the test statistic for the hypoth-

esis test. Many test statistics lead to tractable p-value calculations; see, e.g., Stark

(2009c).
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Risk-limiting audits are widely considered best practice1 and have been en-

dorsed by the American Statistical Association, The Brennan Center for Justice,

Common Cause, the League of Women Voters, and Verified Voting, among others.

California AB 2023, passed in 2010, requires a pilot of risk-limiting audits in 2011.

Colorado Revised Statutes §1-7-515 calls for risk-limiting audits by 2014. As of

this writing, there have been ten risk-limiting audits: nine in California (two in

Marin County, three in Yolo County, and one each in Orange, Monterey, San Luis

Obispo, and Santa Cruz counties), and one in Boulder County, Colorado. California

and Colorado received grants from the Election Assistance Commission in 2011 to

develop and implement risk-limiting audits.

Risk-measuring audits are related to risk-limiting audits. They do not nec-

essarily expand until the p-value is small. But they quantify the evidence that the

machine outcome is correct by reporting the p-value of the hypothesis that the ma-

chine outcome is wrong.

States with election audit laws generally require each jurisdiction to audit

the votes cast in a simple random sample of precincts. For example, California Elec-

tions Code §15360 requires each county to take a 1% sample of precincts and hand

count all ballots within those precincts; if this misses any contest in any county,

the sample is augmented to include at least one precinct with each contest. Min-

nesota Elections Law S.F. 2743 (2006) requires a sample of 2, 3, or 4 precincts

from each county, depending on the size of the county. This results in a stratified

random sample for contests that cross jurisdictional boundaries: The strata are ju-

risdictions. Even when the law does not require it, there may be logistical reasons

to use stratified samples. For instance, scheduling the audit may be easier if batches

of ballots cast in-person are audited separately from batches of vote-by-mail ballots

and from batches of provisional ballots. Audit samples might also be stratified by

the machine used to cast or count votes.

The first work on risk-limiting audits (Stark, 2008a) addressed stratified

samples, developing a crude upper bound on the p-value when the test statistic is the

maximum observed margin overstatement across audited batches (more generally,

the maximum of monotone transformations of the overstatements in each audited

batch). This paper constructs sharper bounds on the p-value for stratified samples

for the same family of test statistics. The improvement, which can be substantial

(the sharper p-value is just over 1/3 of the crude upper bound on the p-value for the

2006 U.S. Senate race in Minnesota), is largest when the sampling fractions vary

across strata.

This paper also gives methods to choose sample sizes within strata to reduce

the p-value for a given sample size and presumed value of the test statistic. This can

1See http://electionaudits.org/principles.html (last visited 23 September 2011).

2

Statistics, Politics, and Policy, Vol. 2 [2011], Iss. 1, Art. 7

DOI: 10.2202/2151-7509.1031

Brought to you by | University of California - Berkeley
Authenticated

Download Date | 12/8/17 12:12 AM



substantially reduce the counting burden of a risk-limiting audit when the machine

outcome is correct.

2 Audits using stratified simple random samples

2.1 Notation and framework

If a and b are real numbers, a∨b denotes the maximum of a and b and a∧b denotes

their minimum. For instance, (1∨2) = 2 and (1∧0) = 0. The symbol ≡ denotes a

definition: f (x)≡ x2 defines f (x) to be x2. For any proposition s,

1(s)≡
{

1, if s is true,

0, otherwise.
(1)

For example, 1(1 > 0) = 1 and 1(1 > 2) = 0. If a ≡ (a j)
N
j=1 and b ≡ (b j)

N
j=1 are

vectors of the same length N, the inner product of a and b is

a ·b ≡
N

∑
j=1

a jb j. (2)

The sum of an empty list is defined to be zero and the product of an empty

list is defined to be one: ∑0
j=1 a j ≡ 0, ∏0

j=1 a j ≡ 1. The product 0×∞ ≡ 0 and the

exponential 00 ≡ 1. The minimum of any function over an empty domain is ∞, and

the maximum of a function over an empty domain is −∞.

“Apparent outcome” and “machine outcome” are synonymous, as are “ap-

parent vote total” and “machine vote total.” “Hand-count outcome,” “correct out-

come,” and “true outcome” mean the same thing, as do “hand-count vote total” and

“actual vote total.” An apparent winner wins according to the machine count; a true

winner would win according to a full hand count. The apparent outcome is correct

if the apparent winners are the true winners.

We consider auditing one contest at a time. There are I candidates in the

contest. The contest is of the form “vote for up to W candidates,” and there are W
apparent winners and I −W apparent losers. (In more general scenarios, which we

do not consider here, the voter may vote for a number of candidates that differs from

the number of winners to be determined by the election.) The ballots are grouped

into N batches spread across C strata, which are numbered 1 through C. There are

Nc batches in stratum c. The kth batch in stratum c is denoted (k,c).
The total number of ballots cast in batch (k,c) is bkc. The apparent vote total

for candidate i in batch (k,c) is vkci. The actual vote total for candidate i in batch
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(k,c) is akci. The values of bkc and vkci are known for every batch, but akci is known

only if batch (k,c) is audited. The apparent vote total for candidate i is

Vi ≡
C

∑
c=1

Nc

∑
k=1

vkci.

The actual vote total for candidate i is

Ai ≡
C

∑
c=1

Nc

∑
k=1

akci.

Let IW denote the apparent winners of the contest and IL denote the apparent

losers. Note that #IW = W . We assume that there is no loser whose apparent vote

total was equal to that of any winner. As a practical matter, such ties are rare in

large contests. But if there were a tie, a risk-limiting audit would demand a full

hand count, which is not the most interesting case statistically.

The apparent margin in votes between candidate w∈ IW and candidate �∈ IL
is

Vw� =Vw −V� > 0.

The true margin in votes between candidates w and � is

Aw� = Aw −A�.

The apparent outcome is correct if every winner actually got more votes than every

loser: if for all w ∈ IW and � ∈ IL,

Aw� > 0, (3)

or equivalently, if

Vw�−Aw� =
C

∑
c=1

Nc

∑
k=1

[vkcw − vkc�− (akcw −akc�)]<Vw�. (4)

The apparent outcome is wrong if and only if [4] fails for some w ∈ IW and � ∈ IL.

Let eH
kc denote a measure of the difference between the machine count and

the hand count in batch (k,c). The value of eH
kc is known only if batch (k,c) is

audited. We call the values eH
kc “differences” because they are functions of

{vkci −akci}Nc C I
k=1 c=1 i=1.

The vector eH ≡ (eH
kc)

Nc C
k=1 c=1 is the true allocation of differences. We require eH

kc to

be defined so that there exists a known constant μ for which:

If the apparent election outcome is wrong, then
C

∑
c=1

Nc

∑
k=1

eH
kc ≥ μ. (5)

4
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The difference eH
kc (and the resulting constant μ) can be defined many ways. A rea-

sonable choice is the maximum relative overstatement (MRO) introduced by Stark

(2008b):

eH
kc ≡ max

w∈Iw,�∈I�

vkcw − vkc�− (akcw −akc�)

Vw�
. (6)

For the MRO, [5] holds with μ = 1.

Testing statistically whether

C

∑
c=1

Nc

∑
k=1

eH
kc ≥ μ (7)

generally requires an a priori upper bound ωkc for eH
kc, for each batch (k,c), known

before the audit begins. Stark (2008b) shows that if difference is measured by the

MRO,

eH
kc ≤ max

w∈Iw,�∈I�

vkcw − vkc�+bkc

Vw�
≡ ωkc. (8)

Without loss of generality, we assume that within each stratum c, the batches are

ordered so that

ωkc ≥ ωk′c if k < k′. (9)

An allocation of differences or allocation is a vector

e = (ekc)
Nc C
k=1 c=1 ∈ R

N such that ekc ≤ ωkc, k = 1, . . . ,Nc, c = 1, . . . ,C. (10)

Let E be the set of all such allocations, and let

Eμ ≡
{

e ∈ E :
C

∑
c=1

Nc

∑
k=1

ekc ≥ μ

}
. (11)

If the apparent outcome is wrong, eH ∈ Eμ .

2.2 Computing the p-value

This section sets out the precise problem we solve: finding a sharper (but still con-

servative) p-value for the null hypothesis2 that the apparent outcome is incorrect

from a stratified random sample. Let Jnc
c be a simple random sample of nc elements

2http://xkcd.com/892/ (last visited 23 September 2011).
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from {(1,c), . . . ,(Nc,c)}, and let {Jnc
c }C

c=1 be independent random samples. Let

�n ≡ (nc)
C
c=1, and let

J�n ≡
C⋃

c=1

Jnc
c .

Then J�n is a stratified random sample of batches. We want to test the hypothesis

that eH ∈ Eμ using

T ≡ max
(k,c)∈J�n

eH
kc (12)

as the test statistic. If T is surprisingly small on the assumption that eH ∈ Eμ , we

will conclude that the outcome is correct.

Instead of using the maximum MRO as the test statistic, we could use the

maximum of a set of more general monotone transformations of the observed dif-

ferences: Let {wkc}Nc C
k=1 c=1 be a set of N monotone increasing functions. We could

base the audit on the test statistic

Tw ≡ max
(k,c)∈J�n

wkc(eH
kc),

where eH
kc is not necessarily the MRO. For instance, in Section 5, we consider taint.

Using the maximum of monotone transformations of the observed differences as

the test statistic leads to tractable probability calculations for a stratified sample;

in contrast, using the sum of the observed differences does not. For discussion,

see Stark (2008a). To simplify the exposition, we focus on the MRO. Section C

lists the other changes to definitions required to use more general monotone weight

functions.

The hypothesis eH ∈ Eμ does not completely specify the sampling distri-

bution of T . That distribution depends on all components of eH . We only know

eH
kc if batch (k,c) is audited, so to have a rigorous test, we assume the worst: If the

maximum difference in the sample is t, then eH is the element of Eμ that maximizes

the probability that T ≤ t. Let e ∈ E be an allocation of differences. Define

PJ�n(e)≡ PJ�n(e; t)≡ P
(

max
(k,c)∈J�n

ekc ≤ t
)
. (13)

This is the probability that the maximum observed difference in the stratified ran-

dom sample of batches J�n will be no greater than t if the allocation of differences is

e; that is, Pre{T ≤ t}.
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Suppose that, for the actual audit sample, the maximum observed difference

is T = t. Then the exact p-value of the hypothesis that the apparent outcome is

wrong is

P# = P#(t;�n)≡ max
e∈Eμ

PJ�n(e; t). (14)

Any P+ = P+(t;�n) for which

P+ ≥ P# (15)

is a conservative p-value.

We now compute PJ�n(e; t) for an arbitrary e ∈ E and t ∈ R. For e ∈ E, let

G(e) = G(e; t)≡ {(k,c) : ekc > t} (16)

be the set of batches with difference greater than t, and let

#cG(e)≡ #{k : (k,c) ∈ G(e)}
be the number of batches within stratum c with difference greater than t.

Let e ∈ E. If Nc − #cG(e) < nc, then a simple random sample of size nc
from {(1,c), . . . ,(Nc,c)} is guaranteed to contain a batch with difference ekc > t, so

PJnc
c
(e) = 0. If Nc−#cG(e)≥ nc, the probability that Jnc

c does not contain any batch

with difference ekc > t is

PJnc
c
(e) =

(Nc−#cG(e)
nc

)
(Nc

nc

) .

The samples from different strata are drawn independently, so the proba-

bility that a stratified random sample of batches does not include any batch with

ekc > t is

PJ�n(e) =

⎧⎪⎨
⎪⎩

C

∏
c=1

(Nc−#cG(e)
nc

)
(Nc

nc

) , Nc −#cG(e)≥ nc, c = 1, . . . ,C,

0, otherwise.

(17)

The exact p-value P# [14] is the maximum of PJ�n(e) over all allocations e ∈ Eμ .

For large cross-jurisdictional contests, finding the exact p-value by brute

force is prohibitively expensive. The following sections show that [14] has special

structure that allows us to find the exact p-value quickly.

3 Stratified audits and the 0-1 knapsack problem
You are packing a knapsack with food for a camping trip. You have available N
food items, each of which has a weight and a caloric value. You want to pack the
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combination of food items that has at least M calories and weighs the least. This is

a version of the 0-1 knapsack problem (KP), an NP-complete problem (Karp, 2010)

with a long history and large literature (Pisinger, 1995, Pisinger and Toth, 1998).

We show in this section that there is a “small” set Ẽμ such that

P# ≡ max
e∈Eμ

PJ�n(e) = max
e∈Ẽμ

PJ�n(e). (18)

We then show that maximizing PJ�n over allocations in Ẽμ can be couched as KP.3

Even though the problem is NP-complete, the maximum can be found in a matter

of seconds, even for large, multi-jurisdictional contests. Good upper bounds can be

calculated even faster.

3.1 Characterizing optimal allocations of differences

Recall that PJ�n(e), the chance that the maximum difference in a stratified sample

with sample sizes �n is no larger than t, depends on e only through (#cG(e))Cc=1,

the number of batches in each stratum that have differences greater than t. Smaller

values of #cG(e) lead to bigger values of PJ�n(e).
Given an allocation e, we can produce another allocation ẽ that has at least

as much difference in each stratum and for which PJ�n(ẽ)≥ PJ�n(e) by concentrating

the difference in each stratum c in the batches k that have the largest upper bounds

ωkc. That is, ẽ has at least as much total difference as e an is at least as likely to

produce a sample with no difference greater than t.
The values κc(e), defined below, limit how far this can go: An allocation

must have at least κc(e) batches in stratum c with difference exceeding t to have at

least as much difference in stratum c as the allocation e has. For e ∈ E, let

κc(e)≡ min

{
k′ ≥ 0 :

k′

∑
k=1

ωkc +
Nc

∑
k′+1

(ωkc ∧ t)≥
Nc

∑
k=1

ekc

}
.

For any e ∈ E, let ẽ ≡ (ẽkc)
Nc C
k=1 c=1 be the vector with components

ẽkc ≡
{

ωkc, k ≤ κc(e),
ωkc ∧ t, otherwise.

3Rivest (2007) shows that when batches are audited independently, finding

max
e∈Eμ

P
(

Not auditing any batch (k,c) with difference ekc > 0
)

can be cast as KP. However, stratified random sampling does not select batches independently.
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Note that

ẽ ∈ E and ˜̃e = ẽ. (19)

By definition of κc,
Nc

∑
k=1

ẽkc ≥
Nc

∑
k=1

ekc.

Hence,

if e ∈ Eμ then ẽ ∈ Eμ . (20)

By [9],

if k < k′, [ωkc − (ωkc ∧ t)]≥ [ωk′c − (ωk′c ∧ t)]. (21)

It follows from the rearrangement theorem (Hardy, Littlewood, and Pólya, 1952),

and the fact that ekc ≤ ωkc that

#cG(e)

∑
k=1

ωkc +
Nc

∑
#cG(e)+1

(ωkc ∧ t)

=
Nc

∑
k=1

[ωkc − (ωkc ∧ t)]1(k ≤ #cG(e))+
Nc

∑
k=1

(ωkc ∧ t)

≥
Nc

∑
k=1

[ωkc − (ωkc ∧ t)]1(ekc > t)+
Nc

∑
k=1

(ωkc ∧ t)

≥
Nc

∑
k=1

[ekc − t]1(ekc > t)+
Nc

∑
k=1

t1(ekc > t)+
Nc

∑
k=1

ekc1(ekc ≤ t)

=
Nc

∑
k=1

ekc. (22)

Thus, κc(e)≤ #cG(e), so for c = 1, . . . ,C,

#cG(ẽ) = κc(e)≤ #cG(e).

It follows from [17] that

PJ�n(ẽ)≥ PJ�n(e). (23)

That is, compared with e, ẽ has at least as much difference and at least as large a

chance of yielding a sample with no difference larger than t: It does at least as much

damage to the election outcome and is at least as hard to detect using a stratified

random sample.

9
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Since [19], [20], and [23] hold for all e ∈ E, it follows that

max
e∈Eμ

PJ�n(ẽ) = max
e∈Eμ

PJ�n(e). (24)

Thus, if we define

Ẽ ≡ {ẽ : e ∈ E}, (25)

and let

Ẽμ ≡ Ẽ∩Eμ , (26)

then [18] holds for this definition of Ẽμ .

The set of allocations Ẽμ is much smaller than the original set Eμ . Max-

imizing PJ�n over allocations in this smaller set can be reduced to KP, as we now

show.

3.2 Maximizing PJ�n as a 0-1 knapsack problem

We write the 0-1 knapsack problem more precisely. There are N items. Item j has

value u j ≥ 0 and cost q j ≥ 0. The value and cost are analogous to the caloric value

and weight in the example in section 3. We want to find the combination of items

that has minimal total cost among all combinations with total value above some

threshold. In the example of section 3, this is like finding the combination of food

items that has minimal total weight among all combinations with total caloric value

above some threshold. Let M ≥ 0 and let

X ≡
{
(x j)

N
j=1 : x j ∈ {0,1}

}
.

Define x ≡ (x j)
N
j=1, u ≡ (u j)

N
j=1, and q ≡ (q j)

N
j=1. The 0-1 knapsack problem (KP)

is to find

λ ≡ min q · x : u · x ≥ M} .
x∈X

{

Recall that the minimum of a function over an empty domain is ∞, so if {x ∈ X :

u · x ≥ M} is empty, λ = ∞. A vector x† ∈ X satisfying

q · x† = λ and u · x† ≥ M

is called an exact solution; λ is the exact value. Finding λ can be expensive; often it

is substantially easier to find a lower-bound λ− ≤ λ , an approximation to the exact

value.

We show below that finding the exact p-value P# also amounts to solving

KP. To do so, we relate the constraint u · x ≥ M to the condition e ∈ Eμ and the
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objective function q · x to PJ�n . Moreover, we show that it is not necessary to search

all of X for the minimum: We find a much smaller set X̃ ⊂ X for which

logP# = log max
e∈Ẽμ

{PJ�n(e)}= min
e∈Ẽμ

{− log(PJ�n(e))}= min
y∈X̃

{q · y : u · y ≥ M} . (27)

We then show that

λ = min
x∈X

{q · x : u · x ≥ M}= min
y∈X̃

{q · y : u · y ≥ M} . (28)

Hence, any algorithm for solving KP can find the exact p-value P# = e−λ . But al-

gorithms that restrict the search to vectors x ∈ X̃ can be faster than algorithms that

search all of X.

Variables: It is helpful to switch between doubly-indexed terms and singly-indexed

terms. The double index k,c corresponds to the single index

j = j(k,c)≡ k+ ∑
c′<c

Nc′ , k = 1, . . . ,Nc, c = 1, . . . ,C. (29)

Conversely, the single index j corresponds to the double index k,c with

c = c( j)≡ min

{
d :

d

∑
i=1

Nd ≥ j

}
, k = k( j)≡ j−

c( j)−1

∑
d=1

Nd, (30)

Recall that G(e) is the set of batches (k,c) for which ekc > t [16]. For e ∈ E,

define

gkc(e)≡ 1((k,c) ∈ G(e)), (31)

g(e)≡ (gkc(e))
Nc C
k=1 c=1 ∈ X, (32)

and

X̃ ≡ {
y ∈ X : y = g(e) for some e ∈ Ẽ

}
. (33)

Constraint: Let

ukc ≡ ωkc − (ωkc ∧ t). (34)

Note that

ukc = 0 if and only if ωkc ≤ t. (35)

By [21],

ukc ≥ uk′c if k < k′. (36)
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Let

M ≡
[

μ −
C

∑
c=1

Nc

∑
k=1

ωkc ∧ t

]
∨0. (37)

Observe that if M = 0, then

ω ∧ t ≡ (ωkc ∧ t)Nc C
k=1 c=1 ∈ Ẽμ

and

PJ�n(ω ∧ t) = 1.

Thus, if M = 0, then the exact p-value P# = 1: There is an allocation of difference

that causes the election outcome to be wrong, and for which the probability is 100%

that the sample will not contain any batch with difference greater than t.
Subtracting ∑C

c=1 ∑Nc
k=1(ωkc ∧ t) from both ∑C

c=1 ∑Nc
k=1 ekc and μ shows that

for e ∈ Ẽ, e ∈ Ẽμ if and only if

u ·g(e)≥ M. (38)

Thus,

{g(e) : e ∈ Ẽμ}= {y ∈ X̃ : u · y ≥ M}. (39)

We assume {y∈ X̃ : u ·y≥M} is non-empty; otherwise, [39] shows that the apparent

outcome must be correct, so the p-value is 0.

Objective function: Choose e ∈ E. If for c = 1, . . . ,C, Nc −#cG(e)≥ nc, then

PJ�n(e) =
C

∏
c=1

(Nc−#cG(e)
nc

)
(Nc

nc

) =
C

∏
c=1

#cG(e)

∏
k=1

(Nc−k
nc

)
(Nc−k+1

nc

)
=

C

∏
c=1

#cG(e)

∏
k=1

Nc −nc − k+1

Nc − k+1
. (40)

If instead there exists c such that Nc − #cG(e) < nc, then PJ�n(e) = 0: If the true

allocation is e, the sample is guaranteed to contain a batch with difference greater

than t. Combining this with [40] shows that for any e ∈ E,

PJ�n(e) =
C

∏
c=1

#cG(e)

∏
k=1

(
Nc −nc − k+1

Nc − k+1
∨0

)
. (41)

Let

pkc ≡
(

Nc −nc − k+1

Nc − k+1
∨0

)
. (42)

12

Statistics, Politics, and Policy, Vol. 2 [2011], Iss. 1, Art. 7

DOI: 10.2202/2151-7509.1031

Brought to you by | University of California - Berkeley
Authenticated

Download Date | 12/8/17 12:12 AM



Note that

pkc ≥ pk′c if k < k′. (43)

Recall our convention that 00 = 1. If e ∈ Ẽ, then

PJ�n(e) =
C

∏
c=1

#cG(e)

∏
k=1

pkc =
C

∏
c=1

Nc

∏
k=1

pgkc(e)
kc . (44)

That is, for allocations e ∈ Ẽ, batch (k,c) has a fixed contribution pkc to PJ�n . This is

the key to writing P# as KP. Let

qkc ≡
{ − log(pkc), pkc > 0,

∞, pkc = 0.
(45)

Note that qkc ≥ 0 for all batches (k,c). By [43],

qkc ≤ qk′c if k < k′. (46)

From [44] and [45], for e ∈ Ẽ,

− log(PJ�n(e)) = q ·g(e). (47)

Equations [39] and [47] yield equation [27]. We prove [28] in appendix A.

4 Approximate and exact solutions to KP
Dynamic programming algorithms and branch and bound algorithms can solve

KP (Pisinger and Toth, 1998). Appendix B describes a branch and bound algorithm

for finding P# that restricts the search to X̃ to improve efficiency. That algorithm can

calculate the exact p-value in a matter of seconds, even for large elections. R code

is available in the CRAN archive in the package elec.strat.

The solution to KP can be bounded from below in O(N) time by solving the

linear knapsack problem (LKP), the continuous relaxation of KP (Pisinger and Toth,

1998). We use this LKP bound, λLKP ≤ λ , in the bound step of the branch-and-bound

algorithm in appendix B. We call PLKP ≡ e−λLKP ≥ P# the LKP conservative p-value.

For some election audits, PLKP is almost exactly equal to P#, the exact p-value.
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LKP relaxes the constraint that each item either is or is not in the knapsack

to the constraint that between 0 and 100% of each item is in the knapsack: The

discrete set {0,1} is replaced by the continuous set [0,1]. Define

Xrel ≡
{
(x j)

N
j=1 : x j ∈ [0,1]

}
⊃ X. (48)

The LKP is to find

λLKP ≡ min
x∈Xrel

{q · x : u · x ≥ M} . (49)

The value λLKP is the LKP bound. Since X ⊂ Xrel , λLKP ≤ λ , and

PLKP ≡ exp(−λLKP)≥ P#.

LKP can be solved using linear programming, but Dantzig (1957) shows

that the value of λLKP can be obtained very simply, as follows. Sort the ratios

rkc ≡ qkc

ukc
(50)

into increasing order, and put the cost vector q into the corresponding order. Find

the smallest B so that the sum of the values of the first B batches is at least M.

The LKP bound is the sum of the first B−1 components of the cost vector q and a

fraction of the Bth component of q.

We now explain the LKP bound in more detail. Equations [36] and [46]

show that

rkc ≤ rk′c if k < k′. (51)

Recall [29] and [30], the mappings between double indices and single indices. Let

π : {1,2, . . . ,N}→ {1,2, . . . ,N} be a permutation such that

rπ(1) ≤ rπ(2) ≤ ·· · ≤ rπ(n). (52)

That is, π maps j to the index of the jth smallest value of (r j)
N
j=1. For instance, if

π(1) = j, then r j = min(ri)
N
i=1. The inverse of π , denoted π−1, maps j to the rank

of r j. For instance, if r j = min(ri)
N
i=1, then π−1( j) = 1.

If there are ties among the ratios (r j)
N
j=1, we impose two additional condi-

tions on π:

1. When rkc = rk′c and k < k′,

π−1(j(k,c))< π−1(j(k′,c)). (53)
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2. When rkc = rk∗c∗ , c �= c∗, and Nc > Nc∗ ,

π−1(j(k,c))< π−1(j(k∗,c∗)). (54)

The first condition, together with [51] and [52], ensures that π preserves the order

of batches within a stratum. The second condition breaks ties between ratios in

different strata by putting the ratio in the stratum with fewer batches first.

For any j′ ∈ {1, . . . ,N} with uπ( j′) > 0,

(
1[π−1( j)≤ j′)]

)N
j=1

∈ X̃. (55)

That is, any allocation that assigns as much difference as possible to batches with

the smallest ranks and difference ω ∧ t to larger ranks is in Ẽ. To see this, consider

the allocation e∗ with components

e∗π( j) =

{
ωπ( j), 1 ≤ π−1( j)≤ j′,
ωπ( j)∧ t, otherwise.

By [52] and [53], if π−1(j(k′,c))≤ j′ and k < k′, then π−1(j(k,c))< j′. That is, if

e∗k′c = ωk′c and k < k′, then e∗kc = ωkc. Thus, e∗ ∈ Ẽ. By [33] and [35],

g(e∗) =
(
1[π−1( j)≤ j′)]

)N
j=1

∈ X̃.

Define

B ≡
{

1, M = 0 and uπ(1) = 0,

N ∧min
{

B′ > 0 : ∑B′
j=1 uπ( j) ≥ M

}
, otherwise.

Then B is the smallest number of batches that must have difference greater than t
for the election outcome to be wrong, if those differences are allocated in the order

π . Note that, if {q · y : u · y ≥ M} is non-empty then uB > 0. Dantzig (1957) shows

that

λLKP =

{
0, M = 0 and uπ(1) = 0,

∑B−1
j=1 qπ( j) +

M−∑B−1
j=1 uπ( j)

uπ(B)
·qπ(B), otherwise.

(56)

The vector xrel ∈ Xrel that attains this maximum has components

xrel
π( j) ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, j < B,
M−∑B−1

j=1 uπ( j)

uπ(B)
, j = B,

0, otherwise.

(57)
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Observe that u · xrel = M, and λLKP = 0 when M = 0. If ∑B
j=1 uπ( j) = M, then xrel

actually solves KP, not just LKP:

If
B

∑
j=1

uπ( j) = M then λ =
B

∑
j=1

qπ( j). (58)

Note that
(
1[π−1( j)≤ B)]

)N
j=1

∈ X̃. If {q · y : u · y ≥ M} is non-empty, then

∑B
j=1 uπ( j) ≥ M, and so

λ+
LKP

≡
B

∑
j=1

qπ( j)

is an upper bound for λ : LKP lets us bracket the value of KP. Observe that

λLKP +

(
1− M−∑B−1

j=1 uπ( j)

uπ(B)

)
qπ(B) = λ+

LKP
. (59)

Thus,

λ −λLKP ≤ λ+
LKP

−λLKP =

(
1− M−∑B−1

j=1 uπ( j)

uπ(B)

)
qπ(B) ≤ qπ(B), (60)

and so
exp(−λLKP)

exp(−λ )
≤ 1

pπ(B)
. (61)

That is, PLKP is guaranteed to be within a factor of 1/pπ(B) of the exact p-value P#.

5 Results: comparing p-values
This section gives exact and conservative p-values for the hypothesis that the appar-

ent outcome of the 2006 U.S. Senate race in Minnesota was wrong. Amy Klobuchar

was the apparent winner; Mark Kennedy was the runner-up. There were a total of

2,217,818 ballots cast in 4,123 precincts spanning 87 counties. Klobuchar’s re-

ported margin of victory over Kennedy was 443,196 votes.

Many Minnesota counties are small; only ten had more than 75 precincts

in 2006. Counties audited 2 to 8 precincts selected at random, depending on the

size of the county. Hennepin County, which has the most precincts (426), audited

8 precincts. In all, 202 precincts were audited. For more information about the

election and audit, see Halvorson and Wolff (2007).
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Table 1: Conservative and exact p-values for the hypothesis that the apparent out-

come of the 2006 U.S. Senate race in Minnesota was wrong, based on Minnesota’s

audit of a stratified random sample of 202 precincts. Values are given for two test

statistics: maximum MRO and maximum taint. Column 2: conservative p-value us-

ing the method of Stark (2008b). Column 3: LKP conservative p-value. Column 4:

exact p-value obtained by solving KP.

Stark PLKP P#

MRO 0.042 0.01591 0.01590

Taint 0.047 0.01892 0.01890

We consider tests based on two measures of difference: MRO and taint. The

taint of a batch is the difference in the batch expressed as a fraction of the maximum

possible difference in the batch. Taint is related to MRO through a weight function

wkc: If ekc is the MRO in batch (k,c), the taint in batch (k,c) is

wkc(ekc) =
ekc

ωkc
.

The largest overstatement of Klobuchar’s margin over Kennedy in the audit

sample was 2 votes, so the maximum MRO was 2/443,196. The largest taint found

by the audit was 9.17×10−3, a one vote overstatement of Klobuchar’s margin in a

precinct in Cottonwood county containing 149 ballots. For MRO,

M = 1−
87

∑
c=1

Nc

∑
k=1

(ωkc ∧ (2/443196)).

For taint,

M = 1−
87

∑
c=1

Nc

∑
k=1

(ωkc ×9.17×10−3).

Table 1 gives conservative p-values using the method of Stark (2008b) and

LKP, and the exact p-value obtained by solving KP. The exact p-values are less

than half the conservative values based on the method in Stark (2008b). The LKP

conservative p-value is nearly equal to the exact p-value.

Figure 1 shows conservative and exact p-values corresponding to some pos-

sible values of the maximum MRO and maximum taint. The LKP conservative

p-values are essentially identical to the exact p-values; both are much smaller than

the conservative p-value based on the method of Stark (2008b).
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Figure 1: Exact and conservative p-values for hypothetical maximum observed

overstatements (left) and hypothetical maximum observed taints (right) for the 2006

Minnesota Senate race. The LKP conservative p-values (PLKP) are nearly identical

to the exact p-values (P#). Both are substantially smaller than bounds using the

method in Stark (2008b).

If the test statistic is maximum MRO, the exact p-value is less than 0.05 if

the largest overstatement less than than 26 votes. The conservative p-value from

the method of Stark (2008b) is less than 0.05 only if the largest overstatement is

less than 8 votes. If the test statistic is the maximum taint, the exact p-value is less

than 0.05 if the observed maximum taint is less than 0.040; while the conservative

p-value using the method of Stark (2008b) is less than 0.05 only if the observed

maximum taint is less than 0.011: KP and LKP give substantially more powerful

tests.

6 Selecting sample sizes
So far, we have assumed that the sample sizes in each stratum were given in ad-

vance, for instance, by law. Finding the best sample sizes—those that can confirm

correct outcomes with the least hand counting—seems to be computationally in-

tractable, but it is not hard to improve on the sample sizes used in Minnesota, for

instance. In this section we pose optimization problems to define “optimal” sam-

ple sizes and give several methods for selecting sample sizes. Section 7 shows that

selecting sample sizes to be proportional to the number of batches, which is how
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California currently sets sample sizes, performs well in examples using data from

real elections.

Recall that, for any choice of sample sizes�n = (nc)
C
c=1, J�n is a stratified ran-

dom sample that selects nc batches from stratum c, c= 1, . . . ,C. For fixed α > 0 and

t∗ > 0, let N(α, t∗) denote the set of all sample sizes �n such that, if the maximum

observed difference is t∗ or less, the exact p-value obtained using sample sizes �n
will be less than α . That is,

N = N(α, t∗)≡
{
�n = (nc)

C
c=1 :

P#(t∗;�n)≤ α,
nc ∈ {0,1, . . . ,Nc},c = 1, . . . ,C.

}

We define a vector of sample sizes�n† = (n†
c)

C
c=1 to be optimal (for α and t∗) if

C

∑
c=1

n†
c = min

{
C

∑
c=1

nc : (nc)
C
c=1 ∈ N(α, t∗)

}
. (62)

By this definition, a vector of sample sizes is optimal if it minimizes the number of

batches that must be counted to confirm the outcome at risk limit α on the assump-

tion that the value of the test statistic turns out to be no larger than t∗. There can be

more than one optimal vector of sample sizes.

There are other sensible definitions of optimality. If the vector of sample

sizes is�n, the expected number of ballots that need to be hand counted is

C

∑
c=1

nc

Nc

Nc

∑
k=1

bkc. (63)

We might define a vector of sample sizes to be optimal if it minimizes the expected

number of ballots that must be counted to confirm the outcome at risk limit α ,

again on the assumption that the value of the test statistic turns out to be no larger

than t∗. Or the expectation could allow t∗ to be random (for instance, based on

a hypothetical allocation of difference), and could take into account the costs of

expanding the audit if the p-value is larger than α . If batches are about the same

size, a sample size vector that minimizes the number of batches audited will also

minimize the expected number of ballots audited. In practice, there are costs to

retrieve batches of ballots and to hand-count the votes on each ballot in a batch, so

defining optimality in terms of a weighted combination of the number of batches

and the expected number of ballots is appealing; weights might depend on how a

jurisdiction organizes its ballots, on labor costs, etc. The methods described below

can be modified to work for these optimality criteria, but we focus on minimizing

the number of batches.
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Optimal sample size vectors can be found by brute force when the contest

spans few counties and the margin of victory is large. We give three simple algo-

rithms for finding sample sizes that can improve on statutory allocations even when

a brute-force solution is impossible. The core of each algorithm takes the total sam-

ple size n ≡ ∑c nc to be fixed and selects�n to make P#(t∗;�n) small. The algorithms

increment n until P#(t∗;�n)≤ α .

6.1 Sample sizes proportional to stratum size

A simple rule for allocating the sample across strata is to take sample sizes pro-

portional to stratum size (PSS). California Elections Code §15360 requires sample

sizes that are close to PSS sample sizes: Each county audits a random sample of 1%

of its precincts, plus one precinct for each contest not included in the 1% sample.

PSS does not take advantage of information about the amount of differ-

ence batches can contain. In some cases, PSS sample sizes are close to optimal.

However, when strata are not similar—for example, when one stratum has a dispro-

portionately high number of batches that can hold large differences—PSS sample

sizes can be far from optimal.

When nNc/N is an integer for all c = 1, . . . ,C, the PSS sample sizes are

nc = nNc/N. When nNc/N is not an integer for some c, we might define PSS sample

sizes to be nc = �nNc/N�. In that case, PSS sample sizes would satisfy ∑C
c=1 nc ≥ n.

Alternatively, we might define PSS sample sizes to satisfy ∑C
c=1 nc = n as follows:

Sort the ratios { fkc ≡ (k−1)N/Nc}, k = 1, . . . ,Nc, c = 1, . . . ,C, in ascending order,

listing fkc before fk∗c∗ if fkc = fk∗c∗ and Nc > Nc∗ . Consider the smallest n such

ratios. The sample size nc is the number of those n ratios that came from stratum c.

We use this latter definition of PSS sample sizes in section 7.

6.2 first.r and next.r

We now present two algorithms to find sample sizes—first.r and next.r—that

use information about stratum sizes and the amount of difference individual batches

can hold. This can produce sample sizes that are smaller than PSS sample sizes

when strata are dissimilar.

The algorithms are related. Both start with an empty sample size vector

�n = (0)Cc=1 and increment the sample size in the stratum c that contains the batch

with the largest value of r (in some pool of batches) until the total sample size is n.

The difference between the algorithms is whether the batch with the largest value

of r at one iteration is kept in the pool (first.r) or excluded from consideration

in subsequent iterations (next.r). After each increment, the costs [45] are updated
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based on the current value of�n. The ratios (r j)
N
j=1 are updated, and the permutation

π that sorts these ratios into increasing order is found.4 Both algorithms use π to

determine which nc to increment, but they use different rules to make that determi-

nation. The algorithms are as follows.

Step 1: (Initialize)

Set�n = (nc)
C
c=1 = (0)Cc=1.

Compute (u j)
N
j=1.

Set S = {1, . . . ,N}.

Step 2: (Update q, r, and π)

Using the current value of�n, compute (qkc)
Nc C
k=1 c=1.

Set qkc = min(qkc, log(nc +1)).
Compute (r j)

N
j=1.

Find the permutation π satisfying [52], [53], and [54].

Step 3: (Choose which nc to increment)

Find j = min{ j′ : π( j′) ∈ S}.
Increment nc(π( j)) (see equation [30]).

Step 4: (Update the search set.)

If next.r, set S = S\π( j).
Else if first.r, do nothing.

Step 5: (Terminate?)

4next.r requires the cost to be defined slightly differently:

qkc ≡− log(pkc)∧ log(nc +1).

This only matters if more than half of the batches in a stratum need to be sampled, which can occur

in a closely contested race. The permutation π is not affected by this change, since qkc = ∞ if and

only if k > Nc −nc. For k ≤ Nc −nc, by [46],

qkc =− log

(
Nc −nc − k+1

Nc − k+1

)
≤ log(nc +1)

with equality if and only if k = Nc −nc. Thus, the ordering in [46] continues to hold.
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If ∑C
c=1 nc < n, go to Step 2.

Else stop.

By [52] and [53], we know that the minimum in Step 3 is one of only C values;

this restriction can be exploited to decrease the computational time of the algorithm

dramatically.

6.3 Constructing sample size vectors in N(α, t∗).

Constructing a vector of sample sizes�n ∈ N(α, t∗) is straightforward:

Step A: Set n = 1.

Step B: Given n, use PSS, first.r, or next.r to construct a vector of sample

sizes�n with ∑c nc = n.

Step C: Find the exact p-value P#(t∗,�n) on the assumption that the observed value

of the test statistic is t∗. (A conservative p-value P#(t∗,�n)≥ PJ�n(e; t∗) could be used

instead of the exact p-value.)

Step D: If P# > α , increment n and go to Step B. Otherwise,�n ∈ N(α, t∗).

The next section gives numerical examples based on data from Minnesota and Cal-

ifornia.

7 Sample sizes for Minnesota and California contests

We use the data from the 2006 Minnesota Senate race to demonstrate how selecting

sample sizes using PSS, first.r, or next.r can dramatically reduce the counting

necessary for an audit. We then use data from the 2008 California U.S. House races

to compare the performance of these methods.

7.1 The 2006 Minnesota U.S. Senate race

The statutory audit of the 2006 Minnesota election examined 202 precincts. As

discussed in section 5, counties audited between 2 and 8 precincts each, depending

on the size of the county. For the U.S. Senate contest, the largest observed over-

statement of the margin in a single precinct was 2 votes; the corresponding exact

p-value for the hypothesis that the apparent outcome is incorrect is 0.0159. The

largest taint in a single precinct was 9.17×10−3. The corresponding exact p-value

is 0.0189.
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Table 2: Statutory, PSS, first.r, and next.r sample sizes for the 2006 Minnesota

Senate contest. Number of batches to audit and expected number of ballots to audit

to obtain p-values no larger than the exact p-values in Table 1 (0.0159 for maximum

MRO and 0.0189 for maximum observed taint), for the same observed values of the

test statistics. PSS, first.r, and next.r all improve markedly on the statutory

sample sizes.

Statutory PSS first.r next.r

Overstatement
Number of batches 202 122 109 110

Expected ballots 90,691 59,611 55,787 56,940

Taint
Number of batches 202 122 108 109

Expected ballots 90,691 59,611 55,228 55,851

To study the effectiveness of the statutory sampling rates, we find the sample

sizes that would be required to get p-values at least as small for sampling vectors

chosen using first.r, next.r, and the version of PSS that satisfies ∑C
c=1 nc = n.

The calculations assume that the observed value of the test statistic would be the

same for all samples. The results are in Table 2, along with the expected number of

ballots that would need to be tallied by hand.

All three new methods require auditing dramatically fewer batches and bal-

lots than the statutory method: Selecting sample sizes more efficiently would reduce

the number of batches by 80 (almost 40%) and would reduce the expected number

of ballots to audit by one third (see equation [63]). The new methods draw more

than 8 precincts from Hennepin county and only one precinct from the smallest

counties, instead of two.

Figure 2 compares the total sample sizes and expected number of ballots to

tally by hand for PSS, first.r, and next.r to get p-values no larger than 0.05, for

observed maximum overstatements of 0 to 30 votes. The analogous graphs using

taint as the test statistic are nearly identical.

first.r and next.r perform best in these examples: Only 100 batches

need to be audited when the maximum overstatement is zero, and 113 batches

or fewer need to be audited for a 30-vote overstatement of the margin. The to-

tal number of precincts and the expected number of ballots to audit are uniformly

smaller for first.r and next.r than for PSS. The difference between first.r

and next.r sample sizes and PSS sample sizes is greatest when the observed over-

statement is large.
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Figure 2: Number of batches to audit and expected number of ballots to audit to get

p-values no larger than 0.05 for 2006 Minnesota Senate race, as observed maximum

overstatements range from 0 to 30 votes, using sample size vectors selected by

PSS, first.r, and next.r. In these simulations, PSS requires more auditing than

first.r and next.r, which have nearly identical workloads.

7.2 The 2008 California U.S. House of Representatives races

The November 2008 election in California included 53 U.S. House of Represen-

tatives contests. The California Statewide Database (SWDB) has precinct-level

voting data for these contests5 The SWDB does not give the results of the statutory

1% audit.

Of these 53 contests, two had third-party candidates who received a substan-

tial proportion of the vote; the SWDB did not provide vote totals for these third-

party candidates. In nine of the contests, a single candidate was running unopposed.

We omitted these 11 contests from our study.

Of the remaining 44 contests, 23 crossed county lines. Of those, 20 were

contained in 5 counties or fewer, allowing us to find optimal sample size vectors by

brute force.

We find PSS, first.r, next.r, and optimal sample sizes and expected

ballots to audit to attain p-values no larger than 0.05 provided the audit does not

uncover any overstatement of the margin (that is, sample size vectors in N(0.05,0)).
We exclude precincts (k,c) with ωkc = 0, because differences in those precincts

5See http://swdb.berkeley.edu/pub/data/G08/state/state_g08_sov_data_by_

g08_svprec.dbf.

24

Statistics, Politics, and Policy, Vol. 2 [2011], Iss. 1, Art. 7

DOI: 10.2202/2151-7509.1031

Brought to you by | University of California - Berkeley
Authenticated

Download Date | 12/8/17 12:12 AM



could not have overstated the apparent margin. Table 3 lists the results, along with

summary statistics such the number of counties and precincts in the contest and the

margin of victory as a percentage of votes cast in the contest. Figures 3 and 4 plot

the results.

PSS sample sizes are optimal in 8 contests and within 2 batches of optimal

in 14 contests. Sample sizes from first.r are optimal in 9 contests and within

2 batches of optimal in 15 contests. Sample sizes from next.r are optimal in

12 contests and within 2 batches of optimal in 19 contests.

For 11 of the contests, PSS required auditing the most batches. For 10 con-

tests, PSS had the largest expected number of ballots to audit. The PSS sample

sizes were far from optimal for the District 11 and the District 44 contests.

next.r never required auditing the largest number of batches nor the largest

expected number of ballots. However, it required auditing far more than the optimal

number of batches and ballots in District 44.

All three approximate methods find sample sizes very quickly, even for large

contests. Given a threshold value of the test statistic t∗ and risk limit α , one can

apply all three methods and choose whichever requires auditing the fewest batches

or the fewest expected ballots. This is legitimate because the choice takes place

before the sample is drawn. (In contrast, one cannot draw the samples all three ways

and decide which of the samples to use after looking at the audit results—with “data

snooping” of that kind, the nominal p-value could differ substantially from the true

p-value.) For many contests, the methods perform similarly. The simplest—PSS—

is typically quite good. For small contests, it can be close to optimal.

8 Conclusions and Future Work
Risk-limiting post-election audits guarantee that if the apparent outcome of a con-

test is wrong, there is a large chance of a full hand count to set the record straight.

The risk is the maximum chance that the audit will not correct an apparent outcome

that is wrong. A risk-limiting audit can be thought of as a hypothesis test: The null

hypothesis is that the apparent outcome is wrong. A type I error corresponds to

failing to correct a wrong outcome. The chance of a type I error is the risk. The

p-value of the null hypothesis quantifies the evidence that the outcome is correct:

Smaller p-values are stronger evidence.
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Table 3: Summary of 20 multi-jurisdiction 2008 California U.S. House of Rep-

resentative contests and audit workload for several methods of selecting sample

sizes. Column 1: legislative district. Column 2: number of counties containing

the contest. Column 3: number of precincts in the contest. Column 4: largest

number of precincts in the contest in any single county. Column 5: total votes

cast in the contest. Column 6: margin of victory as a percentage of valid votes

cast. Columns 7–10: number of batches to audit if sample size vectors are selected

using PSS, first.r, next.r, or optimally. The optimal choice is not unique.

Columns 11–13: expected number of ballots to audit if sample size vectors are

selected using PSS, first.r, or next.r.

Contest summary Precincts to audit Expected ballots to audit

CD C N max Votes M PSS f.r n.r Opt PSS f.r n.r

Nc (%)

12 2 599 385 293,469 51.5 13 11 11 11 6,454 5,775 5,775

6 2 1,110 732 336,749 45.3 15 15 15 15 5,224 5,224 5,224

7 2 535 293 252,898 47.3 15 15 15 15 8,210 8,210 8,210

14 3 940 530 296,795 43.6 17 16 16 16 6,465 6,227 6,227

51 2 844 628 219,232 45.1 16 16 16 16 4,863 4,863 4,863

17 3 766 368 240,205 45.7 19 18 18 18 7,227 6,989 6,989

23 3 818 392 266,259 34.1 20 21 20 20 7,535 7,857 7,481

10 4 728 430 318,243 31.5 23 21 22 21 11,275 10,580 10,927

20 3 1,152 420 131,708 46.2 22 23 23 22 3,791 3,928 3,928

21 2 1,056 568 225,375 34.2 26 25 25 25 6,822 6,556 6,554

42 3 669 307 289,757 18.4 38 40 34 33 19,060 23,199 17,968

41 2 1,688 1,222 277,945 21.6 41 42 41 41 11,659 11,872 11,659

49 2 1,152 730 263,844 19.0 42 41 41 41 13,066 12,818 12,864

24 2 1,176 932 322,001 15.1 51 51 50 50 18,606 18,914 18,427

25 4 1,151 777 275,404 14.0 63 62 61 60 19,130 18,997 18,742

11 4 1,167 782 318,195 9.8 85 65 61 61 28,351 23,171 22,576

26 2 1,000 650 296,714 10.9 64 67 65 64 22,671 23,810 23,011

46 2 660 402 307,160 8.7 77 74 73 71 38,346 38,721 37,121

3 5 829 696 339,812 5.1 130 122 122 121 56,969 54,158 54,380

44 2 811 712 274,349 2.2 355 289 315 270 142,882 122,564 129,325
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Figure 3: Number of batches to audit so that the p-value of the hypothesis that the

outcome is incorrect will be less than α = 0.05 if the sample finds no difference

that overstated a margin. Bar graphs plot the ratio of the number of batches to audit

for sample size vectors chosen using PSS, first.r, and next.r to the number

of batches an optimal sample-size vector requires. first.r and next.r tend to

require fewer batches than PSS. For many contests, the differences among methods

are small.
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Figure 4: Expected number of ballots to audit so that the p-value of the hypothe-

sis that the outcome is incorrect will be less than α = 0.05 if the sample finds no

difference that overstated a margin). Bar graphs plot the ratio of the expected num-

ber of ballots for PSS and first.r to the expected number of ballots for next.r.

first.r and next.r tend to require fewer ballots than PSS. For many contests, the

differences among methods are small.
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Previous work on risk-limiting audits using stratified samples found upper

bounds on p-values that were extremely conservative when sampling fractions var-

ied widely across strata. We have shown here how to find a sharp p-value based on

a stratified sample by solving a 0-1 knapsack problem (KP). KP can be solved ef-

ficiently using a branch and bound algorithm. The linear knapsack problem (LKP)

bound gives an inexpensive upper bound on the p-value that is almost sharp: For

the 2006 U.S. Senate contest in Minnesota, the exact p-value found by KP is nearly

identical to the LKP conservative p-value, and both are dramatically smaller than

conservative p-value computed using the method in Stark (2008a,b).

Sampling rates within strata have a large effect on workload. We show that

in Minnesota, an audit could have obtained the same p-value by sampling 80 fewer

precincts and counting a third fewer ballots, if the maximum difference observed

by the audit remained the same. Simulations based on the 2008 U.S. House of Rep-

resentatives contests in California suggest that choosing sample sizes to be propor-

tional to the number of batches in each stratum can be close to optimal. Minnesota’s

stratification is far from proportional.

The legal requirement to use stratification makes some aspects of auditing

more complex, and some simpler. It would be interesting to study how stratification

affects the cost of audits and to understand when stratification increases statistical

efficiency. McLaughlin and Stark (2011) compare the expected number of ballots

that must be audited for proportionally stratified, optimally stratified, and unstrat-

ified audits using data from the 2008 U.S. House of Representatives contests in

California. If MRO is the test statistic, optimal stratification can entail less hand

counting than unstratified audits, depending on contest details. However, even opti-

mal stratification tends to have a higher hand-counting workload than methods that

sample batches with probability proportional to the amount of difference each batch

can hold and that use a better test statistic than the maximum MRO.

It might be possible to reduce the audit workload for stratified audits (when

the outcome is correct) by using a test statistic other than the maximum MRO or a

maximum of monotone functions of the MRO. So far, there seems no analytically

tractable, more powerful alternative for stratified random samples, but this is an

area of active research.

In contrast, workload can be reduced dramatically (when the outcome is

correct) by using smaller audit batches (Neff, 2003, Stark, 2010, McLaughlin and

Stark, 2011). Unfortunately, most current vote tabulation systems do not report

subtotals for batches smaller than precincts. Improving “data plumbing” to allow

smaller batches to be audited—ideally, individual ballots—would be a powerful

contribution to election integrity.
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A Proof of [28]
Choose x ∈ X, and let

#cx ≡
Nc

∑
k=1

xkc

and

Kc(x)≡ min

{
k′ ≥ 0 :

k′

∑
k=1

ukc ≥
Nc

∑
k=1

ukcxkc

}
.

By [36] and the rearrangement theorem (Hardy et al., 1952), Kc(x)≤ #cx.

Let x̃ ≡ (x̃kc)
Nc C
k=1 c=1 be the vector with components

x̃kc ≡
{

1, k ≤ Kc(x),
0, otherwise.

(64)

If x̃kc = 1, then ukc > 0, and by [35], ωkc > t. Let e∗ be the allocation with compo-

nents e∗kc = ωkc if x̃kc = 1 and e∗kc = ωkc ∧ t if x̃kc = 0. Then e∗ ∈ Ẽ and g(e) = x̃.

Hence,

x̃ ∈ X̃. (65)

By definition of Kc(x),

u · x̃ =
C

∑
c=1

Nc

∑
k=1

ukcx̃kc ≥
C

∑
c=1

Nc

∑
k=1

ukcxkc = u · x. (66)

Since Kc(x) ≤ #cx and qkc ≥ 0, it follows from [46] and the rearrangement theo-

rem (Hardy et al., 1952) that

q · x̃ =
C

∑
c=1

Nc

∑
k=1

qkc1(k ≤ Kc(x))≤
C

∑
c=1

Nc

∑
k=1

qkc1(k ≤ #cx)

≤
C

∑
c=1

Nc

∑
k=1

qkcxkc = q · x. (67)

By [65], [66], and [67], for any x ∈ X satisfying u · x ≥ M, there is a y ∈ X̃
such that u · y ≥ M and q · y ≤ q · x. Equation [28] follows immediately.

B Branch and bound description
We describe a branch and bound algorithm for finding exact p-values by finding a

vector x† ∈ X̃ ⊂ X that satisfies

q · x† = λ = min{q · x : u · x ≥ M, x ∈ X}.
The exact p-value is P# = exp(−q · x†).
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The branching step recursively splits the minimization problem into sub-

problems that fix the components of x corresponding to the first m elements of π
(that is, they assign differences to the batches with the smallest values of r) and

leave the remaining components free. Each branch is thus characterized by a vector

y•m ∈ {0,1}m, where m is the number of fixed components. For a given branch y•m,

define xm0 to be the vector in X for which

xm0
π( j) =

{
y•m

j , j = 1, . . . ,m
0, otherwise.

That is, the components of xm0 corresponding to the smallest m values of r are equal

to the corresponding values of y•m and the rest of its components are zero. We call

the elements xm0
π( j), j = 1, . . . ,m, the fixed components of xm0, and the remaining

N −m elements the free components. Note that if xm0 /∈ X̃, then no x ∈ X with

xπ( j) = y•m
j is in X̃.

Each branch y•m satisfies one of four sets of conditions:

1. If xm0 ∈ X̃ and u · xm0 ≥ M, then no vector x that agrees with with the fixed

components of xm0 can have q · x < q · xm0. In this case, xm0 is kept as a

potential solution, the value of q · xm0 is saved, and the branch is not split

further.

2. If u · xm0 < M and there is no x ∈ X̃ that agrees with the fixed components

of xm0 and has at least one additional component equal to 1, there is no way

that splitting the branch will lead to a feasible element of X̃. In this case, the

branch is pruned.

3. Solving LKP for the free components shows that all vectors x ∈ X derived

from this branch that satisfy u · x ≥ M have a value of q · x greater than the

smallest value saved in step 1. In this case, the branch is pruned.

4. If the branch does not satisfy any of conditions (1)–(3), it is split into two

branches by extending y•m to make two {0,1}m+1-vectors, one with m+ 1st

component equal to 0 and the other with m+ 1st component equal to 1. If

no element of X̃ matches the resulting fixed components, the corresponding

branch is pruned.

Branches can be split at most 2N times, so eventually each branch is pruned or

satisfies condition set (1). Once that has happened, the solution to the original

problem is the vector that satisfies condition set (1) and has the smallest value. We

now explain the calculations in more detail.

The test in condition set (1) needs no explanation. The test in condition

set (2) and the pruning in condition set (4) rely on a set of indicator variables z ≡
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(zc)
C
c=1 for each branch. Initially, z = (1)Cc=1. For any j with y•m

j = 0, zc(π( j)) is

set to 0. If z = (0)Cc=1 and u · xm0 < M, the branch satisfies condition set (2) and is

pruned.

Suppose a branch y•m satisfies condition set (4). If zc(π(m+1)) = 0, then the

branch with 1 in its m+ 1st component is pruned, because it can never lead to an

element of X̃.

We now discuss the lower bound used in condition set (3). For any vector

a ∈ R
N , and for any m ∈ {1, . . . ,N}, define ma ≡ (aπ( j))

m
j=1. For any vector y•m ∈

{0,1}m, define

λ y ≡ min{q · x : x ∈ X, mx = y•m,u · x ≥ M}.
That is, λ y is the smallest value of q · x for vectors x ∈ X that satisfy u · x ≥ M
and have components xπ( j) = y•m

j , j = 1, . . .m, or ∞ if no vector satisfies those

constraints. This is the smallest value that can be obtained along the branch y•m.

If mu · y•m ≥ M, then λ y = mq · y•m. If mu · y•m < M, we can find a lower

bound for λ y by solving LKP in R
N−m:

λ y
LKP

≡ min{q · x : x ∈ Xrel, mx = y•m,u · x ≥ M} ≤ λ y.

For any y•m ∈ {0,1}m, define

By ≡ (N +1)∧
{

B′ ≥ 1 : mu · y•m +
m+B′

∑
j=m+1

uπ( j) ≥ M

}
.

Note that By = 1 when mu · y•m > M. When B = N +1, λ y
LKP = ∞. When B ≤ N, the

explicit solution for λ y
LKP (Dantzig, 1957) is

λ y
LKP

=m q · y•m +
m+By−1

∑
j=m+1

qπ( j) + 0∨
(

M− mu · y•m −
m+By−1

∑
j=m+1

uπ( j)

)
qπ(m+By)

uπ(m+By)
.

Note that

M−
(

mu · y•m +
m+By−1

∑
j=m+1

uπ( j)

)
≤ 0

if and only if mu · y•m ≥ M. If no x ∈ X with components xπ( j) = y•m
j , j = 1, . . .m

satisfies u · x ≥ M, then λ y
LKP = ∞ and the branch y•m is pruned.

We now give pseudo-code for a recursive branch and bound algorithm.

Initialize:

x = (0)N
j=1
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z = (1)Cj=1.

m = 0.

x†′ = NULL.

λ min = ∞.

The first three variables (x, z and m) are local; x†′ and λ min are global.

When the algorithm stops, x†′ = x† and λ min = λ .

BaB(x,z,m):
If m �= 0:

Set y•m = mx.

If mu · y•m ≥ M:

Subproblem can be trivially solved.

If λ min > mq · y•m:

Set λ min = mq · y•m.

Set x†′ = x.

Return.

Else If z = (0)Cj=1:

The only branches that lead to elements of X̃ have xπ(m′) = 0, ∀m′ > m.

Return.

Else If λ y
LKP > λ min :

This branch does not contain the minimum λ .
Return.

If zc(π(m+1)) = 1:

Set xπ(m+1) = 1.

BaB(x,z,m+1).
Set xπ(m+1) to 0 and zc(π(m+1)) to 0.

BaB(x,z,m+1).
Return.

C More general monotone weight functions
As mentioned above, the derivations generalize from the maximum MRO to the

maximum of more general monotone weight functions of the observed differences

by changing various definitions, as follows.
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The test statistic Tw becomes the maximum of the weighted observed differ-

ences:

Tw ≡ max
(k,c)∈J�n

wkc(eH
kc).

The probability that the sample will show a maximum weighted difference no

greater than any fixed value t if the allocation of difference is e is

PJ�n(e)≡ P
(

max
(k,c)∈J�n

wkc(ekc)≤ t
)
.

To construct an outcome-changing difference that is as hard as possible to detect,

we rely on

G(e) = G(e; t)≡ {(k,c) : wkc(ekc)> t}.
Within each stratum, instead of using condition [9], order the batches so that if

k > k′ then

[ωkc − (ωkc ∧w−1
kc (t))]≥ [ωk′c − (ωk′c ∧w−1

k′c (t))].

Define

κc(e)≡ min

{
k′ ≥ 0 :

k′

∑
k=1

ωkc +
Nc

∑
k′+1

(ωkc ∧w−1
kc (t))≥

Nc

∑
k=1

ekc

}
,

ẽkc ≡
{

ωkc, k ≤ κc(e),
ωkc ∧w−1

kc (t), otherwise,

ukc ≡ ωkc − (ωkc ∧w−1
kc (t)),

and

M ≡ μ −
C

∑
c=1

Nc

∑
k=1

(ωkc ∧w−1
kc (t)).

Then the proofs go through mutatis mutandis.
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