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Abstract: Many scientific problems have unknown parameters that are thought to lie in
some known set. For instance, the amount of energy absorbed by an x-ray specimen must be
between 0 and 100% of the incident energy. Similar constraints arise in expressing “epistemic”
uncertainty. Such prior information can be handled directly by frequentist methods. Bayesian
methods require supplementing the constraint with a prior probability distribution for the
parameter. This can cause frequentist and Bayesian estimates, and the nominal uncertainties
of those estimates, to differ substantially. Moreover, Bayesian and frequentist definitions
of uncertainty may sound similar, but they measure quite different things. For instance,
Bayesian uncertainties generally involve expectations with respect to the posterior distribution
of the parameter, holding the data fixed, while frequentist uncertainties generally involve
expectations with respect to the distribution of the data, holding the parameter fixed. This
paper gives simple examples where “uninformative” priors are in fact extremely informative,
and sketches how to measure how much information the prior adds to the constraint.

Keywords: Frequentist methods, Bayesian methods, uncertainty quantification, con-
straints, priors, risk

1. Introduction. Consider the problem of learning about a (possibly infinite-dimensional)
vector θ known to be in a subset Θ of a Hilbert space, from observations related to that vector.
In examples below, the set Θ is a “ball” in a norm or semi-norm. A one-dimensional special
case is to estimate a single, real-valued parameter that is known to be between 0 and 1. The
vector space is the real line, the norm is the absolute value, and the set Θ is a ball of radius
1/2 centered at the point 1/2.

This one-dimensional problem does arise in practice: the parameter might be a mortality
rate; the fraction of incident energy absorbed by a material; the ratio of applied load to
failure strength for a structure such as a bridge, dam, building, or engine mount (given that
the structure did not fail); the ratio of an individual’s exposure to a toxic substance to the
exposure that would be lethal (given that the individual did not die of the exposure); or the
ratio of the speed of a particle to the velocity of light.

Useful constraints on high-dimensional parameters (even infinite-dimensional parameters
like functions of position and time) often can be expressed as the requirement that a norm
or semi-norm is bounded by a constant. For example, we might be interested in the electric
field generated by some device, as a function of position in space; we might know a priori that
the energy of that field—a quadratic norm—is less than 1, in suitable units. Or we might be
interested in the spatial variation of ground motion caused by a large earthquake; we might
have an a priori upper bound on the total energy released by the earthquake. Constraints of
this kind can reduce the uncertainty in estimates of the parameters in question, sometimes
substantially; they can even render otherwise insoluble problems solvable [1, 2, 3, 4, 5, 6, 7].
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There are two basic approaches to dealing with constraints in problems of statistical es-
timation and inference. In the frequentist approach, the constraints are used directly: The
estimation or inference problem is restricted to the set of parameters that satisfy the con-
straints. In the Bayesian or subjective approach, the analyst imposes the constraints by
choosing a prior probability distribution that assigns probability 1 to the set of parameters
that satisfy the constraint. These two approaches result in uncertainty estimates that differ
substantially in definition and interpretation, and that can differ substantially in numerical
value. This paper recounts some of the philosophical and definitional differences.

2. Notation. The notation here follows that in [8]. We want to use measurements Y to
learn about the (unknown) state of the world, denoted by θ, in a mathematical representation
of some physical system. In many interesting cases, θ is a function of position and/or time,
which in principle would require an infinite list of numbers to describe perfectly—it is an
element of an infinite-dimensional space. We shall assume that the possible values of Y are
n-vectors of real numbers, i.e., elements of IRn. Mathematics, physics, or previous experiments
tell us that θ satisfies a constraint like those described in the introduction. The set Θ expresses
this constraint: We know a priori that θ ∈ Θ.

The measurements Y are related to the state of the world θ through a measurement model,
which gives the probability distribution IPη of Y for each possible state of the world η ∈ Θ.
That is, if θ = η, then Y ∼ IPη, where∼means “has probability distribution” or “is distributed
as.” Depending on θ, Y may be more likely to take values in some subsets of IRn than in
others. For any particular set A ⊂ IRn, Prη{Y ∈ A} generally will not be equal to Prη′{Y ∈ A}
unless η = η′. However, it can be the case that η 6= η′ and yet Prη{Y ∈ A} = Prη′{Y ∈ A}
for all (measurable) subsets A ⊂ IRn. (In that case, θ is not identifiable.) We shall assume
that there is a known measure µ that dominates the set of distributions P ≡ {IPη : η ∈ Θ},
so we can use “densities” even if some members of P have atoms. This assumption makes it
easier to define likelihoods, which are required for the Bayesian framework. With respect to
µ, the density of IPη at y is

pη(y) ≡ dIPη/dµ|y. (2.1)

For any fixed y, the likelihood of η given Y = y is pη(y), viewed as a function of η alone.

While we might like to know θ, it is often impossible to estimate it with any useful level
of accuracy; in many problems, θ is not even identifiable. But it still may be possible and
scientifically interesting to estimate a parameter λ = λ[θ], a property of θ. The parameter
might be the average of θ over some volume of space or time, a norm or semi norm of θ, or
the number of local maxima θ has, for instance. We shall assume that the possible values of
λ[θ] are also elements of a Hilbert space.

3. The Bayesian Approach. The Bayesian approach starts with a prior probability dis-

tribution π on Θ, and the likelihood function pη(y). To have a prior probability distribution
involves some technical restrictions that will not be considered here.1 Together, π and pη
imply a joint distribution of θ and Y . The marginal distribution or predictive distribution of

1For instance, Θ must be a measurable subset of a measurable space, and the likelihood function must be
jointly measurable with respect to η and y.
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Y is

m(y) =

∫

Θ
pη(y)π(dη). (3.1)

On observing that Y = y, we assimilate the information by applying Bayes’ rule to find the
posterior distribution of θ given Y = y:

π(dη|Y = y) =
pη(y) π(dη)

m(y)
. (3.2)

(The marginal density m(y) can vanish, but the probability that it does is zero.) In principle,
this solves the problem: All the information in the prior and the data is now contained in
the posterior distribution. The posterior distribution πλ(dℓ|Y = y) of λ[θ] is the distribution
induced by the posterior distribution of θ: For any (measurable) set A of possible values of λ,

Pr(λ[θ] ∈ A|Y = y) =

∫

ℓ∈A
πλ(dℓ|Y = y) ≡

∫

η:λ[η]∈A
π(dη|Y = y). (3.3)

If we get additional data, we apply Bayes’ rule again, using the current posterior as the new
prior.

3.1. Arguments for the Bayesian approach. There are a number of arguments for the
Bayesian approach. One is that people are in fact Bayesian: that the Bayesian approach
is descriptive. There is considerable evidence that this is false. I do not know of anyone
who uses Bayes’ theorem to combine and update prior beliefs in ordinary life. Extensive
empirical research, starting with the seminal work of [9], shows that even people with training
in probability fail to incorporate Bayes rule in their day-to-day reasoning.

The second argument is that people should be Bayesian: that the Bayesian approach is
normative. According to the argument, if people are not Bayesians, their probability assign-
ments are “incoherent” and others can make “Dutch book” against them. (“Dutch book” is
a combination of bets such that no matter what the outcome, the bettor loses money.) The
coherence argument depends in part on the assumption that all beliefs can be expressed as
probability distributions, an assumption that many are unwilling to grant. The “Dutch book”
argument depends on the non-Bayesian analyst’s willingness to cover an unlimited number of
bets, and on the assumption that the Bayesian analyst’s prior is proper, that is, that the total
mass of the prior is 1. In practice, improper priors are common; for instance, it is common to
use a uniform prior for parameters on unbounded domains. See [10, 11].

A third argument is that the choice of the prior does not matter (much), because the data
eventually overwhelm the prior: No matter what prior you start with, given enough data,
you end up with essentially the same posterior distribution. This convergence occurs in some
circumstances and not in others [12, 13]: The prior can bite you on the posterior. See [14] for
further discussion of these and related issues.

I think Bayesian methods remain popular because (depending on the prior) they generally
make the uncertainty appear smaller than a frequentist analysis would show, which makes the
results more optimistic, and because they give a (numerically computable) recipe that can be
applied to essentially any problem—if you have a prior and a fast computer.2 A Bayesian can

2Technology for computing posterior distributions, for instance, Markov Chain Monte Carlo, might also be
part of the appeal—it is very clever indeed.
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give a number for the probability of an act of nuclear terrorism in the year 2025; a frequentist
cannot make sense of what “probability” could mean in that context. A Bayesian can give a
number for the probability that there are civilizations of intelligent beings in other galaxies;
a frequentist cannot make sense of the question. In situations where both frequentist and
Bayesian methods can be applied, probability and uncertainty mean quite different things to
frequentists and to Bayesians, as elaborated below.

3.2. Priors. In the Bayesian approach, all information about θ is expressed as a proba-
bility distribution. To use the Bayesian framework, one must quantify beliefs and constraints
by means of probability distributions. As mentioned above, the Bayesian approach to in-
corporating the constraint θ ∈ Θ is to select a prior probability distribution π (defined on
a suitable sigma algebra of subsets of Θ) that assigns probability 1 to Θ. In the Bayesian
framework, probability quantifies degree of belief. (In the frequentist framework, probability
is defined in terms of long-run relative frequency.) The prior quantifies the analyst’s beliefs
about θ before data are collected. If she is certain that the event A will occur, A has prior
probability 1. If she is certain that A will not occur, A has prior probability 0. If she believes
with equal strength that A will occur and that A will not occur, A has prior probability 1/2.
If she believes twice as strongly that A will occur as she believes A will not occur, A has
prior probability 2/3. More generally, if A and B are two (π-measurable) subsets of Θ and
the analyst believes r times as strongly that θ ∈ A as she believes that θ ∈ B, then her prior
satisfies π(A) = rπ(B).

Even in the simplest non-degenerate case, there are infinitely many probability distribu-
tions that assign probability 1 to Θ. Which should be the prior? In principle, it is up to the
analyst to introspect to find the prior that reflects her beliefs about θ; in turn those beliefs
should be constructed from previous experience and previous beliefs through the application
of Bayes’ theorem. In practice, I have never come across a Bayesian analysis of data from a
real experiment where the data analyst made a serious attempt to quantify her beliefs using
a prior, although there is a literature on the elicitation of prior probabilities [15]. Instead,
in my experience, priors are generally taken as givens, and appear to be selected or justi-
fied in four primary ways: (i) to make the calculations tractable, (ii) because the particular
prior is conventional, (iii) so that the prior satisfies some invariance principle, or (iv) with
the assertion that the prior is “uninformative.” Computational tractability has become less
of a desideratum as simulation algorithms and computing power have advanced. Convention
wields considerable force: The conventional tends to be treated as “correct” or “obvious.”
See [16, 8] for discussions of (iii) and (iv).

Some researchers use Laplace’s Principle of Insufficient Reason to select an “uninforma-
tive” prior: If there is no reason to believe that outcomes are not equally likely, assume that
they are equally likely. Of course, the outcomes considered may depend on the parametriza-
tion, among other things. Generally, however, the principle generally leads to a prior π that
is uniform on Θ. That is, the probability of any subset of Θ is assumed to be proportional to
its Lebesgue measure.

For instance, the “uninformative” prior for a real parameter known to be in Θ ≡ [−1, 1] is
the uniform distribution on [−1, 1], which has density f(η) = {1/2, η ∈ [−1, 1]; 0, otherwise}.
This prior captures the constraint θ ∈ [−1, 1], but it does far more than that: It assigns
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probabilities to all measurable subsets of [−1, 1]. For instance, it says that there is a 50%
chance that θ is positive, a 50% chance that the absolute value of θ is greater than 1/2, and
a 90% chance that the absolute value of θ is greater than 1/10. This is not information that
came from the constraint: It is information added by the prior. The constraint θ ∈ Θ requires
π to assign probability 1 to Θ, but it does not restrict the probabilities π assigns to proper
subsets of Θ. Any choice of π, “uninformative” or not, says more about θ than the original
constraint did.

This problem—that turning constraints into priors adds information—grows worse as the
dimension of the parameter θ grows. For instance, suppose the unknown θ is a vector in
n-dimensional Euclidean space IRn, and we know that ‖θ‖ ≤ 1—that is, Θ is the unit ball in
IRn. The volume of a spherical shell from radius 1− ǫ to 1 is a larger and larger fraction of the
volume of the unit sphere as the dimension n grows. For any α ∈ (0, 1) and ǫ ∈ (0, 1) there is
a dimension n so that the (uniform) probability of the spherical shell from radius 1 − ǫ to 1
(that is, {η : ‖η‖ ∈ [1 − ǫ, 1]}) is at least α. What does this mean? Starting with the mere
constraint that ‖θ‖ ≤ 1, we end up with arbitrarily high certainty that in fact ‖θ‖ ≥ 1− ǫ. It
is the prior that gives us this certainty, not the constraint. The prior is not “uninformative”
about the norm.

Conversely, suppose we put a rotationally invariant prior on the unit ball in such a way
that the marginal distribution of the norm is uniform. Consider the ball of radius 1 − ǫ. It
has probability 1 − ǫ regardless of the dimension of the space, even though its volume is a
negligible fraction of the volume of the unit ball if the dimension of the space is large. This
prior is not “uninformative” with respect to volume: It says that the model is extremely likely
to be in a subset of Θ that has very small volume.

The problem reaches a head in infinite-dimensional spaces. For instance, suppose θ is an
element of an infinite-dimensional separable Hilbert space, and that the constraint set Θ is
rotationally invariant (an example would be Θ ≡ {η : ‖η‖ ≤ 1}). If we want the prior to
respect that rotational invariance, it is a theorem that the prior either assigns probability
1 to the event that θ = 0 or it assigns probability 1 to the event that the norm of θ is
infinite—contradicting the constraint the prior was intended to capture [17].

3.3. Interpretation of Bayesian priors and estimates. Prior probability distributions—
and hence posterior distributions—are quantifications of the analyst’s degree of belief. As such,
they change the subject from the experiment to the analyst’s state of mind. Suppose I claim
that my prior probability distribution for the load on a structure as a fraction of its breaking
strength is the uniform distribution on [0, 1]. I am right if that accurately reflects what I
believe. I am wrong if it does not accurately reflect what I believe. The relationship between
the prior and the world has no bearing on whether I am right or wrong. Experiments that
could show I am wrong involve checking what I actually believe—for instance, psychological
testing or determining what bets I would take at what odds—rather than measurements of
the structure.

Two analysts can have very different priors and both be right, because what makes a prior
right is that it correctly quantifies the analyst’s belief. If I do not share your prior beliefs in
detail, then even if we agree on the likelihood function and the data, we will have different
posterior distributions for θ. Why should your posterior distribution matter to me? If a
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Bayesian analysis results in the statement, “there is a 99.9% chance that the applied load
will be less than 10% the breaking strength,” it means that the analyst is quite sure that the
load will be low, but it is not at all clear what it means about safety. For a different prior,
an equally correct analysis might find that there is a 99.9% chance that the applied load will
exceed 90% the breaking strength. If so, a Bayesian analysis might appropriately be viewed
with skepticism. On the other hand, if one could show that no matter what prior is used,
there is at least a 99.9% chance that the applied load will be less than 10% of the breaking
strength, the Bayesian position seems much more persuasive. While the Bayesian approach
has its merits, the utility of Bayesian analyses may hinge on the sensitivity of the conclusions
to the choice of prior.

4. The Frequentist approach. The main difference between Bayesian and frequentist
approaches to constraints boils down to the difference between believing that θ is an element
of Θ drawn at random according to the distribution π and believing that θ is simply an
unknown element of Θ. (The interpretation of probability also differs substantially between
the two points of view.)

As discussed above, for Bayesians, probability quantifies degree of belief. For frequentists,
probability has to do with long-term regularities in repeated trials. The probability of an
event is defined to be the long-run limiting relative frequency with which the event occurs in
independent trials under ‘essentially identical’ conditions. “Essentially identical” is in inverted
commas because if the conditions were exactly identical, then (within classical physics, at
least), the outcome would be identical. The canonical random experiment, tossing a fair coin,
will give heads every time or tails every time if the coin is tossed with initial conditions that
are similar enough.3 Defining “essentially identical” is a serious problem for the frequentist
approach. Another is the assumption that repeated trials result in relative frequencies that
converge to a limit. This assumption is an assertion about how the world works, an assertion
that cannot be verified empirically, since it does not posit any particular rate of convergence.
As mentioned above, the frequentist approach also limits the kinds of things one can make
probability statements about: Only trials that, in principle, can be repeated indefinitely lead
to probabilities. So, for instance, a conventional frequentist approach cannot make sense of
questions like “what is the chance of an act of nuclear terrorism in the year 2025?” or “what
is the chance of an earthquake with magnitude 8.0 or above in the San Francisco Bay Area in
the next 20 years?” much less supply numerical values for those chances.

In the frequentist approach, probability generally resides in the measurement process or the
experiment, not in the parameter. There is statistical uncertainty because there is sampling
variability or measurement error or random assignment of subjects to treatments, not because
the underlying parameter is random. Since it is not necessary to assume that θ is random to
use the frequentist approach, it is not necessary to augment the constraint θ ∈ Θ with a prior
probability distribution.

5. Summarizing uncertainty. There are many ways to quantify uncertainty. We shall
consider two, each of which has a Bayesian and a frequentist variant: mean squared error (a

3For instance, Diaconis [18] notes that he and other magicians can toss a coin to land heads or tails at will
and describes an apparatus built by physicists that tosses a coin reproducibly.
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frequentist measure) and posterior mean squared error (the related Bayesian measure), and
confidence sets (a frequentist construct) and credible regions (the related Bayesian construct).

5.1. Mean Squared Error. Recall that we have assumed that λ[θ] takes values in a Hilbert
space. Suppose we choose to estimate λ[θ] by the estimator λ̂(Y ), a (measurable) map from
possible data values y into possible values of λ[η], η ∈ Θ. The mean squared error (MSE) of
λ̂ when θ = η is

MSE(λ̂(Y ), η) ≡ IEη‖λ̂(Y )− λ[η]‖2. (5.1)

The MSE depends on η. The expectation is with respect to IPη, the distribution of the data
Y on the assumption that θ = η. Since the true value of θ is unknown, in general we cannot
select the estimator λ̂ to make the MSE as small as possible. Instead, we might choose λ̂ to
make the largest MSE as η ranges over Θ as small as possible. That choice is the minimax

MSE estimator.
A related Bayesian measure of uncertainty is the posterior mean squared error (PMSE),

PMSE(λ̂(y), π) ≡ IEπ‖λ̂(y)− λ[η]‖2. (5.2)

The PMSE depends on π and the observed value of y. The expectation is with respect to
the posterior distribution of θ given Y = y. Since π is known, we can select (for each y)
the estimator that has the smallest possible PMSE. That estimator, the Bayes estimator
for PMSE, is the mean of πλ(dℓ|Y = y), the marginal posterior distribution of λ[θ] given Y
[19, 20]:

λ̂π(y) ≡

∫
ℓπλ(dℓ|Y = y). (5.3)

Even though the MSE and PMSE both involve expectations of the squared norm of the
difference between the parameter estimate and the true value of the parameter, they are
conceptually quite different: The MSE is an expectation with respect to the distribution of
the data Y , holding the parameter θ = η fixed, while the PMSE is an expectation with respect
to the posterior distribution of θ, holding the data Y = y fixed.

5.2. Confidence Sets and Credible Regions. Suppose α ∈ (0, 1). A random set I(Y ) of
possible values of λ is a 1− α confidence set for λ[θ] if

IPη{I(Y ) ∋ λ[η]} ≥ 1− α, ∀η ∈ Θ. (5.4)

The probability on the left is with respect to the distribution of the data Y , holding η fixed.
In the frequentist view, once the data are collected and we know that Y = y, there is no longer
any probability: The set I(y) is some particular set and the value λ[θ] is some particular (but
unknown) vector, so either I(y) contains λ[θ] or it does not. The “coverage probability” of
the rule I is the (smallest) chance that I(Y ) will include λ[η] as η ranges over Θ, with Y
generated from IPη(y).

A related Bayesian construct is a posterior credible region. A set I(y) of possible values
of λ is a 1− α posterior credible region for λ[θ] if

IPπ(dθ|Y=y)(λ[θ] ∈ I(y)) ≡

∫

I(y)
πλ(dℓ|Y = y) ≥ 1− α. (5.5)
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The probability on the left is with respect to the posterior distribution of θ, holding the data
fixed: It is is the posterior probability that I(y) contains λ[θ] given that Y = y. In the
Bayesian view, once the data are collected and we know that Y = y, there is still probability,
because the value of θ itself is uncertain, and our beliefs about it are to be quantified as
probabilities.

There are countless ways of constructing confidence sets and credible regions. Since the
volume of the set or region is a measure of precision—the uncertainty after the data have been
collected—it can be desirable to choose confidence sets and credible regions to minimize their
(expected) volumes. See, for instance, [7, 21, 22].

6. Decision theory. This section gives a brief sketch of decision theory, a framework for
comparing estimators. For a bit more detail, see [8]; for a rigorous treatment, see [23]. Decision
theory treats estimation as a two-player game: Nature versus analyst. The game frequentists
play has slightly different rules from the game Bayesians play. According to both sets of rules,
Nature and the analyst know Θ, IPη for all η ∈ Θ, λ, and the payoff rule (loss function)
loss(ℓ, λ[η]), the amount of money the analyst loses if she guesses that λ[η] = ℓ when in fact
θ = η. Nature selects an element θ of Θ. The analyst selects an estimator λ̂. The analyst
does not know the value of θ and Nature does not know what estimator the analyst plans to
use. Data Y are generated using the value of θ that Nature selected; the data are plugged
into λ̂, and loss(λ̂(Y ), λ[θ]) is calculated. Holding θ constant, a new value of Y is generated,
and loss(λ̂(Y ), λ[θ]) is calculated again. This is repeated many times. The analyst has to pay
the average value of loss(λ̂(Y ), λ[θ]) over all those values of Y , the risk of λ̂ at θ, denoted
ρθ(λ̂, λ[θ]). The analyst’s goal is to lose as little as possible in repeated play.

In the Bayesian version of the game, Nature agrees to select θ at random according to
the prior distribution π, and the analyst knows π. In the frequentist version of the game,
the analyst does not know how Nature will select θ from Θ. This is an essential difference
between the frequentist and Bayesian viewpoints: Bayesians claim to know more about how
Nature generates the data.

A cautious frequentist might wish to select λ̂ to minimize her worst-case risk, on the
assumption that Nature might play intelligently to win as much as possible. An estimator
that minimizes the worst-case risk over η ∈ Θ (for some specified class of estimators) is called
a minimax estimator ; its maximum risk is the minimax risk.

A Bayesian would instead select the estimator that minimizes the average risk on the
assumption that Nature selects θ at random following the prior probability distribution π. An
estimator that minimizes the average risk when θ is selected from π (for some specified class
of estimators) is called a Bayes estimator ; its average risk for the prior π is the Bayes risk.

6.1. Duality between Bayes Risk and Minimax Risk. The Bayes risk depends not only
on Θ, the distributions {IPη : η ∈ Θ}, the parameter λ, and the loss function loss: It also
depends on π. Consider allowing π to vary over a (suitably) rich set of possible priors. The
prior for which the Bayes risk is largest is the least favorable prior. The least favorable prior
typically is not the “uninformative” prior. [21, 22] give numerical methods for approximating
least favorable priors. Under some technical conditions, the Bayes risk for the least favorable
prior is equal to the minimax risk [19, 20]. If the Bayes risk is much smaller than the minimax
risk, it is because the prior added information not present in the constraint itself. When that
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occurs, one might reasonably wonder why the analyst believes Nature selected θ from the
prior distribution π, and might ask whether one shares the analyst’s beliefs about θ.

For example, [8] compare the minimax risk and Bayes risk for estimating θ ∈ Θ ≡ [−τ, τ ]
from data Y ∼ N(τ, 1), the bounded normal mean problem, and evaluate the frequentist
coverage probability of Bayes posterior credible regions. They find that when τ = 1/2, the
Bayes risk for mean squared error is less than half the minimax risk, while for τ = 3, the Bayes
risk is much closer to the minimax risk. When τ = 1/2, the expected length of a 95% Bayes
credible region is at least as big as the expected length of a particular 95% confidence region
(the Truncated Pratt interval) for all η ∈ Θ and values of η for which its expected length is a
couple of percent larger, but the frequentist coverage probability of the Bayes credible region
is as low as 68% for some values of η. In contrast, when τ = 3, there are values of η for which
the expected length of the 95% Bayes credible region is about 33% less than the expected
length of the Truncated Pratt interval and values of η for which it is about 10% longer, while
the coverage probability of a 95% credible region stays above 90% for all η ∈ Θ.

7. CONCLUSION. In engineering and the hard sciences, prior information often comes
in the form of constraints. For instance, masses and energies are nonnegative and finite, and
velocities do not exceed the speed of light. Frequentist methods can use such constraints
directly. Bayesian methods require augmenting the constraints with prior probability distri-
butions. The difference between the frequentist and Bayesian viewpoints is that Bayesians
claim to know more about how the data are generated: Frequentists claim to know that the
parameter θ ∈ Θ, but not how θ is to be selected from Θ. Bayesians claim to know that
the parameter θ is selected at random from Θ according to a prior probability distribution
π known to them. Both claim to know IPη, the probability distribution that the data would
have if the value of θ is η, for η ∈ Θ.

In Bayesian analysis, the prior probability distribution captures the analyst’s beliefs about
the parameter before the data are collected. The prior is updated using the data to construct
the posterior distribution via Bayes’ rule. The posterior combines the analyst’s prior beliefs
with information from the data. An analyst with different prior beliefs will in general arrive
at a different posterior distribution.

The Bayesian framework changes the subject in a subtle way. To measure a probability in
the Bayesian framework is to discover what the analyst thinks, while to measure a probability
in the frequentist framework is to discover empirical regularities in the system under study.
Because of the difference in interpretations of probability, the Bayesian framework allows
probability statements to be made about a much larger range of phenomena. However, the
relevance of an analyst’s statements for others may be limited, since it hinges on the analyst’s
prior, which quantifies her degree of belief but perhaps no one else’s.

Bayesian and frequentist measures of uncertainty differ. For instance, mean squared error
and posterior mean squared error are expectations of the same quantity, but with respect to
different distributions: MSE is an expectation with respect to the distribution of the data,
holding the parameter fixed, while PMSE is an expectation with respect to the posterior
distribution of the parameter, holding the data fixed. Similarly, coverage probability and
credible level are the chance that a set contains the parameter, but coverage probability
is computed with respect to the distribution of the data, holding the parameter fixed and
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allowing the set to vary randomly, while credible level is computed with respect to posterior
distribution of the parameter, holding the data and the set fixed and allowing the parameter
to vary randomly.

Under relatively mild conditions, the largest Bayes risk as the prior is allowed to vary
is equal to smallest maximum risk (the minimax risk) as the parameter is allowed to vary.
When the Bayes risk for a given prior is less than the minimax risk, the choice of the prior
added information not present in the constraint, thereby reducing the apparent uncertainty
of the Bayes estimate. When the difference between the Bayes and minimax risk is large, the
consumer might pay particularly close attention to the prior to check whether his prior beliefs
closely match the analyst’s prior beliefs.
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