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SUMMARY

Weighting methods are popular tools for estimating causal effects, and assessing their robust- 10

ness under unobserved confounding is important in practice. Current approaches to sensitivity
analyses rely on bounding a worst-case error from omitting a confounder. In the following paper,
we introduce a new sensitivity model called the variance-based sensitivity model, which instead
bounds the distributional differences that arise in the weights from omitting a confounder. The
variance-based sensitivity model can be parameterized by an R2 parameter that is both standard- 15

ized and bounded. We demonstrate, both empirically and theoretically, that the variance-based
sensitivity model provides improvements on the stability of the sensitivity analysis procedure
over existing methods. We show that by moving away from worst-case bounds, we are able
to obtain more interpretable and informative bounds. We illustrate our proposed approach on
a study examining blood mercury levels using the National Health and Nutrition Examination 20

Survey (NHANES).

Some key words: causal inference; sensitivity analysis; inverse propensity score weighting

1. INTRODUCTION

In observational studies of causal effects, researchers must address possible confounding ef-
fects from non-random treatment assignment. Typically, one relies on pre-treatment covariates 25

either to re-weight units based on propensity of treatment, or model the outcome of interest. In
practice, researchers have no way of knowing whether the included covariates fully capture the
confounding effects. When confounders are omitted, the resulting estimates will be biased. Sen-
sitivity analyses speak to this concern by allowing researchers to assess the robustness of their
estimates to omitted confounders. In a sensitivity analysis, a researcher introduces a parameter 30

describing the amount of unobserved confounding present and redoes the analysis under differ-
ent parameter values, determining the set of values for which the results of the study will be
reversed. The robustness of the study may then be evaluated by reasoning about the plausibility
of these values.

In contrast to typical estimands, parameters in sensitivity analysis are inherently unindenti- 35

fiable, because they are designed to describe an omitted variable. Thus, there exists a trade-off
between how complex the sensitivity analysis is, and how informative the sensitivity analysis can
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be. For example, Dahabreh et al. (2019) proposed a sensitivity analysis in which researchers can
obtain both an adjusted point estimate and the associated uncertainty from omitting a confounder.
However, the sensitivity analysis requires researchers to directly model the bias that arises from40

omitting a confounder. In contrast, Zhao et al. (2019) introduced a sensitivity analysis that only
requires one parameter and allows researchers to estimate confidence intervals that account for
the unobserved confounder. However, the resulting intervals are often extremely wide, making it
difficult to reason about whether or not there is sensitivity from omitting a confounder.

In the following paper, we introduce a new sensitivity model known as the variance-based sen-45

sitivity model. The proposed sensitivity model constrains distributional differences in the weights
that arise from omitting a confounder, and unlike many existing approaches (e.g., Imbens, 2003;
Ding & VanderWeele, 2016; Bonvini et al., 2022) does not rely on additional assumptions on
the outcome, confounder, or treatment assignment mechanism. We show that the proposed sen-
sitivity analysis can be re-formulated as a bias maximization problem, with a constraint on a50

weighted average error. Using this re-formulation, we formalize the relationship between the
variance-based sensitivity model and alternative sensitivity approaches, which rely on constrain-
ing a worst-case error. We demonstrate that by moving away from characterizing bias from the
perspective of a worst-case error, variance-based sensitivity analysis can estimate more inter-
pretable, informative, and stable bounds, while retaining the flexibility and generality of existing55

sensitivity analyses.

2. BACKGROUND

2.1. Set-Up and Notation
Consider an observational study with n individuals. Define Zi ∈ {0, 1} as a treatment assign-

ment variable, with Zi = 1 when unit i is assigned to treatment, and 0 otherwise. Yi(1), Yi(0) ∈60

R are potential outcomes, and X̃i ∈ X̃ is a vector of pre-treatment covariates. Let the tuple
(Yi(1), Yi(0), X̃i, Zi) for all i ∈ {1, . . . , n} be independently and identically distributed from an
arbitrary joint distribution.

Under the standard SUTVA assumption (i.e., no interference, with treatments identically ad-
ministered across all units (Rubin, 1980)), which we assume throughout, observed outcomes Y
can be written as Y := Y (1) · Z + Y (0) · (1− Z). For clarity, we focus throughout the paper
on estimating the average treatment effect for the treated (ATT):

τ := E {Y (1)− Y (0) | Z = 1} .

However, we note the proposed methodology can be extended for a variety of causal effects and
alternative missing data settings (see Appendix A.1).65

Because treatments are not randomly assigned in an observational study, additional assump-
tions are needed to estimate the ATT consistently.

Assumption 1 (Conditional Ignorability of Treatment Assignment).

Y (1), Y (0) |= Z | X̃

Assumption 2 (Overlap). For some 0 < η ≤ 0.5 and all x ∈ X̃ , η < Pr(Z = 1 | X̃ = x) <
1− η.

Under Assumption 1, conditioning on pre-treatment covariates X̃ suffices to remove all con-70

founding between treatment assignment and potential outcomes (for a stronger alternative ver-
sion of Assumption 1 that may enhance interpretation of sensitivity analyses, see Assumption 1
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in Appendix A.2). Assumption 2 requires that no units have probability of treatment too close
to zero or one. This is a standard assumption for weighted estimators; as discussed by D’Amour
et al. (2021), treatment probabilities arbitrarily close to zero or one cause problems for estima- 75

tion in the absence of assumptions about the outcome model. In practice, Assumption 2 requires
careful checking. When extreme weights do appear present, it may be possible to stabilize or
adjust them to render Assumption 2 plausible. For more discussion, see Crump et al. (2009);
Fogarty et al. (2016); D’Amour et al. (2021).

A common approach to estimating causal effects is using weighted estimators. Weighted es- 80

timators adjust for distributional differences in the pre-treatment covariates X̃ across the treat-
ment and control groups. For weights ŵ1, . . . , ŵn, constructed from the observed sample using
observed X̃1, . . . , X̃n, the estimator is:

τ̂(ŵ1, . . . , ŵn) =
1∑n
i=1 Zi

n∑
i=1

ZiYi −
∑n

i=1(1− Zi)Yiŵi∑n
i=1(1− Zi)ŵi

. (1)

When the ŵis are consistent estimators of the population inverse propensity weights wi, they 85

provide consistent estimation of the treatment effect under Assumptions 1-2. When Assumption
1 does not hold, the resulting weighted estimate may not converge to the ATT. We propose a
sensitivity model to characterize the error induced when it fails. Let X̃ = {X,U} be the minimal
separating set, such that both X ∈ X and U ∈ U are necessary for Assumption 1 to hold, but
only values of X are observed and used for estimating the weights (Egami & Hartman, 2019; 90

Bareinboim & Pearl, 2012).
We define

w(Xi) =
Pr(Zi = 0)

Pr(Zi = 1)

Pr(Zi = 1 | Xi)

Pr(Zi = 0 | Xi)
, w∗(Xi, Ui) =

Pr(Zi = 0)

Pr(Zi = 1)

Pr(Zi = 1 | Xi, Ui)

Pr(Zi = 0 | Xi, Ui)
.

For simplicity, we will often use wi and w∗i in place of w(Xi) and w∗(Xi, Ui). We refer to
the weights wi as the observable weights — although they are not directly observed they are 95

estimable using observed data — and the weights w∗i as the ideal weights, since they guarantee
consistent estimation of the true ATT. Since the (Zi, Xi, Ui) are independently and identically
distributed draws from an infinite superpopulation, w(Xi) and w∗(Xi, Ui) are too, and we often
drop the i subscript when discussing an arbitrary draw from this distribution. Finally, we define
a population-level estimator τ(w) := E(Y | Z = 1)− E(wY | Z = 0)/E(w | Z = 0). 100

Since our sensitivity analysis is based on variances of weights, it is not equipped to address
situations in which either the observable or ideal weights are all identical (with zero variance).
We will assume this is not the case.

In practice estimates ŵi for wi must be constructed from the observed sample. A standard ap-
proach is to use a logistic regression to estimate the probability of treatment assignment; recent 105

literature has also introduced semiparametric alternatives in the form of balancing weights for
weight estimation, with better finite-sample guarantees (Ben-Michael et al., 2021). Our sensi-
tivity analysis is parameterized using differences between the observable weights and the ideal
weights, which are both population quantities, and is not specific to a particular method for es-
timating weights, but some conditions on the quality of estimation are needed for the inferential 110

guarantees of Section 3.3. We choose to focus on the common logistic regression setting in that
section only, while also discussing alternative assumptions for balancing weights.

Throughout the paper, we will use the word ‘bias’ to refer to the quantity τ(w)− τ(w∗).
Since stabilized weighted estimators are subject to mild finite sample bias, this quantity is not
identical to the difference between E[τ̂(ŵ)] and the population ATT, but they are asymptotically 115
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equivalent and our usage is consistent with alternative sensitivity model approaches (e.g., Tan,
2006; Cinelli & Hazlett, 2020; Zhao et al., 2019; Dorn & Guo, 2023; Zhang & Zhao, 2024). See
Appendix B.1 for extended discussion.

2.2. Related Literature
A popular approach for assessing the robustness of weighted estimates to omitted confounders120

uses the marginal sensitivity model (Tan, 2006), in which researchers posit a bound, Λ, on the
individual-level multiplicative error in the population weights w:

Λ−1 ≤ w∗(x, u)

w(x)
≤ Λ, for all x ∈ X , u ∈ U . (2)

where Λ ≥ 1. Λ represents the largest possible error that can arise from omitting a confounder.
Researchers can bound the maximum and minimum bias that arises under a fixed Λ, and use a
percentile bootstrap to estimate valid confidence intervals (Aronow & Lee, 2013; Miratrix et al.,125

2018; Zhao et al., 2019).
In practice, the true Λ is unknown, so to conduct the sensitivity analysis, researchers run it

with increasing values of Λ until the estimated confidence intervals contain zero. The minimum
Λ value for which the estimated intervals cross zero is denoted as Λ∗. If Λ∗ is close to one,
even a small amount of error from omitting a confounder could explain a nominally significant130

effect. On the other hand, if Λ∗ is much larger than one, significance of estimated effects is only
sensitive to very strong unmeasured confounders.

While the marginal sensitivity model is simple to describe, it often leads to extremely wide
intervals in practice, even under a mild degree of confounding. Dorn & Guo (2023) and Nie et al.
(2021) propose methods to tighten these intervals, but require additional constraints or parametric135

outcome models. Furthermore, since the sensitivity parameter in the marginal sensitivity model
depends on the worst-case individual impact of omitting a confounder, it can be difficult to reason
about in settings where the unobserved confounder may occasionally take on extreme, outlying
values. It is natural to ask whether a different approach could lead to narrower intervals under
similar assumptions, and provide a more stable and interpretable approach to sensitivity analysis.140

We now propose a new sensitivity model, the variance-based sensitivity model, which bounds
the variance in the ideal weights w∗ not explained by the observable weights w. Unlike re-
lated frameworks proposed by Hong et al. (2021) and Shen et al. (2011), the variance-based
sensitivity model uses a standardized and bounded parameterization of confounding strength,
which can help improve transparency and interpretability for applied researchers. Additionally,145

the aforementioned sensitivity analyses do not engage with how potential confounders may affect
inference, focusing solely on movements in the point estimate. In contrast, the variance-based
sensitivity model provides a method for estimating valid asymptotic confidence intervals under
a fixed level of confounding.

We make a second important contribution by formalizing the connection between variance-150

based sensitivity analysis and alternative sensitivity approaches. In particular, we demonstrate
that the variance-based sensitivity model can be viewed as an optimization under a constrained
weighted L2 norm on the individual-level multiplicative error, in contrast to the marginal sensi-
tivity model’s constraint on an L∞ norm. Moving away from a worst-case error parameterization
of the error allows researchers to obtain more informative and stable bounds under the variance-155

based sensitivity model. The benefits we find for constraining a weighted L2 norm instead of a
worst-case error are conceptually similar to the advantages highlighted in Kallus & Zhou (2018),
in which authors consider a constraint on the L1 norm, and Zhang & Zhao (2024) which intro-
duces an L2 norm. The latter approach may be considered an alternate type of variance-based
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sensitivity analysis, constraining the variance of a different function of the observable and ideal 160

weights than we do. However, our proposed sensitivity model has the additional benefit of a
closed-form bias bound, and an interpretable sensitivity parameter in the form of an R2 value.

2.3. Running Example: NHANES
Throughout the paper, we perform a re-analysis of a study presented in Zhao et al. (2018) (as

well as Zhao et al., 2019 and Soriano et al., 2023), analyzing the effects of fish consumption on 165

blood mercury levels. More specifically, we use data from the 2013-2014 National Health and
Nutrition Examination Survey (NHANES).

Following the original study, we define the outcome of interest as the total blood mercury (in
log2), measured in micrograms per liter. As such, an estimated treated-control outcome differ-
ence of one implies that a treated person’s total blood mercury is twice that of an individual in 170

control’s total blood mercury. The treatment is defined by whether or not individuals consumed
more than 12 servings of fish or shellfish in the preceding month. There are 234 total treated
units and 873 control units. To account for the non-random treatment assignment, we use the
available demographic data for the individuals in the survey, which include variables like gender,
age, income, race, education, and smoking history to estimate propensity score weights using a 175

logistic regression. Table 1 reports the raw outcome difference and a weighted estimate based on
inverse propensity weights estimated by logistic regression.

Table 1. Estimated Impact of Fish Consumption

Unweighted (DiM) IPW

Estimated Effect (ATT) 2.37 (0.10) 2.14 (0.12)
∗Standard errors reported in parentheses.

Accounting for the log scale, our estimate suggests that on average, a treated individual who
consumes more fish will have around four times the total blood mercury of a control individual.

3. THE VARIANCE-BASED SENSITIVITY MODEL 180

3.1. Defining a New Sensitivity Model
We now introduce the variance-based sensitivity model. Instead of constraining the worst-

case, individual-level multiplicative error across the weights, we constrain the variation in the
ideal weights w∗ not explained by the weights w.

DEFINITION 1 (VARIANCE-BASED SENSITIVITY MODEL). Let R2 be the residual varia-
tion in the true weights w∗, not explained by w:

R2 := 1− var{w(X) | Z = 0}
var{w∗(X,U) | Z = 0}

Then, for a fixed R2 ∈ [0, 1), we define the variance-based sensitivity model σ(R2):

σ(R2) ≡
{
w∗ : 1 ≤ var{w∗(X,U) | Z = 0}

var{w(X) | Z = 0}
≤ 1

1−R2

}
.

The variance-based sensitivity model constrains how different the true weights w∗ can be from 185

the observable weights w. This implicitly restricts the residual imbalance in the omitted variable.
More formally, we can decompose the true weight w∗ into two components: (1) the weight w,
and (2) the residual imbalance in U :
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w∗ =
Pr(Z = 0)

Pr(Z = 1)

Pr(Z = 1 | X)

1− Pr(Z = 1 | X)︸ ︷︷ ︸
(1)

· Pr(U | X,Z = 1)

Pr(U | X,Z = 0)︸ ︷︷ ︸
(2)

, (3)

where the imbalance term is a ratio of the conditional probability density function of the omit-190

ted variable across the treatment and control groups. The distributional difference between the
weights w and the ideal weights w∗ will be driven by the imbalance term. If imbalance in U
is large, then accounting for the omitted variable results in very different values for w∗ and w.
Alternatively, if U is relatively balanced, then w∗ will be similar to w.

The distributional difference between w and w∗ is parameterized by an R2 value. The R2
195

parameter represents the residual variation in the true weights, not explained by the estimated
weights. Using Equation (3), we can alternatively interpret the R2 value as a measure of imbal-
ance in the omitted confounder across the treatment and control group. Because the projection
of w∗ into X recovers w (i.e., E(w∗(X,U) | X,Z = 0) = w(X)), the variance of w∗ can be de-
composed linearly as var(w∗ | Z = 0) = var(w | Z = 0) + var(w∗ − w | Z = 0) (see Huang,200

2024 and Chernozhukov et al., 2022 for more discussion). Thus, the R2 value will be naturally
bounded on the unit interval.R2 = 0 implies that there is no imbalance in the omitted confounder
between the treatment and control groups. As such, there will be no bias from omitting such a
variable. As R2 → 1, this implies that initial imbalance in observed covariates X is negligible
compared to imbalance in the omitted confounder U .205

In Section 4, we show that specifying an R2 value is equivalent to constraining a weighted L2

norm of the errors w∗/w, in contrast with the marginal sensitivity model, which constrains an
L∞ norm.

3.2. Constructing Bias Bounds
We introduce a closed-form representation for a bound on bias over weights in σ(R2). The210

bias bound is a function of three different components: (1) a correlation bound, which represents
the maximum correlation the imbalance in the omitted confounder can have with the outcome of
interest; (2) the imbalance (represented by theR2); and (3) a scaling factor. Theorem 1 formalizes
the bound, followed by further discussion of each component.

THEOREM 1 (BIAS BOUND). Define w̃ ∈ σ(R2) as a set of possible weights that satisfy Def-215

inition 1. Let Bias{τ(w) | w̃} represent the bias of τ(w), with respect to a weighted estimator
using w̃ (i.e., τ(w)− τ(w̃)). Then, for a fixed R2 ∈ [0, 1), the maximum bias under σ(R2) (de-
noted as maxw̃∈σ(R2) Bias{τ(w) | w̃}) can be written as

max
w̃∈σ(R2)

Bias{τ(w) | w̃}

=
√

1− cor(w, Y | Z = 0)2︸ ︷︷ ︸
(a)

√
R2

1−R2︸ ︷︷ ︸
(b)

· var(Y |Z = 0) · var(w|Z = 0)︸ ︷︷ ︸
(c)

, (4)220

with a bound for the minimum bias given as the negative of Equation (4).

The first component in Theorem 1 (i.e., Equation (4)-(a)) is a correlation bound. The corre-
lation bound constrains how correlated the residual imbalance in the omitted confounder is to
the outcome. The bound is a function of 1− cor(w, Y | Z = 0)2. As such, if w is highly corre-
lated with the outcomes, the degree to which the residual imbalance in the omitted confounder225
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can be correlated to the outcome is limited, as is the overall bias. In contrast, when w is rela-
tively uncorrelated with the outcome then the possible correlation between omitted-confounder
imbalance and outcome has a much larger range, possibly including one. Dorn & Guo (2023)
demonstrated a similar pattern for the marginal sensitivity model, in which bias is maximized
when the imbalance from the omitted confounder is maximally correlated with the outcome. 230

The second component is the residual imbalance in the omitted confounder, which is a function
of the R2 parameter (Equation (4)-(b)). Unlike the correlation bound, for which overall impact
is bounded at one, the residual imbalance grows without bound as R2 approaches one. Cinelli &
Hazlett (2020) discuss a similar asymmetry in a different sensitivity model.

Finally, the scaling factor (represented by Equation (4)-(c)) comprises of the variance of the 235

outcomes across the control units and the variance of the estimated weights. These terms repre-
sent the overall heterogeneity present in the analysis; greater heterogeneity, if related to selection
into treatment, makes it more difficult to recover the true estimated effect and increases the bias
bound. The scaling factor is a function of the observed data, and is not related to the omitted
confounder. However, a large scaling factor can amplify bias due to an omitted confounder. 240

Theorem 1 provides a simple and interpretable bias bound for a given R2 value. However, the
bound is not sharp by construction and may overestimate the maximum feasible bias under the
variance-based sensitivity model. In brief, the correlation bound component of our bias bounds is
loose in general because it assumes perfect correlation between outcomes and errors in weights,
although it may not be possible to achieve perfect correlation over the class of ideal weights w∗ 245

that balance all functions of observed covariates across groups. Sharp bounds may be character-
ized as solutions to a variational optimization problem that does not assume perfect correlation
with outcomes. In Appendix A.6, we describe this optimization problem and show that it ad-
mits a closed-form solution in certain population parameters. Unfortunately, these parameters
are much harder to estimate and interpret than the components in Theorem 1. Accordingly, in 250

what follows we focus primarily on the bound in (4), which provides richer insights about the
drivers of potential confounding bias and is straightforward to estimate in practice.

3.3. Constructing Confidence Intervals
To construct valid asymptotic confidence intervals under the variance-based sensitivity model

we follow a percentile bootstrap approach based on Zhao et al. (2019). Our approach is distinct 255

from those in the partial identification literature that require known asymptotic distributions of
the boundaries of the partially identified region (Imbens & Manski, 2004; Aronow & Lee, 2013).
As in Zhao et al. (2019), it is difficult to characterize these distributions analytically in our sen-
sitivity framework. Instead, the proposed bootstrap approach allows researchers to account for
sampling uncertainty without explicitly characterizing the asymptotic distributions of the bound- 260

ary estimates.
In the interest of clarity and developing a connection with the work of Zhao et al. (2019)

and Dorn & Guo (2023), who focus on the logistic case, we prove the validity of the percentile
bootstrap approach in Theorem 2 for the case where the observable weightsw(X) obey a logistic
model inX and are estimated via logistic regression. However, we note that if the data-generating 265

process for the observable weights is not logistic, we can still understand our w(X) as a para-
metric approximation to the observable weights, and the sensitivity analysis may be viewed as
addressing some combination of unobserved confounding and misspecification as in Zhao et al.
(2019). In addition, a novel, more technically-involved argument by Soriano et al. (2023) es-
tablishes a result analogous to Theorem 2 for the marginal sensitivity analysis under general 270

balancing weights, and we believe it should extend to variance-based sensitivity analysis as well.
Informally, this argument requires primarily that the researcher has access to a well-specified
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estimator ŵ(X) for w(X), in the sense that estimated weights constructed for a subject with any
given covariate value x converge pointwise to w(X) and that bias of τ̂(ŵ1, . . . , ŵn) for τ̂(w)
is of order

√
n (for more detail on when balancing weights obey these conditions see Wager &275

Athey, 2018; Wang & Zubizarreta, 2020; Ben-Michael et al., 2021).
For a fixed R2 and a given set of weights w̃ ∈ σ(R2), we can construct an estimator

τ̂(w̃; ŵ1, . . . ŵn) that takes the original point estimate τ̂(ŵ1, . . . ŵn) and subtracts a finite-sample
bias term that is a function of w̃ (see Appendix B for more details).

Using results from Zhao et al. (2019), for any w̃ ∈ σ(R2), we construct asymptotically280

valid confidence intervals for the large-sample limit τ(w̃) using a percentile bootstrap for
τ̂(w̃; ŵ1, . . . ŵn).

[L(w̃), U(w̃)] =
[
Qα/2

{
τ̂ (b)(w̃; ŵ

(b)
1 , . . . ŵ(b)

n )
}
, Q1−α/2

{
τ̂ (b)(w̃; ŵ

(b)
1 , . . . ŵ(b)

n )
}]
, (5)

where τ̂ (b)(w̃; ŵ
(b)
1 , . . . ŵ

(b)
n ) is the adjusted weighted estimator in bootstrap sample b ∈

{1, ..., B}, and Qα(·) denotes the α-th percentile in the bootstrap distribution. Theorem 2 shows
that [L(w̃), U(w̃)] is an asymptotically valid (1-α) confidence interval for τ(w̃):285

THEOREM 2 (VALIDITY OF PERCENTILE BOOTSTRAP). Suppose Pr(Z = 1 | X) is logistic
inX and that ŵ1, . . . , ŵn are plug-in estimates based on propensity scores estimated via logistic
regression on all observed covariates X . Then under mild regularity conditions (see Assumption
2 in the Appendix), for every w̃ ∈ σ(R2):

lim sup
n→∞

Pr{τ(w̃) < L(w̃)} ≤ α

2
and lim sup

n→∞
Pr{τ(w̃) > U(w̃)} ≤ α

2
,

where L(w̃) and U(w̃) are defined as the α/2 and 1− α/2-th quantiles of the bootstrapped
estimates (i.e., Equation (5)).

Theorem 2 provides a valid interval for any set of weights w̃, but for a given R2 value, there
exist infinitely many choices w̃ ∈ σ(R2). As such, we apply the union method to construct a
conservative (1− α)% confidence interval CI(α) valid for any τ(w̃) with w̃ ∈ σ(R2):290 [

Qα
2

{
inf

w̃∈σ(R2)
τ̂ (b)

(
w̃; ŵ

(b)
1 , . . . ŵ(b)

n

)}
, Q1−α

2

{
sup

w̃∈σ(R2)

τ̂ (b)
(
w̃; ŵ

(b)
1 , . . . ŵ(b)

n

)}]
. (6)

To estimate the extrema of the bootstrapped point estimates inside the quantile functions, we add
(subtract) a sample estimate of the population bias bound to obtain the maximum (minimum);
for more details see equation (24) in Appendix B.2. As such, estimating valid confidence inter-
vals amounts to a standard percentile bootstrap with the added tweak of subtracting (adding) an
estimated bias bound from each bootstrap estimate before calculating the confidence limits.295

3.4. Illustrating the Sensitivity Analysis on NHANES
To conduct sensitivity analysis, researchers estimate confidence intervals for increasing R2

values until an estimated confidence interval just contains the null estimate; the corresponding
R2 is denoted as R2

∗. In the running example, we estimate R2
∗ = 0.52. This implies that if an

omitted confounder explaining 52% or more of the variation in the true weights, our estimated300

effect of fish consumption on blood mercury is no longer significantly different from the expected
distribution under the null.

To assess the plausibility of an omitted confounder resulting in anR2 value of 0.52, we extend
formal benchmarking approaches to calibrate possibleR2 values against the strength of observed
covariates (e.g., Huang, 2024; Hartman & Huang, 2024; Cinelli & Hazlett, 2020; Hong et al.,305
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Fig. 1. The solid bars denote the point estimate bounds
for a specified R2 value. The lighter intervals represent
the 95% confidence intervals. The benchmarked parame-

ters R̂2
(j) are provided in light brown.

2021; Carnegie et al., 2016; Hsu & Small, 2013). Briefly, we omit each observed covariate j
in turn and estimate a corresponding R2

(j) value for each as a guide to the possible impact of
omitting an unobserved confounder similar to this observed one, using the following formula
(where v̂ar indicates sample variance and ŵ−(j) indicates weights estimated with covariate j
omitted): 310

R̂2
(j) =

R̂2
−(j)

1 + R̂2
−(j)

, where R̂2
−(j) := 1− v̂ar(ŵ−(j) | A = 1)

v̂ar(ŵ | A = 1)
. (7)

See Appendix A.4 for a full derivation and additional discussion. Omitting a confounder with
equivalent imbalance to covariates like race (R̂2

(j) of 0.21), education (R̂2
(j) of 0.16), or income

(R̂2
(j) of 0.16) results in the largest benchmark R2 values.
We caution that benchmarking should never be used to set threshold values for whether a

result is considered ‘robust’ enough. However, benchmarking allows researchers to consider 315

how strong (or weak) an omitted confounder must be, relative to an observed covariate. In the
NHANES example, an omitted confounder would have to explain more than twice as much vari-
ance in the true weights as the strongest observed covariate, race, is estimated to in order for the
R2 value to be equal the threshold value. While mathematically possible, the plausibility of a
confounder resulting in the threshold R2

∗ = 0.52 value is low. Figure 1 illustrates the sensitivity 320

analysis, as well as benchmarking results.

4. RELATIONSHIP TO THE MARGINAL L∞ SENSITIVITY MODEL

4.1. Sensitivity Models as an Optimization Problem
We now examine the relationship between the variance-based sensitivity model and the

marginal sensitivity model. We first show that both sensitivity models can be written as norm- 325

constrained optimization problems. More formally, let λ = w∗(X,U)/w(X) be the multiplica-
tive error in the weights when covariates are equal to (X,U). The variance-based sensitivity
model can then be formulated as a bias maximization problem, given a fixed constraint on a
weighted L2 norm over the distribution of λ.
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THEOREM 3 (WEIGHTED L2 NORM CONSTRAINT). Define the L2,w norm as follows:

||λ||22,w :=

{
E
{
λ2ν(w) | Z = 0

}
if var(w | Z = 0) > 0,

∞ else
,

where ν(w) := w2/E(w2 | Z = 0). Then, the variance-based sensitivity model can be written
as a norm-constrained optimization problem:

max
w̃∈σ(R2)

Bias{τ(w) | w̃} ⇐⇒


max
w̃

Bias{τ(w) | w̃}

s.t. ||λ||2,w ≤
√

k

1−R2
,

where k := 1−R2/E(w2 | Z = 0). See Appendix B for proof and details.330

Theorem 3 is especially instructive in concert with the following result from Zhao et al. (2019)
showing that the marginal sensitivity model is equivalent to a maximization problem with an
L∞ constraint on λ. Letting ε(Λ) represent the family of all possible values of w∗ allowed by
constraint (2),

max
w̃∈ε(Λ)

Bias{τ(w) | w̃} ⇐⇒

{
max
w̃

Bias{τ(w) | w̃}

s.t. Λ−1 ≤ ||λ||∞ ≤ Λ.

In short, the key difference between the models is the norms they use to constrain deviation
between weights w which marginalize over unobserved U and the ideal weights w∗ and the
w. In this sense, both sensitivity analyses are “marginal”. To minimize confusion, we refer to
the marginal sensitivity model as the marginal L∞ sensitivity model. The distinct constrained-
norm representations across the two models provide insight into the benefits expected from the335

variance-based sensitivity model. Because the marginal L∞ sensitivity model optimizes over the
set of weights defined by a worst-case error, the estimated bounds on the bias always correspond
to cases in which all units are exposed to this worst-case error. However, in settings when one
or two subjects are subject to much larger levels of confounding than others, this can result in
an overly pessimistic view of the potential bias (Fogarty & Hasegawa, 2019; Zhao et al., 2019).340

In contrast, the variance-based sensitivity model is constraining an average weighted error, and
thus allows a small number of weights to be exposed to large amounts of error, even at moderate
levels of overall confounding.

In practice, researchers care not only about informative bounds, but also about the utility of
the sensitivity models. In the following two subsections, we examine two cases which showcase345

that moving away from a worst-case error allows the variance-based sensitivity model to improve
upon the marginal L∞ sensitivity model in stability and interpretability.

4.2. Infinite Worst-Case Error in Asymptotic Settings
Since the marginal L∞ sensitivity model focuses on the maximum individual error, it will be

generally invalid for settings in which unobserved confounders drive rare large errors.350

Example 1 below illustrates a simple case involving a normally-distributed unobserved con-
founder and a logit model for treatment (see Jin et al., 2022 for a similar example).

Example 1 (Behavior of Λ for a Logit Model). Assume the true weights follow a logit model
in bothX and U , but the U is unobserved. The estimable and ideal weights take on the following
forms:355

w = exp(γ>X) w∗ = exp(γ∗>X + βU)
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Then let Λ̂ be the maximum error across our observed sample (i.e., Λ̂ :=

max1≤i≤n{w∗/w,w/w∗}). Assume
[
X,U

] iid∼ MVN(0, I). Then E(Λ̂)→∞ as n→∞:

lim
n→∞

E(Λ̂)

exp
{√

2ν2 log(n)
} ≥ 1,

where ν2 = (γ∗ − γ)>(γ∗ − γ) + β2, and the results follow immediately from Wainwright
(2019), § 2, pg. 53.

The basic issue in Example 1 is that the unbounded support of the unobserved confounder leads
to unbounded maximum individual error in the population; although in any finite sample the
maximum individual error is bounded, the marginal L∞ sensitivity model cannot hold for any 360

finite Λ in the population. This divergence occurs, regardless of the confounding strength of the
omitted confounder (represented by β).

In addition to concerns about the model’s validity, this characteristic of the marginal L∞ sen-
sitivity model makes it difficult to interpret the sensitivity parameter. With the aid of benchmark-
ing researchers can understand the worst-case errors arising from omitting observed covariates, 365

but reasoning about whether it is plausible for such an error to arise from an omitted variable
amounts to reasoning about whether it is plausible for potential outliers to occur. As the sample
size increases, researchers must account for the increasing chance of an outlier.

In contrast, we can derive the R2 value for the variance-based sensitivity model under the
same setting as Example 1. It is a function of the relative strength of the omitted confounder, and 370

does not depend on the sample size.

Example 2 (Behavior of R2 for a Logit Model). Consider the same setting as Example 1.
Then, the R2 value can be written as follows:

R2 = 1− exp(γ>γ)− 1

exp(γ∗>γ∗ + β2)− 1
· exp(γ>γ)

exp(γ∗>γ∗ + β2)
.

Example 1 provides one setting in which Λ will be infinitely large, regardless of the confound-
ing strength of the omitted variable. More generally, the following corollary shows that under any
setting when the error from omitting a confounder can take on values that are arbitrarily small
or large, the marginal L∞ sensitivity model will be invalid, while the variance-based sensitiv- 375

ity model will remain valid. Furthermore, when the outcomes are also unbounded, the bounds
estimated under the marginal L∞ sensitivity model will be infinitely wide. Thus, in sufficiently
large samples, the variance-based sensitivity model necessarily produces narrower bounds.

COROLLARY 1. Consider the set of confounders, in which for all δ > 0, Pr(w∗/w < δ) >
0, or Pr(w∗/w > δ) > 0. Then, the marginal L∞ sensitivity model will no longer be valid. 380

Furthermore, if the outcomes are unbounded, the size of the bounds under the marginal L∞
sensitivity model will diverge in probability to infinity. Therefore, for sufficiently large n, the
variance-based sensitivity model will produce narrower bounds.

Importantly, the variance-based sensitivity model can be flexibly applied, regardless of the un-
derlying distribution of the omitted confounder, and the observed data generating process. Fur- 385

thermore, the interpretation of the sensitivity parameterR2 remains intrinsically tied to reasoning
about the confounding strength of the omitted variable, in contrast to reasoning about potential
outliers.
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4.3. Limited Overlap in Finite-Samples
Section 4.2 demonstrated cases in which the marginal L∞ sensitivity model leads to unappeal-390

ingly large intervals; however, paradoxically, in slightly different settings, the marginal Linfty
sensitivity model can lead to intervals that are unappealingly short. While the intervals con-
structed by Zhao et al. (2019) under the marginal L∞ sensitivity model are asymptotically valid,
in smaller datasets they are also susceptible to a particularly egregious form of finite-sample
bias. This bias, which arises when empirical outcome distributions within treatment and con-395

trol groups do not overlap sufficiently, leads to substantial undercoverage. In these settings, the
variance-based sensitivity model will tend to return wider intervals, but maintain nominal cover-
age.

The key to this phenomenon is a property of the marginal L∞ sensitivity model, referred
to as sample boundedness. Sample boundedness implies that even at infinitely large Λ values,400

the worst-case bounds under the marginal L∞ sensitivity model approach, but cannot exceed,
the range of the observed control outcomes. Sample boundedness follows automatically from
the form of estimator (1), which relies on a convex combination of observed control outcomes
to impute an expected potential outcome; the convex combination must lie within the range of
observed control outcomes.405

In contrast, the variance-based sensitivity model is not inherently sample bounded. In settings
with relatively large amounts of confounding, the marginal L∞ sensitivity model will have nar-
rower intervals than the variance-based sensitivity model, since as R2 increases towards one, the
estimated bounds under the variance-based sensitivity model will be adequately wide. However,
sample boundedness may prohibit the construction of valid confidence intervals in the absence410

of a key implicit assumption on the distribution of the unobserved potential outcomes.

Example 3 (Misleading Optimism from Sample Boundedness). Consider the following popu-
lation of 4 units, with the following potential outcomes, treatment assignment, and the estimated
probability of treatments for each unit:

i Yi(0) Yi(1) P̂ (Zi = 1) Zi
1 -10 -10 0.1 0
2 5 5 0.2 0
3 10 10 0.9 1
4 20 20 0.95 1

The true ATT is zero, but the estimated ATT is equal to 14.6, so substantial confounding is415

present. However, since the sample bounds for the ATT are the interval [10, 25], no value of Λ
can produce an estimated interval (under the marginal L∞ sensitivity model) containing zero,
erroneously suggesting the presence of a true effect highly robust to substantial confounding.

While this example is somewhat contrived, it highlights the problems with sample boundedness
if the potential outcome ranges in the two groups have limited overlap, which may occur when420

potential outcomes are strongly correlated with the probability of treatment. For a formal char-
acterization of this outcome overlap condition, see Appendix A.7.

When there exists limited outcome overlap, estimated intervals from the marginal L∞ sen-
sitivity model may be misleadingly optimistic, especially for dramatic levels of potential con-
founding. In contrast, intervals constructed under the variance-based sensitivity model, which425

are not sample bounded, are not affected. Figure 2 illustrates the behavior and coverage rates of
both sets of sensitivity models under varying amounts of outcome overlap and sample sizes in
an empirical example, described in greater detail in Appendix A.7.



Variance-based Sensitivity Analysis for Weighting Estimators 13

95% Coverage

Marginal Sensitivity Models Variance−Based Sensitivity Models

0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5

0.00

0.25

0.50

0.75

1.00

Overlap

C
ov

er
ag

e 
R

at
es Sample Size

500

1000

5000

10000

Fig. 2. Coverage rates for the MSM and the VBM, as-
suming an oracle bias setting when researchers have full

knowledge of the true underlying sensitivity parameter.

We note that sample boundedness is not necessarily a negative feature in the context of esti-
mation. The bias-variance tradeoff of using a stabilized weighted estimator has been extensively 430

studied (e.g., Robins et al., 2007). However, in the context of a sensitivity analysis, in which
we are explicitly interested in examining the potential bias that can arise under varying levels of
confounding, the relative impact of the finite-sample bias can be greatly exacerbated. As such,
imposing sample boundedness can lead to misleading conclusions, and potential issues with out-
come overlap should be considered carefully when interpreting results. 435

4.4. Comparing the bounds: Illustration on NHANES
While constrained-norm representations provide intuition for why the variance-based sensi-

tivity model may obtain narrower bounds than the marginal L∞ sensitivity model, in practice it
is difficult to directly compare the bounds estimated under the two models. The two approaches
use two different parameters, each of which indexes a different class of possible true data distri- 440

butions; in the formal language of Section 4.1, the set of weights σ(R2) is neither contained by
nor fully contains the set of weights ε(Λ) in general. This makes it hard to find an appropriate
mapping between a posited value for R2 and a comparable value for Λ.

However, for any given true distribution of weights w∗ we may find the smallest set ε(Λ) that
contains it (with parameter Λ0) and similarly we may find the smallest set σ(R2) that contains 445

it (with parameter R2
0). Comparing the width of the confidence intervals for the variance-based

model under R2
0 and the marginal L∞ model under Λ0 is meaningful because it shows how

tightly each model can bound bias under a common distribution. Intuitively, we anticipate that
if the worst-case error Λ0 is much larger than the average weighted error, R2

0, the variance-
based sensitivity model will result in narrower bounds. If the difference in the worst-case error 450

and average weighted error is not very large, then there will not be much improvement in the
estimated bounds from using the variance-based sensitivity model.

In practice, researchers do not have access to the true weight w∗. However, benchmarking
helps to make the comparison between models more concrete: for each covariate used in the
benchmarking procedure, a benchmarked R2 value (given by R2

(j) in (7)) and a benchmarked Λ 455

value (as detailed in Soriano et al. (2023)) can each be produced, reflecting the R2
0 and Λ0 values

necessary to capture the impact of this variable had it remained unobserved. Since empirical
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researchers already frequently use benchmarking to interpret results of sensitivity analyses, the
resulting comparison between sensitivity models is both natural and highly relevant if it can lead
to shorter intervals in practice.460

We now conduct benchmarking for the variance-based models and the marginal L∞ sensitiv-
ity model in our running example, estimate the corresponding bounds and intervals under both
approaches, and compare their widths. For the marginal L∞ model, we estimate both the conser-
vative, standard bounds introduced in Zhao et al. (2019), as well as the sharp bounds, obtained
using quantile balancing (Dorn & Guo, 2023). Figure 3 visualizes the results. We see that for465

each of the covariates, omitting a confounder like any of the observed covariates would result
in substantially wider bounds under the marginal L∞ sensitivity model than the variance-based
model. This is true, even when comparing the sharp bounds under marginal L∞ sensitivity model
with the conservative bounds under the variance-based model. This suggests that the improve-
ments we observe from using the variance-based approach is present, even when accounting for470

improvements in sharpness.
The relative improvement is most apparent when looking at the benchmarking results for ed-

ucation and race. In particular, we see that while the average error from omitting a variable like
education or race is relatively low, the maximum error is large. The marginal L∞ sensitivity
model, which assumes such a maximal error could occur in the unobserved confounder for all475

data points, thus produces much wider intervals than the variance-based model, which is much
less responsive to individual outliers.

0
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Gender Age Income Income (Missing) Education Cig. Smoked Smoking History Race
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Model MSM MSM (Qbal) VBM VBM, w/ Corr.

Fig. 3. Estimated intervals under MSM and VBM. From
left to right: MSM with conservative bounds, MSM with
sharp bounds, VBM with conservative bounds, and VBM

with a less conservative correlation bound.

We also estimate intervals (and bounds) under the variance-based sensitivity model using a
relaxed correlation bound. In particular, we choose the correlation bound by benchmarking an
optional correlation parameter, giving the correlation between the outcome and the imbalance480

in an omitted confounder, to the observed correlation between the outcome and each observed
covariate. (See Appendix A.5 for more details.) By accounting for the relationship between the
confounder and the outcome, we are able to obtain much narrower intervals. In particular, we
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see that even in cases where a potential omitted confounder is highly imbalanced (e.g., omitting
a confounder like age results in a benchmarked R2 value of 0.12, and a benchmarked Λ value 485

of 2.2), the overall bias that occurs from omitting it may be relatively low if the imbalance is
largely unrelated to the outcome. By considering this additional dimension of the bias–which
can be easily done using the variance-based sensitivity model– researchers are able to better
characterize the types of confounders that may lead to large amounts of bias and obtain a more
holistic understanding of the sensitivity in their estimated effects. 490

5. CONCLUSION

We suggest several directions for future work. First, throughout the paper, we focused our dis-
cussion on comparing the variance-based sensitivity model to the marginalL∞ sensitivity model,
due to the relative popularity of the marginalL∞ sensitivity model. However, there exist many al-
ternative approaches to conducting sensitivity analysis by constraining distributional divergences 495

(e.g., Jin et al., 2022; Bertsimas et al., 2022). The variance-based sensitivity model can be viewed
as a special case of a distributionally-constrained sensitivity model. For example, Jin et al. (2022)
propose constraining f -divergences for a general set of functions. The variance-based sensitiv-
ity model corresponds to the setting in which researchers are constraining a quadratic f (i.e.,
f(x) = x2). Exploring the implications of these different constraints could lead to a broad uni- 500

fied sensitivity framework, helping contextualize a wider variety of different sensitivity methods
with their own strengths and weaknesses.

Second, numerous extensions of the marginal L∞ sensitivity model for alternative, more com-
plex settings in causal inference have been proposed — e.g., Rosenman & Owen (2021) for ex-
perimental design, Bonvini et al. (2022) for time-varying treatment effects, and Kallus & Zhou 505

(2018) for policy learning. An interesting line of future research could extend the variance-based
sensitivity model for these settings, where we anticipate similar benefits and advantages to the
ones highlighted in this paper. Additionally, while we focused on a choice between bounding a
weighted average error and bounding a worst-case error, future work could incorporate both con-
straints in the same study. We anticipate that this would result in further narrowing of sensitivity 510

bounds.
Third, it is natural to ask what factors under a researcher’s control at the design stage may influ-

ence the degree of robustness to unmeasured bias exhibited under the variance-based sensitivity
analysis. While the closed form for the bias bound already provides insights in this direction, de-
veloping a metric akin to design sensitivity for matched studies (Rosenbaum, 2004, 2010) would 515

inform how to design weighting estimators for maximum robustness.
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A. ADDITIONAL DISCUSSION 10

A.1. Missingness
In the main manuscript, the estimand of interest is the average treatment effect, across the

treated. However, we note that the sensitivity framework introduced can be applied to more
general settings, in which we consider missingness conditionally at random:

Y |= A | X

This provides a very flexible framework to consider many settings of interest. Table 1 summarizes
several settings of interest, along with the associated conditional ignorability assumption to be
relaxed by sensitivity analysis.

Table 1. Summary of different common missingness settings.

Setting Missingness Indicator Ignorability Statement

Survey Response R (Response) Y |= R | X
Internal Validity Z (Treatment Assignment) Y (1), Y (0) |= Z | X
External Validity S (Inclusion in Experimental Sample) Y (1)− Y (0) |= S | X

A.2. Parametric Assumption of Conditional Ignorability 15

In practice, when researchers estimate weights, they are implicitly assuming a parametric ver-
sion of Assumption 1. Following Hartman et al. (2021), we formalize the parametric version of
Assumption 1:

Assumption 1 (Linear ignorability in φ(X)). There exists a feature mapping φ(·) for X such
that we can write the outcome Y as follows:

Y = φ(X)>β + δ

In addition, we can write Pr(Z = 1 | X) as follows for some function g(·) : R 7→ [0, 1]:

Pr(Z = 1|X) = g
{
φ(X)>θ + η

}
, 20

C© 2021 Biometrika Trust
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where δ |= η.

Linear ignorability in φ(X) implies that the part of the outcome that is orthogonal to φ(X) is
independent to the part of the treatment assignment process that is orthogonal to φ(X).

The distinction between the non-parametric version of conditional ignorability (i.e., Assump-
tion 1) and the parametric version (i.e., Assumption 1) is consequential for classifying that types25

of violations that may lead to omitted variable bias. Under the non-parametric version of con-
ditional ignorability, only variables that are fully unobserved (or omitted) will result in bias.
However, under Assumption 1, in addition to including all of the correct variables, the choice
of feature mapping also matters. For example, if researchers only include first-order moments in
their weights estimation, then φ(X) = X . However, if the true feature map necessary for linear30

ignorability to hold also includes higher-order terms or non-linear interactions between covari-
ates, then using only the first-order moments will result in bias (Huang et al., 2022). As such,
omitted variables in such a setting would also include any transformations of existing covariates
that have not been explicitly accounted for in the estimated weights. We refer readers to Hart-
man & Huang (2024) for more discussion about the two assumptions in the context of sensitivity35

analysis. We note that the proposed sensitivity framework is valid, regardless of which version
of conditional ignorability researchers are interested in using.

A.3. Bounding a Confounder’s Relationship with the Outcome
Previous literature has highlighted two characteristics of the imbalance term in Equation (3)

that affect the bias from omitting a variable: (1) the overall magnitude of the the imbalance term,40

and (2) the relationship between the imbalance term to the outcomes (e.g., Huang, 2024; Hong
et al., 2021; Cinelli & Hazlett, 2020; Shen et al., 2011). Like the marginal sensitivity model, the
variance-based sensitivity model constrains the overall magnitude of the imbalance term, and
implicitly assumes that the imbalance is maximally correlated with the outcome. In settings when
researchers wish to account for this additional characteristic of the imbalance term, the variance-45

based sensitivity model can be easily extended to allow researchers to bound the relationship
between the imbalance and the outcome. In particular, unlike the marginal sensitivity model, in
which researchers must solve a linear programming problem to identify the extrema, there exists
a closed-form solution for the bias bounds under the variance-based sensitivity model. As such,
researchers can choose to evaluate the bias bounds and associated confidence intervals using less50

conservative values of the correlation bound.
While amplification approaches allowing researchers to examine the relationship between the

outcomes and the confounder for a fixed level of imbalance exist for alternative sensitivity mod-
els, many of these methods require introducing additional complexities. (For example, Rosen-
baum & Silber (2009) requires invoking parametric assumptions on the outcomes.) In contrast,55

the variance-based sensitivity model allow researchers to easily incorporate additional infor-
mation about the confounder to directly bound the relationship between the outcome and the
imbalance in an omitted confounder. We provide recommendations for alternative bounds that
researchers can use in Appendix A.5, as well as benchmarking procedure that allows researchers
to use obesrved covariate data to estimate plausible correlation bounds.60

A.4. Benchmarking for the Variance-based Sensitivity Model
Previous works have suggested the use of benchmarking to help assess the plausibility of

sensitivity parameter values (Huang, 2024; Hartman & Huang, 2024; Cinelli & Hazlett, 2020;
Hong et al., 2021; Carnegie et al., 2016; Hsu & Small, 2013). To perform benchmarking, re-
searchers sequentially omit different observed covariates and re-estimate the weights. They can65

then calculate the error that arises from omitting each covariate and directly estimate the corre-
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sponding sensitivity parameters (or bound for the corresponding sensitivity parameters). These
quantities are benchmarks in the sense that they describe the degree of bias that may be occurred
by omitting an unobserved covariate similar to the associated observed covariate (in a sense we
make formal below). They can enhance interpretability of sensitivity parameter values by giving 70

concrete examples of the kinds of variables that might be associated with them.
We propose a formal benchmarking procedure for the variance-based sensitivity model. To

begin, let there be p total observed covariates (i.e.,X ∈ Rn×p). Then for the j-th covariate, where
j ∈ {1, ..., p}, we define the benchmarked weightsw−(j) as the population weights defined using
all covariates except for the j-th covariate. Following Huang (2024) and Hartman & Huang 75

(2024), we consider an unobserved confounder that is similar in strength to the jth covariate in
the following sense:

var(w∗ − w | A = 1)

var(w − w−(j) | A = 1)
= 1. (1)

In words, our omitted confounder exhibits imbalance relative to all observed covariates (as mea-
sured by the variance of the error in the weights when it is omitted) identical to that exhibited by 80

the jth observed covariate relative to all other observed covariates.
For an unobserved confounder satisfying (1), we can write the associated R2 value in terms of

w−(j):

R2 = 1− var(w | A = 1)

var(w∗ | A = 1)

=
var(w∗ − w | A = 1)

var(w∗ | A = 1)
85

=
var(w | A = 1)− var(w−(j) | A = 1)

var(w∗ | A = 1)

=
var(w | A = 1)− var(w−(j) | A = 1)

var(w|A = 1) +
{

var(w | A = 1)− var(w−(j) | A = 1)
}

Dividing both the numerator and denominator by var(w | A = 1):

=
{var(w | A = 1)− var(w−(j) | A = 1)}/var(w | A = 1)

1 + {var(w | A = 1)− var(w−(j) | A = 1)}/var(w | A = 1)

=
R2
−(j)

1 +R2
−(j)

. 90

We use the notation R2
(j) to denote this R2 value computed under assumption (1) for covariate

j, and R̂2
(j) to denote its sample estimate given in Equation (7); the term “benchmarked R2” is

also used to refer to both quantities.
This particular form for the benchmarked R2 is specific to the relationship between covariate

j and the unobserved confounder that we posited in equation (1). For example, if we had as- 95

sumed instead that var(w∗ − w|A = 1)/var(w∗|A = 1) and var(w − w−(j)|A = 1)/var(w|A =
1) were identical, R2

−(j) would be the appropriate benchmarked R2 value. We prefer our ap-
proach over this particular alternate assumption because var(w|A = 1) is not a reliable estimate
of the baseline variation in the true weights w∗ relative to which R2 is defined (for related dis-
cussion see Cinelli & Hazlett, 2020, §6.2 and Huang, 2024, §4.3). However, in principle our 100
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benchmarking approach could be generalized to many other kinds of relationships between an
unobserved confounder and an observed covariate j.

When interpreting the benchmarking results, it is important to consider that the magnitude of
the benchmarked R2 values is determined by the residual imbalance. More concretely, we con-
sider the variables income and education in the running example. We expect that both income105

and education will be predictive of individuals’ propensity for fish consumption. However, omit-
ting income alone may not result in a very large R2 value, because by balancing education, we
have implicitly controlled for some of the imbalance in income. The benchmarked R2 parameter
thus represents the setting in which researchers have omitted a variable that, when controlling for
all the other observed variables, has the same amount of residual imbalance as income after con-110

trolling for education. In cases when researchers wish to consider omitting a variable similar to a
set of collinear variables, they can omit subsets of variables and perform the same benchmarking
exercise.

Benchmarking can also be used to assess the plausibility of the event R2 ≥ R2
∗. More specifi-

cally, we can directly compare the benchmarked R̂2
(j) values for j ∈ {1, ..., p} with the estimated

R2
∗ to see how much more or less imbalanced an omitted confounder must be, relative to an ob-

served covariate, in order to result in an R2 value equal to R2
∗. We refer to this as the minimum

relative imbalance (MRI):

MRI(j) =
R2
∗

R̂2
(j)

.

If the MRI is small (i.e., MRI(j) < 1), the omitted confounder need not be very imbalanced,
relative to the j-th covariate, in order to make a null result plausible. In contrast, if the MRI is115

large (i.e., MRI(j) > 1), then the omitted confounder must be more imbalanced than the j-th
observed covariate to make a null result plausible.

Benchmarking offers an opportunity for researchers to incorporate their substantive under-
standing into the sensitivity analysis and provides much-needed interpretability for the sensitivity
framework. In particular, when researchers have strong priors about which underlying observed120

variables control the treatment assignment mechanism, formal benchmarking is very useful for
reasoning about the plausibility of an omitted confounder strong enough to explain observed
results in the absence of a true effect.

A.5. Moving Away from Worst-Case Correlation Bounds
Theorem 1 allows researchers to calculate the maximum bias that can occur for a fixed R2.

This is done by assuming the correlation between the imbalance in the omitted confounder is
maximally correlated with the outcome. This can be conservative in practice. We provide several
recommendations for researchers who may wish to relax this bound. Doing so can result in
narrower bounds, at the cost of having to reason about an additional parameter. Throughout this
section, we will refer to the correlation bound as ρ∗, such that the maximum bias is written as:

ρ∗ ·
√

R2

1−R2
· var(Y | A = 1) · var(w | A = 1)

We suggest several different approaches for researchers to estimate less conservative bounds.125

Approach 1: Estimating Bounds using Relative Correlation. Applying the results from
Huang (2024) (Lemma 3.2, Equation 22), we can decompose the correlation between the im-
balance and the outcome into a function of the R2 value, the correlation between the estimated
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weights and the outcomes, and the correlation between the true weights and the outcomes:

cor(w, Y | A = 1)

√
1−R2

R2
− cor(w∗, Y | A = 1) ·

√
1

R2
(2)

As such, an intuitive way to evaluate bounds for the correlation term is to posit a bound for the
correlation between the true weights and the outcomes by a relative scaling constant k:

k :=
cor(w∗, Y | A = 1)

cor(w, Y | A = 1)
,

where k represents how many more times correlated the true weights are to the outcomes, relative
to the estimated weights. k will be naturally upper-bounded at 1/cor(w, Y ). Using Equation (2),
researchers can then obtain a new upper bound for ρ∗:

ρ∗ ≤ cor(w, Y | A = 1)√
R2

(√
1−R2 − k

)
It is worth noting that the correlation bound will change, depending on the R2 parameter. 130

Approach 2: Benchmarking the Correlation Term. In practice, researchers may also per-
form benchmarking to estimate what may be plausible correlation values. More specifically,
researchers can calculate the error from omitting the j-th covariate and evaluate the correlation
between the residual imbalance in the j-th covariate and the outcome, using this as the upper
bound for ρ∗:

ρ∗(j) ≤ ĉor(w − w−(j), Y | A = 1)

Evaluating the bias at ρ∗(j) and R̂2
(j) provides researchers with an estimate of the bias if they

omitted a confounder with residual imbalance that is (1) equivalent in magnitude as the resid-
ual imbalance of the j-th covariate, and (2) equivalently as correlated with the outcome as the
residual imbalance of the j-th covariate. Researchers can then estimate the associated confidence
intervals by fixing both the correlation term and R2. 135

A.6. Considering Sharp Bounds
To construct sharp bounds under the variance-based sensitivity model, we leverage the norm

representation of the variance-based sensitivity model, introduced in Theorem 3, and solve the
following optimization problem:

min /max
λ

E (λwY | A = 1) 140

s.t. ||λ||2,w ≤
√

k

1−R2
, (Constraint from VBM) (3a)

E (λ | X = x,A = 1) = 1, (Density Constraint) (3b)
λ > 0. (Positivity Constraint) (3c)

We provide details about each constraint. (3a) enforces the weighted L2 norm constraint, im-
posed by the variance-based sensitivity model (see Theorem 3). The constraint in (3b) constrains 145

the λ values chosen so that the resulting implied weights (λw) balance arbitrary functions of the
observed covariates X .

This constraint is discussed in detail (in the context of the marginal L∞ sensitivity model)
by Dorn & Guo (2023), who refer to it as “data compatibility,” and by Bruns-Smith & Zhou
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(2023) and Kallus & Zhou (2020), who refer to it as the “density constraint,” Finally, (3c) must150

be imposed, to ensure that the constructed ideal weights λw are non-negative.
The bound proposed in Theorem 1 fails to be sharp because it does not fully account for the

density constraint and because it relies on a bound for correlations between errors in weights
and outcomes that may not be sharp. In the following subsections, we will discuss how to solve
for the optimization problem in (3) and provide more intuition for the looseness of the bias bound.155

Solving for Sharp Bounds. In the following subsection, we discuss how to solve the optimiza-
tion problem (3). Our argument closely follows a strategy used by Zhang & Zhao (2024) for a
related problem. To be clear about what terms depend on which variables, we write λ as λ(X,U).

To begin, we note that constraints (3b)-(3c) condition on the event X = x while constraint160

(3a) and the objective function do not. We first seek to work with a problem that conditions on
X = x throughout. First, we remove constraint (3a) by moving it into the objective function.

min
λ

1

2
E
{
λ2(x, U)w2(x) | X = x,A = 1

}
+ θE {λ(x, U)w(x)Y | X = x,A = 1} (4a)

s.t. E {λ(x, U) | X = x,A = 1} = 1 (4b)
λ(x, u) ≥ 0 ∀ u ∈ U (4c)165

In this new penalized form of the problem a penalty parameter θ > 0 replacesR2, but solving it
is guaranteed to produce a solution that is also optimal for problem (3) for a particular value ofR2

that can be computed post hoc. For discussion of closely-related transformations to optimization
problems, see Pimentel & Kelz (2020) and Zhang & Zhao (2024, Prop. 2).

Since we do not restrict how λ(X,U) varies with X , this problem is separable, and we can170

find its solution by taking a version of the objective function that conditions on X = x, solving
it separately for each x, and combining. Here is the conditional version of the problem:

min
λ

1

2
E
{
λ2(x, U)w2(x) | X = x,A = 1

}
+ θE {λ(x, U)w(x)Y | X = x,A = 1} (5a)

s.t. E {λ(x, U) | X = x,A = 1} = 1 (5b)
λ(x, u) ≥ 0 ∀ u ∈ U (5c)175

Using (5), we take the Lagrangian:

L =
1

2
E
{
λ2(x, U)w2(x) | X = x,A = 1

}
+ θE {λ(x, U)w(x)Y | X = x,A = 1}

+ θx,2 [1− E {λ(x, U) | X = x,A = 1}]− E {θU,3 · λ(x, U) | X = x,A = 1}

Taking the functional derivative:

λ(x, U)w2(x) + θw(x)Y − θx,2 − θU,3 = 0

. From complementary slackness we get the following.r Scenario 1: θU,3 = 0, λ(x, U) > 0. Then,180

λ(x, U) =
θx,2 − θY w(x)

w2(x)
> 0 =⇒ θx,2 − θY w(x) > 0. (6)r Scenario 2: θU,3 > 0. Then, λ(x, U) = 0, and we have the following:

θU,3 = θw(x)Y − θx,2 > 0 (7)
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This implies that θx,2 − θY w(x) < 0.

Combining Equation (6) and (7) we have the following:

λ∗(x, U) =
θx,2 − θY w(x)

w2(x)
1{θx,2 − θY w(x) > 0} 185

Re-arranging the terms:

=
θ

w(x)

{
θx,2
θw(x)

− Y
}
1

{
θx,2
θw(x)

− Y > 0

}
. (8)

The solution in Equation (8) depends on an unknown variable θx,2. To solve for θx,2, we can
exploit the fact that the density constraint requires that E(λ(x, U) | X = x) = 1 for all x ∈ X .
Thus, we arrive an estimating equation, which can be used to solve for θx,2: 190

E
[

θ

w(x)

{
θx,2
θw(x)

− Y
}
1

{
θx,2
θw(x)

− Y > 0

}∣∣∣∣X = x,A = 1

]
= 1

θ

w(x)
E
[{

θx,2
θw(x)

− Y
}
1

{
θx,2
θw(x)

− Y > 0

}∣∣∣∣X = x,A = 1

]
= 1

E
[{

θx,2
θw(x)

− Y
}
1

{
θx,2
θw(x)

− Y > 0

}∣∣∣∣X = x,A = 1

]
− w(x)

θ
= 0 (9)

The estimating equation in Equation (9) is reasonable since the left-hand side is negative as
θx,2 → −∞, positive for sufficiently large θx,2, and non-decreasing in θx,2. 195

In summary, equation (8) provides a closed-form representation for the optimal solution to
problem (3) in terms of population parameters including θx,2. At a high level, this formula tells us
that the worst-case weights λ(x, U) are based on an x-specific outcome threshold (θx,2/θw(x));
observations with outcomes larger than this threshold receive zero weight, while observations
with outcome below the threshold receive weights that increase linearly in magnitude with dis- 200

tance below the threshold.
Unfortunately, in practice, estimating this sharp bound from observed sample data can

be challenging. In particular, solving the estimating equation to determine the x-specific
threshold requires an estimate of the underlying density function f(Y | X,A = 1). Existing
estimation methods for similar problems rely either on strong parametric assumptions or on 205

nonparametric density estimation procedures and associated extensive mathematical argument
tailored to the specific problem to obtain sufficient asymptotic convergence guarantees (e.g.,
Jordan et al., 2022; Zhang & Zhao, 2024). Deriving estimators for this bound under sufficiently
general assumptions and validating their finite-sample performance is beyond our scope here.
Furthermore, even if derived we are not convinced that such estimators would be practically 210

appealing to investigators working on substantive problems in medical and social sciences. For
example, in their version of L2 sensitivity analysis, Zhang & Zhao (2024) suggest either using
a Nadaraya-Watson kernel estimator to estimate the conditional density of Y or assuming that
outcomes are drawn from an additive regression model with normally-distributed errors. Both
approaches seem unattractive in practice compared to estimating the bounds in (4), which can 215

be done with simple statistical models and without strong distributional assumptions on the
outcome variable.
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Interrogating looseness in the bias bound. Our proposed bias bound relies on bounding the
correlation between the error in the weights (w − w∗) and the outcome Y . The gap between the220

proposed bias bound and the sharp bound arises from the handling of this quantity.
We provide the full derivation of the bound for reference:

cor(w − w∗, Y | A = 1)

Denote C⊥B := C − cor(C,B) ·B for random variables C and B. Then:

=cor(w − w∗, w | A = 1) · cor(Y,w | A = 1) + cov{(w − w∗)⊥w, Y ⊥w | A = 1}225

=cor(w − w∗, w | A = 1) · cor(Y,w | A = 1)

+ cor{(w − w∗)⊥w, Y ⊥w | A = 1} ·
√

var{(w − w∗)⊥w | A = 1}var(Y ⊥w | A = 1)

=cor(w − w∗, w | A = 1) · cor(Y,w | A = 1)

+ cor{(w − w∗)⊥w, Y ⊥w | A = 1} ·
√

1− cor2(w,w − w∗ | A = 1)
√

1− cor2(w, Y | A = 1)

From the density constraint, cor(w − w∗, w | A = 1) = 0 and (w − w∗)⊥w = w − w∗:230

=cor(w − w∗, Y ⊥w | A = 1) ·
√

1− cor2(w, Y | A = 1)

≤
√

1− cor2(w, Y | A = 1)

The bound fails to be sharp in general because there may not exist a choice of weights w∗ such
that the density constraint is satisfied and cor(w − w∗, Y ⊥w | A = 1) = 1. This gap is particu-
larly evident if we consider the optimal solution to the sharp bound problem in equation (8). We235

can write the error term w − w∗ as:

w − w∗ = w(X)− θ
{

θx,2
θw(X)

− Y
}
1

{
θx,2

θw(X)
− Y > 0

}
,

In order for w − w∗ to be perfectly correlated with Y ⊥w, w − w∗ would need to be a linear
transformation of Y ⊥w; however, this will be generally infeasible, given the thresholding from
1{θx,2/θw(X)− Y > 0}.240

We can quantify the size of the gap using our representation for the sharp bounds. In particular,
define

ξ∗ = cor
[
w(X)− θ

{
θx,2

θw(X)
− Y

}
1

{
θx,2

θw(X)
− Y > 0

}
, Y ⊥w | A = 1

]
.

Then, the gap between the conservative, closed-form bias bound proposed in Theorem 1 and the
sharp bias bound is:

(1− ξ∗) ·
√

1− cor2(w, Y | A = 1)

√
R2

1−R2
var(Y | A = 1) · var(w | A = 1) (10)

The gap thus depends on how much slippage there is between ξ∗ and the upper bound of 1
imposed by the conservative bias bound. Furthermore, Equation (10) highlights that the conser-245

vative bias bound can, at most, be twice as large as the sharp bounds. A more detailed characteri-
zation of the looseness in the bound would seem to require a thorough understanding of how θx,2
covaries with X and Y ; as θx,2 is defined as the solution to an estimating equation, such analysis
is nontrivial and we leave it to future work.
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A.7. Extended discussion for sample boundedness 250

PROPOSITION 1 (NECESSARY CONDITION FOR VALIDITY OF SAMPLE BOUNDS). Define
A as the set of all observed Yi values across the sample Ai = 1. For the true weighted mean
to be estimable under sample boundedness (i.e., E(Y | A = 0) ∈ [mini:A=1 Y,maxi:A=1 Y ]),
the expectation of the outcomes not contained in the sample range must be constrained by the
following: 255

E(Y | A = 0, Y 6∈ A) ∈
[

1

1− pA
min
i:Ai=1

Yi −
pA

1− pA
max
i:Ai=1

Yi,
1

1− pA
max
i:Ai=1

Yi −
pA

1− pA
min
i:Ai=1

Yi

]
,

where pA := Pr(Y ∈ A | A = 0) represents the proportion of unobserved outcomes that fall
within the observed sample range.

The bound specified above represents how much overlap there must exist in the observed and
unobserved potential outcomes. The bound is a function of (1) the proportion of unobserved 260

units with outcomes that are outside the range of outcomes across the observed sample units
(i.e., 1− pA = Pr(Y 6∈ A | A = 0)), and (2) the sample bounds. If a small proportion of the
outcomes in the unobserved population fall outside the sample bounds, then the bound will be
relatively wide. However, if a large proportion of outcomes in the unobserved population fall
outside the sample bounds, then the bound will be more narrow. 265

We also simulate the behavior of both sensitivity models under varying amounts of overlap.

Example 1 (Coverage Rates in Limited Outcome Overlap Settings). Define the treatment as-
signment mechanism as a logit model, and the outcome model as a linear model:{

Pr(Zi = 1 | X ) ∝ exp(γ1Xi,1+γ2Xi,2+βUi)
1+exp(γ1Xi,1+γ2Xi,2+βUi)

,

Yi = γ1Xi,1 + γ2Xi,2 + βUi + vi,

where Xi,1, Xi,2 and Ui are standard normal random variables, and vi ∼ N(0, σ2
v). vi represents 270

a noise parameter that controls for how much outcome overlap there is. When σ2
v is large, then

there is increased overlap between the treatment and control groups, as the treatment probability
is less correlated with the outcome.

We vary σ2
v ∈ {0, 0.1, 0.25, 1, 2, 2.5}, and set γ1 = 2.5, γ2 = 5, and β = 1. For each iteration

of the simulation, we assume that researchers omit Ui, and estimate confidence intervals us- 275

ing both the marginal sensitivity model and the variance-based sensitivity model, using the true
sensitivity parameters. We visualize the coverage rates across simulations in Figure 2. We see
that even in low overlap scenarios and small sample sizes, the variance-based sensitivity model
have nominal coverage. However, the marginal sensitivity model struggles to achieve nominal
coverage in limited overlap settings. 280

Example 1 highlights that in small sample settings and limited overlap, the marginal sensitivity
model fails to obtain nominal coverage, even with the true Λ value. In contrast, the variance-
based sensitivity model consistently has nominal coverage.

We see that within finite-sample settings, the marginal sensitivity model may obtain narrower
bounds than the variance-based sensitivity model, due to their inherent sample boundedness. 285

However, these narrower bounds risk not being valid in settings with smaller sample size and
limited outcome overlap, and can risk large amounts of under-coverage. Thus, the estimated
confidence intervals under the variance-based sensitivity model are technically wider, but appro-
priately so, providing at least nominal coverage, even in cases with severely limited outcome
overlap. 290
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B. PROOFS AND DERIVATIONS

B.1. Proof of Theorem 1
Proof. We will start by deriving the bias bounds.
To begin, we can decompose the bias of a weighted estimator as follows:

Bias{τ(w)} = τ(w)− τ(w∗)295

=
E(wY | A = 1)

E(w | A = 1)
− E(w∗Y | A = 1)

E(w∗ | A = 1)

Because w and w∗ are centered at mean 1:
= E(wY | A = 1)− E(w∗Y | A = 1) (11)
= E{(w − w∗) · Y | A = 1}

By construction, E(w | A = 1) = E(w∗ | A = 1):300

= E{(w − w∗) · Y | A = 1} − E(w − w∗ | A = 1) · E(Y | A = 1)

= cov(w − w∗, Y | A = 1)

= cor(w − w∗, Y | A = 1) ·
√

var(w − w∗ | A = 1) · var(Y | A = 1) (12)

This is similar to the derivation provided in Shen et al. (2011) and Hong et al. (2021). However,
we will go a step further to amplify the term, var(w − w∗ | A = 1), into an R2 value and the
variance of the estimated weights. To do so, we extend the results from Huang (2024), which
examined the bias in the context of an external validity setting, and thus, focused on re-weighting
an individual-level treatment effect τ . We instead apply the results to a general missingness
setting, in which we are re-weighting outcomes Y . We re-write the variance of the error in the
weights in Equation (12) as a function of the R2 parameter and the variance of the estimated
weights, providing the following bias decomposition:

Bias{τ̂(w)} = cor(w − w∗, Y | A = 1) ·
√

R2

1−R2
· var(Y | A = 1) · var(w | A = 1),

where R2 is defined in Definition 1. Because we are fixing R2 ∈ [0, 1),and var(Y | A = 1) ·
var(w | A = 1) are directly estimable from the data, to maximize the bias, we must maximize305

the correlation term.
Applying Lemma 3.1 from Huang (2024), the error in the weights (i.e., w − w∗) is orthogonal

to the estimated weights w (i.e., cov(w − w∗, w | A = 1) = 0). Then, applying the recursive
formula of partial correlation, we obtain the following bounds for the correlation:

−
√

1− cor(w, Y | A = 1)2 ≤ cor(w − w∗, Y | A = 1) ≤
√

1− cor(w, Y | A = 1)2 (13)

Thus, Equation 4 in Theorem 1 directly follows.310

It is important to note that we are implicitly comparing the population quantity τ(w) with
τ(w∗). This quantity differs from the population bias, given by the difference between τ̂(ŵ) and
the population ATT. In particular, because we are using a stabilized weighted estimator, there
will be finite-sample error in recovering the ATT, even with the ideal weights w∗. However,
the finite-sample error is of order o(1/n), and will be dominated by the bias incurred from315

omitting a confounder from the weights (see Miratrix et al. (2013), Rosenbaum et al. (2010) for
more discussion) so that the two notions of bias are asymptotically equivalent. In settings when
researchers are considering a non-stabilized weighted estimator (i.e., a Horvitz-Thompson style
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estimator) that is unbiased in finite samples, then the two notions of bias agree exactly.
320

Relaxing the Assumption that Weights have Mean 1. In the manuscript, we define the weights
as standard inverse propensity score weights, normalized to mean 1. In practice, researchers
often employ non-centered propensity score weights. In the following subsection, we show that
whether or not the weights are normalized is inconsequential for the proposed sensitivity model.
To begin, consider the following weights w′ and w′∗:

w′(X) :=
Pr(Z = 1 | X)

Pr(Z = 0 | X)
, and w′∗(X,U) =

Pr(Z = 1 | X,U)

Pr(Z = 0 | X,U)
.

w′ and w′∗ can be normalized to be mean 1 by scaling by the sum of the weights: w = κw′,
where κ = 1/E(w′ | Z = 0). Furthermore, because E(w′ | Z = 0) = E(w′∗ | Z = 0), the scal-
ing factor used to center both sets of weights at 1 will be equivalent.

Because we are using a stabilized weighted estimator (i.e., the primary estimator of interest in
the paper), point estimates do not depend on whether the centered weights (i.e., w and w∗) or the 325

non-centered weights (w′ and w′∗) are employed:∑n
i=1(1− Zi)Yiwi∑n
i=1(1− Zi)wi

=

∑n
i=1(1− Zi)Yiκ · w′i∑n
i=1(1− Zi)κw′i

=
κ ·
∑n

i=1(1− Zi)Yiw′i
κ
∑n

i=1(1− Zi)w′i

≡
∑n

i=1(1− Zi)Yiw′i∑n
i=1(1− Zi)w′i

Furthermore, the bias of a stabilized weighted estimator using non-normalized weights (i.e., 330

w′) will be equivalent to the bias of a stabilized weighted estimator using the weights normalized
to mean 1 (i.e., w):

Bias{τ(w′)} = τ(w′)− τ(w′∗)

=
E(w′Y | A = 1)

E(w′ | A = 1)
− E(w′∗Y | A = 1)

E(w′∗ | A = 1)

=
κ · E(w′Y | A = 1)

κ · E(w′ | A = 1)
− κ · E(w′∗Y | A = 1)

κ · E(w′∗ | A = 1)
335

=
E(wY | A = 1)

E(w | A = 1)
− E(w∗Y | A = 1)

E(w∗ | A = 1)

≡ Bias{τ(w)}

We can also derive the bias of the weighted estimator with non-normalized weights:

Bias{τ(w′)} = τ(w′)− τ(w′∗)

=
E(w′Y | A = 1)

E(w′ | A = 1)
− E(w′∗Y | A = 1)

E(w′∗ | A = 1)
340

= E(κw′Y | A = 1)− E(κw′∗Y | A = 1)

= cov(κ(w′ − w′∗), Y | A = 1)

= κ · cor(w′ − w′∗, Y | A = 1)
√

var(w′ − w′∗ | A = 1) · var(Y | A = 1)
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The bias expression with respect to the non-normalized weights w′ and w′∗ is identical to the
bias expression with normalized weights, up to scaling by κ. Thus, by constructing the weights345

to be centered at mean 1, we bypass the need to track the scaling factor κ explicitly. �

B.2. Proof of Theorem 2
Proof. To begin, let τ̂(w̃) be the estimator obtained by plugging some set of weights w̃ ∈

σ(R2) into Equation (1). We present a finite-sample analogue of the bias decomposition in Equa-
tion (12) in terms of τ̂(w̃) and τ̂(w). We denote with a subscript n quantities that are computed350

across a fixed sample n (rather than across the infinite population).

τ̂(ŵ)− τ̂(w̃) =
1∑

i∈A ŵi

∑
i∈A

ŵiYi −
1∑

i∈A w̃i

∑
i∈A

w̃iYi

=
1

n

{∑
i∈A

(ŵi − w̃i)Yi

}

=
1

n

{∑
i∈A

(ŵi − w̃i)Yi

}
− 1

n

{∑
i∈A

(ŵi − w̃i)

}(∑
i∈A

Yi

)
(14)

= covn(ŵi − w̃i, Yi | Ai = 1)355

= corn(ŵi − w̃i, Yi | Ai = 1) ·

√
varn(ŵi | Ai = 1) ·

R̂2
w̃

1− R̂2
w̃

· varn(Yi | Ai = 1)

= θ̂w̃ · ρ̂

√
varn(ŵi | Ai = 1) ·

R̂2
w̃

1− R̂2
w̃

· varn(Yi | Ai = 1) (15)

The result in line (14) follows from assuming, without loss of generality, that ŵi and w̃i are
normalized to be mean 1, and R̂2

w̃ := 1− varn(ŵi)/varn(w̃i). The final line, in which ρ̂ =√
1− corn(ŵi, Yi | Ai = 1)2 and θ̂w̃ = corn(ŵi−w̃i,Yi|Ai=1)√

1−corn(ŵi,Yi|Ai=1)2
∈ [−1, 1], follows from a finite-360

sample version of Equation (13).
We construct our estimator for τ(w̃) by taking Equation (15) and replacing the finite-

sample quantities R̂2
w̃ and θ̂w̃ with the population quantities R2

w̃ = 1− var(w)/var(w̃) and
θw̃ = cor(w−w̃,Y |A=1)√

1−cor(w,Y |A=1)2
. We then subtract this bias estimate from τ̂(ŵ):

τ̂(w̃; ŵ1, ..., ŵn) := τ̂(ŵ)− θw̃ · ρ̂

√
varn(ŵi | Ai = 1)

R2
w̃

1−R2
w̃

· varn(Yi | Ai = 1)365

= τ̂(ŵ)− Biasn{τ̂(ŵ) | w̃}. (16)

While it may seem odd to construct an estimator using population quantities such as R2
w̃ and

θw̃, we note that in practice we never calculate τ̂(w̃) directly, and instead use Equation (6) to
construct union bounds for confidence intervals derived from infinitely many values of w̃; these
union bounds are estimable without knowledge of any particular R2

w̃ or θw̃.370
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We now consider bootstrapped estimates τ̂ (b)(w̃; ŵ
(b)
1 , ..., ŵ

(b)
n ):

τ̂ (b)(w̃; ŵ
(b)
1 , ..., ŵ(b)

n )

= τ̂ (b)(ŵ(b))− Biasn
{
τ̂ (b)(ŵ(b)) | w̃

}
= τ̂ (b)(ŵ(b))− θw̃ · ρ̂(b)

√
varn(ŵ

(b)
i | Ai = 1)

R2
w̃

1−R2
w̃

· varn(Y
(b)
i | Ai = 1),

where ŵ(b) represents the vector of bootstrapped weights, τ̂ (b)(ŵ(b)) represents the weighted es- 375

timator, estimated across the b-th bootstrap sample {Y (b)
i , Z

(b)
i , X

(b)
i }ni=1. Because θw̃ and R2

w̃
are fixed (across bootstrap samples), the components that drive variation across bootstrap sam-
ples are: τ̂ (b)(ŵ(b)), varn(ŵ

(b)
i | Ai = 1), varn(Y

(b)
i | Ai = 1), and ρ̂(b) (which is a function of

corn(ŵ
(b)
i , Y

(b)
i | Ai = 1)).

An overview of the proof is as follows. Following Zhao et al. (2019), we will use a Z- 380

estimation framework. In particular, we will add in three additional parameters: µ̂2
w, µ̂Y , µ̂2

Y ,
which represent the second order moment of the weights, the average of the outcomes, and the
second order moment of the outcomes, respectively. Then, we will invoke the asymptotic nor-
mality of bootstrapped Z-estimators. In the following proof, we will show the validity of the
percentile bootstrap in the case that researchers are using inverse propensity score weights; how- 385

ever, we note that researchers can invoke the results in Soriano et al. (2023) to show validity of
the results for balancing weights.

To begin, define µw as the expectation of the weights:

µw = E(Aw) ≡ E[A · {1 + exp(−βX)}].

Then, we define µ as:

µ =
E[AY {1 + exp(−β>X)}]

µw
.

Define µ2
w = E(Aw2) and σ2

Y = E(AY 2) as the second moment of the weights and the out-
comes, respectively. Then, we define the vector θ =

(
µ, µw, β, µ

2
w, µY , µ

2
Y

)> ∈ Θ. Define the
function Q : 0, 1×Rd ×R→ R

d+5, where for t = (a, x>, y) ∈ {0, 1} ×Rd ×R: 390

Q(t | θ) =


Q1(t|θ)
Q2(t|θ)
Q3(t|θ)
Q4(t|θ)
Q5(t|θ)
Q6(t|θ)

 :=



{
a− exp(β>x)

1+exp(β>x)

}
x

µw − a
{

1 + exp(−β>x)
}

µwµ− ay
{

1 + exp(−β>x)
}

µ2
w − a

{
1 + exp(−β>x)

}2

µy − ay
µ2
y − ay2


(17)

Finally, we define Φ(θ) as:

Φ(θ) =

∫
Q(t|θ)dP(t),

where T = (A,X>, AY )> ∼ P, where P represents the true distribution generating the data. It
is simple to see that Φ(θ∗) = 0, when θ∗ is equal to the true parameter values. Then, the Z-
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estimates θ̂ :

Φn(θ̂) : =
1

n

n∑
i=1

Q(Ti|θ̂) (18)395

=



1
n

∑n
i=1

{
Ai − exp(β̂>Xi)

1+exp(β̂>Xi)

}
Xi

µ̂w − 1
n

∑n
i=1Ai

{
1 + exp(−β̂>Xi)

}
µ̂wµ− 1

n

∑n
i=1AiYi

{
1 + exp(−β̂>Xi)

}
µ̂2
w − 1

n

∑n
i=1Ai

{
1 + exp(−β̂>Xi)

}2

µ̂y − 1
n

∑n
i=1AiYi

µ̂2
y − 1

n

∑n
i=1(AiY

2
i )


= 0 (19)

We define Σ := E{Q(t | θ)Q(t | θ)>}. We will invoke the following regularity conditions, con-
sistent with Zhao et al. (2019).

Assumption 2 (Regularity Conditions). Assume that the parameter space Θ is compact, and
that θ is in the interior of Θ. Furthermore, (Y,X) satisfies the following:400

1. E(Y 4) <∞
2. det

[
E
{

exp(β>X)
(1+exp(β>X))2

XX>
}]

> 0

3. ∀ compact subsets S ⊂ Rd, E{supβ∈S exp(β>X)} <∞

To show asymptotic normality of bootstrapped Z-estimators, we must first verify that Φ̇0 and
Σ are well-defined.405

Φ̇0 = E {∇θ=θ0Q(T |θ)}

=



0 0 −E
{

exp(β>0 X)

1+exp(β>0 X)2
XX>

}
0 0 0

0 1 E{AX> exp(−β>0 X)} 0 0 0
µw µ E[AYX>{exp(β>0 X)}] 0 0 0
0 0 E[AX>{exp(β>0 X) + exp(−2β>0 X)}] 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


By Leibniz Formula:

∣∣∣det(Φ̇0)
∣∣∣ =

∣∣∣∣∣∣∣det

 0 0 −E
{

exp(β>0 X)

1+exp(β>0 X)2
XX>

}
0 1 E{AX> exp(−β>0 X)}
µw µ E[AYX>{exp(β>0 X)}]

det

1 0 0
0 1 0
0 0 1


∣∣∣∣∣∣∣

= µw

∣∣∣∣detE
[

exp(β>0 X)

{1 + exp(β>0 X)}2
XX>

]∣∣∣∣ > 0,410

which follows by regularity condition (2). As such, Φ̇0 is invertible. Furthermore, by regularity
condition (1), Σ <∞.

As such, we simply need to verify the three conditions for asymptotic normality of boot-
strapped Z-estimators:

1. The class of functions t→ Q(t|θ) : θ ∈ Θ is P-Glivenko-Cantelli.415

2. ||Φ(θ)||1 is strictly positive outside every open neighborhood of θ0.
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3. The class of functions is P-Donsker, and E((Q(T |θn)−Q(T |θ0))2)→ 0 whenever ||θn −
θ0||1 → 0.

It is worth noting that the first three parameters (µ, µw, β) are special cases from Zhao et al.
(2019), in which we do not perform any shifting in the weights (i.e., h(x, y) = 0). We will 420

then show that the three conditions still hold after additionally accounting for the last three
parameters. The proof for each condition is provided below.

Condition 1: The class of functions t→ Q(t|θ) : θ ∈ Θ is P-Glivenko-Cantelli.

||Q(t|θ) ≤ ||Q1(t|θ)||1 +

5∑
b=2

|Qb(t|θ)| 425

Zhao et al. (2019) show that ||Q1(t|θ)||1 + |Q2(t|θ)|+ |Q3(t|v)| is bounded as a function of x,
y, and some absolute constant M1:

||Q1(t|θ)||1 + |Q2(t|θ)|+ |Q3(t|v)| ≤ ||x||1 + |y|+ exp(−β>x)(1 + |y|) +M1.

As such, all that is left to show is to show that |Q4(t|θ)|+ |Q5(t|θ)|+ |Q6(t|θ)| is finite. To
begin:

|Q4(t|θ)| = |µ2
w − a{1 + exp(−β>x)2}|

≤ µ2
w + {1 + exp(−β>x)}2

|Q5(t|θ)| = |µy − ay| 430

≤ |µy|+ |y|
|Q6(t|θ)| = |µ2

y − ay2|
≤ µ2

y + |y2|

As such:

|Q4(t|θ)|+ |Q5(t|θ)|+ |Q6(t|θ)| ≤M2 + (1 + exp(−β>x))2 + |y|+ |y2|, 435

where M2 is some absolute constant. As such, where M is an absolute constant:

||Q(t|θ||1 ≤ ||x||1 + 2|y|+ |y2|+ exp(−β>x)(1 + |y|) + {1 + exp(−β>x)}2 +M,

where M <∞ by regularity condition (1). Therefore, E(supθ∈Θ ||Q(t|θ)||1) <∞, and
{t→ Q(t|θ) : θ ∈ Θ} is P-Glivenko-Cantelli.

Condition 2: ||Φ(θ)||1 is strictly positive outside every open neighborhood of θ0.
Following Zhao et al. (2019), we fix some ε > 0. If ||β − β0||1 > ε/M , then it is trivial to 440

show that ||Φ(θ)||1 > 0. Zhao et al. (2019) show that when ||β − β0||1 ≤ ε/M , if |µw − µw,0| >
ε/4K, where K = supθ∈Θ |µ| ∈ (0,∞), then ||Φ(θ)||1 > 0. Furthermore, when ||β − β0||1 ≤
ε/M and |µw − µw,0| ≤ ε/4K and |µ− µ0| > ε/2µw, then ||Φ(θ)||1 > 0.
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Thus, we must show for the remaining 3 parameters that when ||µ2
w − µ2

w,0||, ||µy − µy,0||, or
||µ2

y − µ2
y,0||1 are greater than some ε, ||Φ(θ)||1 > 0. Assume |||β − β0||1 ≤ ε/M . Then:445

∣∣∣E{A exp(−β>X)2 +A exp(−β>0 X)2
}∣∣∣ =

∣∣∣E{A exp(−2β>X) +A exp(−2β>0 X)
}∣∣∣

≤
∣∣∣E{exp(−2β>X − 2β>0 X)

}∣∣∣
≤ 2||β − β0||∞E {||X||1 exp(−t∗)} for t∗ ∈ [β>0 X,β

>X]

≤ 2 · ε

64K
=

ε

32K

As such, if ||µ2
w − µ2

w,0|| > ε/32K:450

||Φ(θ)||1 ≥
∣∣∣µ2
w − µ2

w,0 + E
{
A exp(−β>X)2 +A exp(−β>0 X)2

}∣∣∣ > 0 (20)

For the final two parameters, it is worth noting that there is no dependency on the other pa-
rameter estimates. As such, regardless of whether the other parameters are smaller than some ε,
if ||µy − µy,0||1 > ε:

||Φ(θ)||1 ≥ |µy − E(AY )− {µy,0 − E(AY )}|455

= |µy − µy,0| > 0 (21)

Similarly, if ||µ2
y − µ2

y,0|| > ε

||Φ(θ)||1 ≥
∣∣µ2
y − E(AY 2)− {µ2

y,0 − E(AY 2)}
∣∣

=
∣∣µ2
y,0 − µy

∣∣ > 0 (22)

As such, combining Equation (20), (21), (22), as well as the results from Zhao et al. (2019),460

we have shown that for all δ > 0, inf{||Φ(θ)||2 : ||θ − θ0||1 > δ} > 0.

Condition 3: The class of functions is P-Donsker, and E[{Q(T |θn)−Q(T |θ0)}2]→ 0 when-
ever ||θn − θ0||1 → 0.
From Zhao et al. (2019), we obtain a bound for the first three terms (i.e., Q1(t|θ), Q2(t|θ), and465

Q3(t|θ)). Furthermore, consistent with Zhao et al. (2019), for some a, b ∈ R, and some constant
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C > 0, if a ≤ C · b, then we write a . b. Then, for the 4th term:

|Q4(t|θ2)−Q4(t|θ1)|
= |µ2

w,2 − a{1 + exp(−β>2 x)}2 − (µ2
w,1 − a{1 + exp(−β>1 x)}2|

≤ |µ2
w,2 − µ2

w,1|+ |{1 + exp(−β>2 x)}2 − {1 + exp(−β>1 x)}2| 470

= |µ2
w,2 − µ2

w,1|+
∣∣∣2{ exp(−β>2 x)− exp(−β>1 x)

}
+ exp(−2β>2 x)− exp(−2β>1 x)

∣∣∣
≤ |µ2

w,2 − µ2
w,1|+

∣∣∣2{ exp(−β>2 x)− exp(−β>1 x)
}∣∣∣+

∣∣∣exp(−2β>2 x)− exp(−2β>1 x)
∣∣∣

. |µ2
w,2 − µ2

w,1|+ 2||β2 − β1||2||x||2 sup
β∈Θ

exp(−β>x) + ||2β2 − 2β1||2||x||2 sup
β∈Θ

exp(−2β>x)

= |µ2
w,2 − µ2

w,1|+ 2||β2 − β1||2||x||2 sup
β∈Θ

exp(−β>x) + 2||β2 − β1||2||x||2 sup
β∈Θ

exp(−2β>x)

= |µ2
w,2 − µ2

w,1|+ 2||β2 − β1||2||x||2 sup
β∈Θ

exp(−β>x)

{
1 + sup

β∈Θ
exp(−β>x)

}
475

.M4(x)
(
|µ2
w,2 − µ2

w,1|+ ||β2 − β1||1
)

Finally, for the 5th and 6th terms:

|Q5(t|θ2)−Q5(t|θ1)|
= |µy,2 − ay − (µy,1 − ay)|
= |µy,2 − µy,1| 480

|Q6(t|θ2)−Q6(t|θ1)|
= |µ2

y,2 − ay2 − (µ2
y,1 − ay2)|

≤ |µ2
y,2 − µ2

y,1|

Combining results with Zhao et al. (2019), we see that:

||Q(t|θ2)−Q(t|θ1)||1 =
6∑
b=1

||Qb(t|θ2)−Qb(t|θ1)|| .M(x, y)||θ2 − θ1||1 485

Since E(M(X,Y )2) <∞, we have shown that the class of functions is P-Donsker, and further-
more, that whenever ||θn − θ0||1 → 0, E

[
(Q(t|θn)−Q(t|θ0))2

]
→ 0.

Then, by invoking Kosorok (2008), Theorem 10.16:

√
n(θ̂ − θ) d→ N

(
0, Φ̇−1

0 ΣΦ̇0

)
, and

√
n(θ̂(b) − θ) d→ N

(
0, Φ̇−1

0 ΣΦ̇0

)
, (23)

As such, applying the delta method and results from Appendix C3 in Zhao et al. (2019) concludes
the proof. � 490

Remark 1. As discussed in Section 3.3, an interval for an individual w̃ is not ever computed
or used in practice. Instead, all such intervals are combined into a union bound, which (in com-
bination with Theorem 1) gives rise to the following estimated confidence interval:[

Qα
2

{
τ̂ (b)(ŵ

(b)
1 , . . . ŵ(b)

n )− B̂ias
(b)

max

}
, Q1−α

2

{
τ̂ (b)(ŵ

(b)
1 , . . . ŵ(b)

n ) + B̂ias
(b)

max

}]
(24)
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where

B̂ias
(b)

max =
√

1− corn(ŵ(b), Y (b) | Z = 0)2

√
R2

1−R2
· varn(Y (b)|Z = 0) · varn(ŵ(b)|Z = 0).

B.3. Proof of Theorem 3 (Weighted L2 Analog)495

Proof. Define λ := w∗/w. From Huang (2024), Lemma 3.1, we can decompose var(w − w∗ |
A = 1) as the difference in the variance of the ideal weights and the estimated weights (i.e.,
var(w − w∗ | A = 1) = var(w∗ | A = 1)− var(w | A = 1)). Then:

var(w − w∗ | A = 1)

= var(w∗ | A = 1)− var(w | A = 1)500

= var(λ · w | A = 1)− var(w | A = 1)

= E(λ2 · w2 | A = 1)− E(λ · w | A = 1)2︸ ︷︷ ︸
≡E(w∗|A=1)2=1

−var(w | A = 1)

= cov(λ2, w2 | A = 1) + E(λ2 | A = 1)E(w2 | A = 1)− 1− var(w | A = 1)

= cov(λ2, w2 | A = 1) + E(λ2 | A = 1)var(w | A = 1) + E(λ2 | A = 1)− 1− var(w | A = 1)

= cov(λ2, w2 | A = 1) + (E(λ2 | A = 1)− 1) · (var(w | A = 1) + 1)505

= cov(λ2, w2 | A = 1) + (E(λ2 | A = 1)− 1) · E(w2 | A = 1)

As such,

=⇒ var(w − w∗ | A = 1)

E(w2 | A = 1)
=

cov(λ2, w2 | A = 1)

E(w2 | A = 1)
+ (E(λ2 | A = 1)− 1)

Re-arranging the terms:

cov(λ2, w2 | A = 1)

E(w2 | A = 1)
+ E(λ2 | A = 1)510

= 1 +
var(w − w∗ | A = 1)

E(w2 | A = 1)

= 1 +
E(w2 | A = 1)− E(w | A = 1)2

E(w2 | A = 1)
· R2

1−R2

= 1 +
R2

1−R2
− E(w | A = 1)2

E(w2 | A = 1)
· R2

1−R2

=
1

1−R2
− E(w | A = 1)2

E(w2 | A = 1)︸ ︷︷ ︸
1/E(w2|A=1)

· R2

1−R2

=
1

1−R2

(
1− R2

E(w2 | A = 1)

)
︸ ︷︷ ︸

:=k

515

By setting R2, we are also setting the value for cov(λ2,w2|A=1)
E(w2|A=1)

+ E(λ2 | A = 1).
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We now re-write cov(λ2,w2|A=1)
E(w2|A=1)

+ E(λ2 | A = 1) as a weighted sum:

E(λ2 | A = 1) +
cov(λ2, w2 | A = 1)

E(w2 | A = 1)

=E
(
λ2 | A = 1

)
+

1

E(w2)
E
[
{λ2 − E(λ2 | A = 1)}{w2 − E(w2 | A = 1)} | A = 1

]
=E

(
λ2 | A = 1

)
+

E[λ2{w2 − E(w2 | A = 1)} | A = 1]

E(w2 | A = 1)
520

− E(λ2 | A = 1) · E{w
2 − E(w2 | A = 1) | A = 1}

E(w2 | A = 1)︸ ︷︷ ︸
:=0

=E
[
λ2

{
1 +

w2 − E(w2 | A = 1)

E(w2 | A = 1)

}∣∣∣∣A = 1

]
=E{λ2ν(w) | A = 1},

where ν(w) := w2/E(w2 | A = 1). As such, we can define the L2,w norm as follows:

||λ||22,w :=

{
E{λ2 · ν(w) | A = 1} if var(w) > 0

∞ else

We will show that L2,w meets the criteria for being a semi-norm.

1. Triangle Inequality: ||λ1 + λ2||2,w ≤ ||λ1||2,w + ||λ2||2,w 525

||λ1 + λ2||22,w
= E

{
(λ1 + λ2)2 · ν(w) | A = 1

}
= E

{
λ2

1ν(w) | A = 1
}

+ E
{
λ2

2ν(w) | A = 1
}

+ 2E {λ1λ2ν(w) | A = 1}
= (||λ1||2,w + ||λ2||2,w)2

2. Absolute homogeneity: 530

||k · λ||2,w =
√
E{(k · λ)2 · ν(w) | A = 1}

= k
√
E[λ2 · ν(w) | A = 1]

= k · ||λ||2,w

While we have assumed that w and w∗ are centered at mean 1, this assumption is not necessary
for the results of this theorem. More specifically, because both w and w∗ are centered at the 535

same value, the scaling factor used to normalize both sets of weights will be identical. Because
λ represents a multiplicative error, the scaling factor will cancel out.

B.4. Example 1
Proof. The multiplicative error between w∗i and wi is written as:

w∗i
wi

=
exp(γ∗>Xi + βUi)

exp(γ>Xi)
= exp{(γ∗ − γ)>Xi + βUi}, 540
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and Λ̂ is defined as the maximum:

Λ̂ = max
1≤i≤n

exp{|(γ∗ − γ)>Xi + βUi|}

We will show that E(Λ)→∞, as n→∞. To begin, define Vi as:

Vi := (γ∗ − γ)>Xi + βUi

Because Xi and Ui are normally distributed, Vi will be normally distributed, with mean 0, and
variance ν2 := (γ∗ − γ)> + β2. Let V (1), ..., V (n) be the ordered set of V such that V (1) ≤ ... ≤
V (n). Without loss of generality, assume |V (n)| ≥ |V (1)|. Then, E(Λ̂) = E{exp(|V (n)|)}. Using
Jensen’s inequality, the expectation of Λ̂ may be lower bounded:

E(Λ̂) = E{exp(|V (n)|)} ≥ exp{E(|V (n)|)}

Then, we may invoke a well-studied result that for any set of n normally distributed random
variables (Wainwright (2019), § 2, pg. 53):

lim
n→∞

E(V (n))√
2ν2 log(n)

= 1

Because E(|V (n)|) ≥ E(V (n)), as n→∞, E(Λ̂)→∞. �

B.5. Proof of Example 2

Proof. Because [Xi, Ui]
iid∼ MVN(0, I), wi and w∗i both are lognormal random variables, by

definition, the variance of w∗i is: {exp(γ∗>γ∗ + β2)− 1} · exp{γ̂∗>γ + β2}, and similarly, the
variance of wi is: {exp(γ>γ)− 1} · exp(γ>γ). Then, the result of the example immediately545

follows, using R2 := 1− var(w | A = 1)/var(w∗ | A = 1).

B.6. Proof of Corollary 1
Proof. We formalize a condition under which the variance-based sensitivity model will result

in narrower bounds than the marginal L∞ sensitivity model when considering the true distri-
bution of weights w∗, and the corresponding set ε(Λ0) and σ(R2

0) that contains it. We derive a550

sufficient condition for the variance-based sensitivity model to produce strictly narrower bounds.
To begin, the length of the point estimate bounds under the variance-based sensitivity model

σ(R2
0) is equal to two times the bias bound:

max
w̃∈σ(R2

0)
τ(w̃)− min

w̃∈σ(R2
0)
τ(w̃)

= 2 ·
√

1− cor(wi, Yi | Ai = 1)2 ·

√
R2

0

1−R2
0

· var(wi | Ai = 1) · var(Yi | Ai = 1)555

The length of the population point estimate bounds under the marginal sensitivity model is rep-
resented by ψ(Λ0):

ψ(Λ0) := max
w̃∈ε(Λ0)

E(Y w̃ | Z = 0)

E(w̃ | Z = 0)
− min
w̃∈ε(Λ0)

E(Y w̃ | Z = 0)

E(w̃ | Z = 0)

Thus, we want to solve for the R2 value such that the following inequality holds:

2 ·
√

1− cor(wi, Yi | Ai = 1)2 ·

√
R2

0

1−R2
0

· var(wi | Ai = 1) · var(Yi | Ai = 1) ≤ ψ(Λ0)
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Solving for the R2
0 value:

R2
0

1−R2
0

≤ ψ(Λ0)2/4

{1− cor(wi, Yi | Ai = 1)2} · var(wi | Ai = 1) · var(Yi | Ai = 1)

R2
0 ≤

ψ(Λ0)2/4{1− cor(wi, Yi | Ai = 1)2}var(wi | Ai = 1)var(Yi | Ai = 1)

1 + ψ(Λ0)2/4{1− cor(wi, Yi | Ai = 1)2}var(wi | Ai = 1)var(Yi | Ai = 1)
560

=
ψ(Λ0)2

4{1− cor(wi, Yi | Ai = 1)2}var(wi | Ai = 1)var(Yi | Ai = 1) + ψ(Λ0)2︸ ︷︷ ︸
g(ψ(Λ0);Yi,wi)

,

We will use results from Resnick (2008), who show that for a sequence of random variables
drawn i.i.d., the maximum of the sequence will converge in probability towards the upper bound
of the support. We provide the derivation for completeness. Let {Wi}ni=1 be drawn i.i.d. from a
distribution F . Then by i.i.d.:

Pr(W (n) ≤ w) = Pr

(
n⋂
i=1

{Wi ≤ w}

)
= FnY (w),

where W (1) ≤ ... ≤W (n). Then define w0 = sup{w : FW (w) < 1}. Then for any w′ < w0,
P (W (n) ≤ w′) = FnW (w′) −→ 0, since FW (w′) < 1. As such,W (n) converges in probability, to
w0. We note that the same result can be applied for the minima of {Wi}ni=1 by using −{Wi}ni=1.

Now, define λi := w∗i /wi. We have restricted the set of plausible λi such that lim inf{λ : 565

1− Fλ(λ) < 1} = 0, or lim sup{λ : Fλ(λ) < 1} → ∞. First consider the setting for lim inf{λ :
1− Fλ(λ) < 1} = 0. We can apply the results from above to show that for a sequence of random
λ1, ..., λn, the minimum of the sequence will converge in probability towards zero. Because Λ =
max1≤i≤n {λi, 1/λi}, this implies that Λ will diverge in probability towards infinity. Similarly,
for lim sup{λ : Fλ(λ) < 1} → ∞, the maximum of the sequence will diverge in probability 570

towards infinity, which implies that Λ will diverge in probability towards infinity. As such, the
marginal sensitivity model will be invalid.

Applying Continuous Mapping Theorem and sample boundedness, the length of the point
estimate bounds under the marginal sensitivity model (ψ(Λ0)) will be equal to the range of the
observed control outcomes. Thus, if the outcomes Yi are unbounded as well (i.e., FY (y) < 1 for 575

all y ∈ R.), ψ(Λ0) will diverge in probability to infinity.
Thus, we have shown that ψ(Λ0) will diverge in probability to infinity. Applying Continuous

Mapping Theorem again, g(ψ(Λ0);Yi, wi)
p→ 1. Because the R2 parameter is less than 1 by

definition, for sufficiently large n, the variance-based sensitivity model will produce narrower
bounds, which concludes the proof. 580
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