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Abstract

In some observational studies of treatment effects, matched samples are created so
treated and control groups are similar in terms of observable covariates. Traditionally such
matched samples consist of matched pairs. However, alternative forms of matching may
have desirable features. One strategy that may improve efficiency is to match a variable
number of control units to each treated unit. Another strategy to improve balance is to
adopt a fine balance constraint. Under a fine balance constraint, a nominal covariate is
exactly balanced, but it does not require individually matched treated and control subjects
for this variable. Here, we propose a method to allow for fine balance constraints when
each treated unit is matched to a variable number of control units, which is not currently
possible using existing matching network flow algorithms. Our approach uses the entire
number to first determine the optimal number of controls for each treated unit. For each
stratum of matched treated units, we can then apply a fine balance constraint. We then
demonstrate that a matched sample for the evaluation of the Peer Health Exchange, an
intervention in schools designed to decrease risky health behaviors among youths, using a
variable number of controls and fine balance constraint is superior to simply using a variable
ratio match.
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1 Introduction

1.1 A Motivating Example: Peer Health Exchange

Many under-resourced high schools lack any curriculum on health education. Health education

courses cover such topics as sexual health, substance abuse, and instruction on nutrition and

physical fitness. Peer Health Exchange (PHE) is a nonprofit organization established in 2003

that seeks to provide health education in underprivileged high schools that lack such a curriculum

[1, 2]. Instead of providing curricular materials to schools, the PHE relies on a specific model

of health education. Schools that partner with PHE offer health education through the use of

trained college student volunteers. College student volunteers serve as peer health educators for

high or middle school students. Using peer educators to address sensitive topics such as sexual

health is thought to allow for a stronger connection between the students and educators. The

PHE model is designed to modify student behaviors and attitudes in the areas of substance abuse

(use of alcohol, tobacco, and illicit drugs), sexual health (use of contraception, pregnancy, sexual

health risks), and mental health. The effectiveness of the PHE model has not been rigorously

tested. Early research has shown that peer health educators can be more effective than community

health nurses [3, 4]. A review of extant research by Kim and Free [5] found that peer-led sex

education improved knowledge, attitudes, and intentions, but actual sexual health outcomes were

not improved.

As part of a larger multiphase study to evaluate the effectiveness of the PHE model, schools

in a large Midwestern city were recruited to implement the PHE model. At the same time a

set of comparison schools were selected via a pairwise Mahalanobis match and recruited into the

study. Schools were matched on covariates such as enrollment, the percentage of students eligible

to participate in the free or reduced price lunch program, the percentage of African American

students, and average test scores.

Within these schools, students completed a battery of survey items on health behaviors before the
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PHE curriculum was implemented in the treated schools. The PHE curriculum was implemented in

the treated schools during the Spring semester of 2014. In total 121 students completed the PHE

curriculum. From the control schools, a pool of 357 students were available as controls. Hereafter,

we interchangeably refer to treated students as “PHE” students. Outcomes are to be measured

through a follow up survey to be administered in the summer of 2015. The follow-up survey is

to be based on the same battery of items on health behaviors measureded at baseline.

Even though the schools that did not receive the PHE curriculum were similar to those schools

that did, the study design also called for matching students at the individual level. The student-

level match was included since differing outcomes among students may reflect initial differences

in student-level covariates between the treated and control groups rather than treatment effects

[6, 7]. Pretreatment differences amongst subjects come in two forms: those that have been

accurately measured, which are overt biases, and those that are unmeasured but are suspected

to exist which are hidden biases. Matching methods are frequently used to remove overt biases.

Matched samples are constructed by finding close matches to balance pretreatment covariates

[8]. Ideally, such matches are constructed using an optimization algorithm [9–12]. One important

advantage of matching is that statistical adjustments for overt biases be done without references

to outcomes. This prevents explorations of the data that may invalidate inferential methods [13].

In fact, Rubin [14] recommends that analysts always remove outcomes until statistical adjustments

for observed confounders are complete. In the PHE study, outcomes were not available at the

time of this writing, but we can still consider how to best adjust for overt biases between treated

and control groups.

1.2 An Initial Pair Match

This article discusses a new matching method. To motivate this new method, however, we begin

by describing the balance on covariates before matching students and after an initial pair match.

In all, 21 covariates were available describing student demographics and behaviors in four health-

related subject areas. Table 1 shows means and absolute standardized differences in means, the
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absolute value of the difference in means divided by the standard deviation before matching, for

the unmatched sample. Before matching, the PHE students were much more likely to be African

American, less likely to be female, and more likely to be eligible for the free or reduced price

lunch program. The measure of eligibility for the free lunch program is a key covariate as it is

the sole indicator of socio-economic status for the students in the study, and it is substantially

imbalanced with a standardized difference of 0.616 in the unmatched data. PHE students were

also more likely to have a higher incidence of drug use and sexual activity.

To reduce overt bias due to these imbalances, we first implemented a pair match following which

might be considered standard practice in the literature following Rosenbaum [15, ch 8]. For

this match, we sought to minimize distances based on a robust Mahalanobis distance metric.

We also applied a caliper to the estimated propensity score through a penalty function. The

caliper restricts the absolute distance between a treated unit and potentially matched control.

For example, on the propensity score distance, a caliper penalizes or forbids a match between

two units whose estimated propensity scores differ by more than the width of the caliper. We

set the caliper to be 0.5 times the standard deviation of the estimated propensity score. See

Rosenbaum [15, ch 8] for an overview of both the distance metric and calipers enforced via

penalties. We estimated the propensity score using a logistic regression model with a linear and

additive specification. We implemented this match using the pairmatch function in Hansen’s

[2007] optmatch library in R.

For a number of measures, survey responses were missing. To understand, whether this pattern

of missingness differed across the treated and control groups, we use a method recommended

by Rosenbaum [15]. Under this procedure, we imputed missing values using the mean for that

covariate, but we then created a separate indicator for whether the value was missing. We

then checked balance on these measures of missingness to understand whether the patterns

of missingness were imbalanced across treated and control groups. This approach is desirable

because it focuses on the limited goal of balancing observed patterns of missingness. As such it
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does not require additional assumptions about the missingness mechanism that would be required

under most methods of multiple imputation.

Table 1: Summary of covariate balance for unmatched data and a pair match for PHE evaluation.
–St-diff– = absolute standardized difference.

Unmatched Pair Match

Mean C Mean T –St-diff– Mean C Mean T –St-diff–

Demographics
African American 1/0 0.580 0.802 0.470 0.868 0.802 -0.140
Multi-Racial 1/0 0.008 0.033 0.206 0.008 0.033 0.207
White 1/0 0.160 0.008 -0.472 0.008 0.008 0.000
Hispanic 1/0 0.143 0.149 0.017 0.107 0.149 0.117
Female 1/0 0.669 0.463 -0.432 0.570 0.463 -0.224
Disability type 1 1/0 0.042 0.033 -0.046 0.025 0.033 0.042
Disability type 2 1/0 0.011 0.017 0.048 0.008 0.017 0.074
Disability type 3 1/0 0.252 0.198 -0.046 0.149 0.198 0.042
Free or reduced price lunch 1/0 0.641 0.917 0.630 0.950 0.917 -0.075

Substance Abuse History
Marijuana use 1/0 0.096 0.208 0.342 0.140 0.208 0.206
Drunk in past 30 days 1/0 0.096 0.151 0.178 0.067 0.151 0.272
5 or more drinks in past 30 days 0.014 0.034 0.147 0.000 0.034 0.250
Drug use past 30 days 0.140 0.322 0.477 0.223 0.322 0.260
Number of drug types used (0–10) 0.235 0.512 0.285 0.231 0.512 0.289

Sexual Behaviors
Number of sexual partners 0.172 0.458 0.326 0.347 0.458 0.127
Ever had sex 1/0 0.154 0.349 0.503 0.263 0.349 0.222
Understand cause of pregnancy 1/0 0.812 0.757 -0.139 0.709 0.757 0.121
Can obtain contraception 1/0 0.406 0.440 0.071 0.438 0.440 0.004
Perception of sex safety 3.034 2.944 -0.150 2.945 2.944 -0.002

Other Items
Decision-making skill 3.084 3.048 -0.075 3.083 3.048 -0.073
Knowledge of healthy eating 0.882 0.799 -0.319 0.817 0.799 -0.068
Number of times eating healthy 2.447 2.507 0.057 2.446 2.507 0.058
Number of days physically active 3.692 4.129 0.192 4.008 4.129 0.053

We report means and absolute standardized differences after the pair match in Table 1. Table 1

omits summaries for the missing data indicators. Those results are reported in the Supplementary

Materials along with plots of the propensity score distributions. Although the results from the

pair match are an improvement over the unmatched data, the balance statistics are still less

than satisfactory, as a number of significant imbalances remained. Of the 21 covariates, 11 still
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had imbalances in which the standardized difference exceeded 0.10, with the largest standardized

difference being 0.33. The five largest absolute standardized differences averaged 0.27. A general

rule of thumb is that matched standardized differences should be less than 0.20 and preferably

0.10 [15]. Is a better match possible?

1.3 Alternatives to the Initial Pair Match

We might seek to improve on the initial pair match in two ways. First, a substantial amount of

overt bias remains. That is, a number of covariates display imbalances that are larger than would

be produced in a randomized experiment. Second, we might seek to make greater use of the

controls. In the PHE data, there are nearly 3 times as many controls as treated units, and most

of those controls are discarded in a pair match. The use of additional controls can produce more

efficient treatment effect estimates. While efficiency may be a secondary concern in observational

studies, our goal is to produce an acceptable level of balance while using as much of the data as

possible to increase efficiency.

To further reduce overt bias in the match, a number of different strategies are available. These

strategies include checking for a lack of common support, exact matching on covariates, using

penalty terms, or using fine and near-fine balance constraints. Fine balance forces exact balance

at all levels of a nominal variable but places no restriction on individual matched pairs—any one

treated subject can be matched to any one control [17]. For example, a fine balance constraint

could require the same number of men and women be selected in the overall control group as

in the overall treated group, but in the resulting match men might be matched to women and

vice versa in individual pairs. Fine balance is not always possible and when this occurs near-fine

balance is one alternative [18].

Fine balance constraints may be especially useful in the PHE evaluation match. Matching in

observational studies balances covariates stochastically, but may not have much success in bal-

ancing many small strata on discrete covariates because such imbalances can occur by chance.
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When this is the case, fine balance is often an effective way to remove biases of important prog-

nostic covariates that may have a nonlinear effect on the outcome. In the PHE evaluation match,

eligibility for the free lunch program is an important prognostic variable (as the sole proxy for

socio-economic status). Although it is reasonably well balanced by the pair match, its interac-

tions with other important variables may not be, and these are likely to be difficult to balance

stochastically. Fine balance provides a natural way to balance such interactions.

While improving balance is one goal in a match, we might also wish to improve efficiency. To

improve efficiency, we can match with multiple controls. Under a matching with multiple controls,

each treated subject is matched to at least one control and possibly more. We can match with

multiple controls in three ways. First, given the treated control ratio in the PHE data, we could

match every treated unit to two controls. Alternatively, we could match with a variable ratio of

controls where the number of matched controls possibly varies for each treated unit. Matching

with a variable number of controls often removes more overt bias than matching with a fixed ratio

of controls [10]. Another alternative would be a full match. A full match is the most general form

of optimal matching [11, 15, 19]. Under full matching, we create matched sets in which each

matched set has either 1 treated unit and a variable number of controls or 1 control unit with a

variable number of treated units. Full matching is the most general form of matching. Both a

pair match and any match with multiple controls are special cases of a full match [19].

Given the need to remove additional overt bias and the ratio of treated to control units in the

PHE data, one possible design for the PHE evaluation would be based on either a full match

or a variable control:treatment ratio match to make greater use of control units with fine or

near-fine balance to reduce overt bias. However, most matching algorithms do not allow one to

implement either a full match or a variable control:treatment ratio match with fine or near-fine

balance constraints.

For example, one widely used optimal matching algorithm is based on finding a minimum cost flow

in a network. Hansen’s [2007] optmatch library in R uses an algorithm developed by Bertsekas
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[20] that solves the minimum cost flow problem. The fullmatch function in this library allows

for both full matches and variable ratio matches, but does not allow for fine or near-fine balance.

Other popular matching algorithms such as Coarsened Exact Matching [21] and Genetic Matching

[22] are also unable to perform a match of this type. It is possible to implement a variable ratio

match with fine balance using integer programming [12]. However, software for integer based

matching is not widely available and scalability for matching in very large datasets is often more

difficult. Below we develop a new algorithm that uses network flows to minimize the total distance

among treated and control units in a variable-ratio match, but also allows for fine or near-fine

balance constraints.

1.4 Outline

The article is organized as follows. Section 2 develops notation and reviews variable-ratio matching

and fine balance in greater detail. In particular, we introduce the entire number, a form of design-

based variable-ratio matching that will make incorporation of fine balance constraints possible

[23]. In Section 3 we detail the proposed algorithm. We first build intuition in Section 3.1

and then describe the general procedure in Section 3.2. Next, we demonstrate the use of our

method with the PHE evaluation data in Section 4. We then compare this match to two more

conventional matches. Section 5 concludes.

2 Review and Definitions of Variable-Ratio Matching, the

Entire Number, and Fine Balance

We begin with a review of variable-ratio matching via the “entire number.”

2.1 Review: Variable-Ratio Matching and the Entire Number

To fix the concept of a variable-ratio match, we first define some notation. A match consists of

i D 1; : : : ; I matched sets. Each matched set i may contain at least ni � 2 subjects indexed
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by j D 1; : : : ; ni . Within the matched set, we use an indicator Zij to denote exposure to the

PHE treatment, where Zij D 1 if a student attended the PHE program and Zij D 0 if the

student does not. Under the most general matching, there are mi students with Zij D 1 and

ni �mi D li students where Zij D 0 (with mi and li > 0). Under variable-ratio matching, we

fix mi D 1 within each matched set, and li is allowed to vary from matched set to matched set.

For each set i , we may also require each treated student to be matched to at least ˛ � 1 and

at most ˇ � ˛ controls, i.e. ˛ � li � ˇ. If ˛ D ˇ D 1, the matched set is a pair match.

If we set ˇ D 3 and ˛ D 1 each treated unit may be matched to 1,2 or 3 controls. Often we

place an upper limit on ˇ since there are rapidly diminishing returns on efficiency as ˇ increases

[11]. In general there is little to gain from ˇ D 10 and generally ˇ D 5 is sufficient. See Ming

and Rosenbaum [10] for a more detailed discussion of the gains from larger matched sets. Under

variable-ratio matching, the size of ni is permitted to vary with i , and we wish to select the size

of each li to minimize a distance criterion. Ming and Rosenbaum [24] presented one algorithm

to select the size of each matched set. One alternative to their algorithm for selection of li uses

the entire number [23].

We define x as a matrix of covariates that are thought to be predictive of treatment status, and

e.x/ D P.Zij D 1jx/ as the conditional probability of exposure to treatment given observed

covariates x. The quantity e.x/ is generally known as the propensity score [8].

The propensity scores is a balancing score in that achieving similar distributions of e.x/ in the

matching will result in balance on the covariates x. The propensity score can also tell us how

many controls are available for matching to a specific treated unit. Specifically, the ratio of the

joint densities P.X D x;Z D 0/=P.X D x;Z D 1/ equals the inverse odds of e.x/, which we

call the entire number �.x/ D 1�e.x/
e.x/ . Define xt as covariate values for treated students, and

�.xt/ is the entire number for treated unit t . The entire number represents the average number

of controls that are available for matching to a treated subject with covariate value xt [23]. There

is an intuitive explanation for why the entire number represents the average number of controls
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available. If e.xt/ D 1=4, treated unit t should be matched to li D 1�1=4

1=4
D 3 controls. That

is, given covariate value xt the expected number of controls with the same x is equal to �.x/ or

the inverse odds of the propensity score.

To use the entire number within the context of matching, we use the following procedure. Sup-

pose O�.xt/ is a non-integer; let bO�.xt/c denote the first integer immediately below O�.xt/ (the

floor) and d�.xt/e denote the first integer immediately above (the ceiling). For treated sub-

ject t with estimated propensity score Oe.xt/ and estimated entire number O�.xt/ D 1�Oe.xt /

Oe.xt /
,

li D maxf1;min.bO�.xt/c; ˇ/g, so that each treated subject was matched to at least one but

at most ˇ controls; in between, the li is determined by bO�.xt/c. Yoon [23] showed that a

variable-ratio match based on the entire number will always remove at least as much bias as a

pair match and possibly more. One key advantage of using a variable-ratio match based on the

entire number is that it will allow us to include both fine and near-fine balance constraints, while

the algorithm developed by Ming and Rosenbaum [24] will not. Since the entire number is based

on the propensity score, which must be estimated, some care must be taken with its estimation.

See Stuart [25] for an overview of propensity score estimation.

2.2 Review: Fine and Near-Fine Balance

We now provide a brief review of fine balance and then discuss how near-fine balance may

deviate from fine balance. Assume there is a discrete, nominal variable, �, with B � 2 levels,

b D 1; : : : ; B. If T is the treated group and C is the control group we can represent the nominal

variable as a map � W fT ; Cg �! f1; : : : ; Bg. Let Bb � fT ; Cg be the subset of units with level b

on the nominal variable, so Bb D fi 2 fT ; Cg W �.i/ D bg. Then if M � C is a matched control

group selected by fixed-ratio matching with � controls per treated unit, we say that M satisfies

fine balance if X
�2T

1Bb
.�/ D

X
�2M

1

�
1Bb
.�/ for all b 2 f1; : : : ; Bg
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where the function 1A.i/ is equal to 1 if i 2 A and is equal to zero otherwise. In short, fine

balance requires exact balance at all levels of the nominal variable but places no restriction on

individual matched pairs-any one treated subject can be matched to any one control. Fine balance

constraints are not always feasible. A near fine balance constraint returns a finely balanced match

when one is feasible, but minimizes the deviation from fine balance when fine balance is infeasible

[18]. Yang et al. [18] showed that matches with fine and near-fine balance constraints can be

computed by running the assignment algorithm with an augmented distance matrix. In general,

fine and near-fine balance are often used to balance a nominal variable with many levels, a rare

binary variable or the interaction of several nominal variables. Fine balance is a useful alternative

to exact matching. Exact matching tends to restrict the possible matches on other covariates.

With fine or near-fine balance, we achieve near or near exact balance on the covariate but we do

not place any restriction on individual matches.

3 Variable-Ratio Matching with Fine and Near-Fine Bal-

ance

Fine balance, however, is difficult to define and implement for standard variable-ratio matching

algorithms. The difficulty arises from the weighting that is necessary under a variable-ratio match

[11, 24, 26]. The usual practice is to weight each of the strata (containing one treated unit

apiece) so that controls in matched sets with many controls receive low weight and those in

matched sets with few controls receive high weight [15]. Specifically, the controls in a matched

set are weighted by the inverse of the number of controls in that set. Often these are referred to

as effect of the treatment on the treated (ETT) weights [11].

This varied weighting of control observations is used since a balancing algorithm that treats all

controls equally may not produce a covariate distribution similar to the treated population in the

re-weighted control population actually used for analysis. Speaking formally and taking T ; C; �,

and B1; : : : ;BB as defined in Section 2.2, we note that a matched control group M � C selected
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by variable-ratio matching has form

M DM1 [M2 [ : : : [MI

where each Mi represents the li controls included in matched set i (in the sense of Section 2.1).

Such a match satisfies fine balance if

X
�2T

1Bb
.�/ D

IX
iD1

X
�2Mi

1

li
1Bb
.�/ for all b 2 f1; : : : ; Bg:

In commonly-used network algorithms for variable-ratio matching, the control ratio li for each

treated unit is not known in advance but is determined from the data as the match is computed, so

the weights for each control unit are not known a priori. Network formulations for matching with

fine balance, however, require all controls in a given matching problem to be weighted equally

and depend on a priori knowledge of the values for these equal weights. In order to conduct

variable-ratio matching with fine balance, we need an algorithm that defines control ratios for

each treated unit in advance so we can form matches within groups in which controls have equal,

known weights. As a function of the propensity score, the entire number provides a principled way

to stratify the population into groups with fixed control-to-treated-unit ratios before matching,

and is therefore a natural component of a fine balance algorithm for variable-ratio matching.

3.1 A Small Example

Consider the following example, in which there are 25 students, 8 of whom received treatment.

The students have entire numbers ranging from 1 to 3, and 12 of them have used drugs in the

past 30 days. The goal is to implement a variable-ratio match based on the entire number and

enforce a fine balance constraint on the indicator for past drug use. Table 2 summarizes the data.

In addition to the covariates shown in Table 2, we have pairwise distances between treated and

control units with the same entire number (perhaps derived from other covariates not provided
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in the table). The three distance matrices in Table 3 summarize these distances within the three

entire number strata. To conduct variable-ratio matching based on the entire number, we perform

an optimal match within each of the three entire number stratum. In stratum 1, we perform an

optimal pair match, within stratum 2 we perform an optimal 1:2 match, and within stratum 3

we perform an optimal 1:3 match.

The left hand side of Table 3 summaries such a match. Within stratum 1, we match t1 to c5,

t2 to c1, t3 to c3, and t4 to c4 for a total distance of 4.8. In stratum 2, we would match t5 to

c7 and c11, t6 to c10 and c13, and t7 to c8 and c9. In stratum 3, t8 is matched to c14, c16, and

c17. This match produces a standardized difference of 0.16 for the measure of past drug use. To

improve balance on past drug use, we impose a fine balance constraint. In stratum 1, we select

only two controls that indicate the use of drugs in the last thirty days, while the treated group

contains 3 such units. To enforce the fine balance constraint, we now pair t1 to c6 and t2 to

c5. This increases the overall distance from 4.8 to 10.5, but contributes to a smaller distance

on the indicator of past drug use. Within stratum 2, fine balance was achieved in the original

entire number match since a single treated unit has an indication of drug use in the past thirty

days. This means we that we require exactly two controls with the same status, and we selected

exactly two, c9 and c13. Notice that the entire number match with fine balance cannot balance

drug use exactly in every stratum. In stratum 3, the treated unit t8 is not a drug user, thus to

achieve fine balance we need three controls that have not used drugs in the past thirty days. The

optimal match selects c14, c16 and c17 as the three controls, two of which have used drugs in

the past thirty days. While fine balance is not possible, we achieve near-fine balance by selection

of c15 instead of c14 as one of the three controls. Thus under near-fine balance for drug use,

the absolute standardized difference for this covariate drops to 0.08 from 0.16, which indicates a

reduction in bias of 50%.
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Table 2: Covariate information for the students in the small example.
Treatment Drug Use Entire Number

t1 1 0 1
c1 0 0 1
c2 0 1 1
t2 1 1 1
c3 0 0 1
c4 0 0 1
t3 1 1 1
t4 1 1 1
c5 0 1 1
c6 0 1 1
c7 0 0 2
c8 0 0 2
c9 0 1 2
c10 0 0 2
t5 1 1 2

c11 0 1 2
c12 0 1 2
t6 1 0 2
t7 1 0 2

c13 0 0 2
c14 0 1 3
t8 1 0 3

c15 0 0 3
c16 0 1 3
c17 0 0 3
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Table 3: Treated-control distance matrices for each entire number stratum in the small example.
Subjects with drug use in the past 30 days are marked in bold. A near-fine balance constraint is
used for drug use in one of the matches. The grey shading indicates matched controls for each
treated unit within rows.

Entire # Without near-fine balance With near-fine balance
1 c1 c2 c3 c4 c5 c6 c1 c2 c3 c4 c5 c6
t1 1.2 1.5 6.7 5.2 1.2 3.4 1.2 1.5 6.7 5.2 1.2 3.4
t2 1.5 4.4 10.0 0.8 5.0 7.6 1.5 4.4 10.0 0.8 5.0 7.6
t3 6.0 1.5 3.2 5.4 6.0 5.4 6.0 1.5 3.2 5.4 6.0 5.4
t4 8.2 5.6 7.1 0.6 8.1 7.3 8.2 5.6 7.1 0.6 8.1 7.3

Entire # Without near-fine balance With near-fine balance
2 c7 c8 c9 c10 c11 c12 c13 c7 c8 c9 c10 c11 c12 c13
t5 1.2 9.6 2.1 3.9 0.9 7.0 1.7 1.2 9.6 2.1 3.9 0.9 7.0 1.7
t6 7.8 8.8 3.7 3.7 6.7 6.9 2.0 7.8 8.8 3.7 3.7 6.7 6.9 2.0
t7 10.0 0.8 3.9 4.0 9.4 9.1 3.9 10.0 0.8 3.9 4.0 9.4 9.1 3.9

Entire # Without near-fine balance With near-fine balance
3 c14 c15 c16 c17 c14 c15 c16 c17
t8 1.4 3.4 0.7 1.8 1.4 3.4 0.7 1.8
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3.2 A General Procedure

The general algorithm for variable-ratio matching with fine or near-fine balance constraints is as

follows. Suppose we have a study with subjects j 2 f1; : : : ; N g, each receiving either a treatment

or control. Suppose also that we have fit an estimated propensity scorebe.x/ to the data and letbej be the estimated propensity to receive treatment for subject j .

1. Choose a positive integer ˇ > 1 as the maximum number of controls that we will allow to

be matched to a single treated subject.

2. Define

S1 D

�
1

3
; 1

�
Sk D

�
1

k C 2
;

1

k C 1

�
for k 2 f2; : : : ; ˇ � 1g where applicable

Sˇ D

�
0;

1

ˇ C 1

�
These sets Sk form a partition of the unit interval. These intervals are chosen so that for

1 < k < ˇ each Sk contains exactly the propensity scores that result in an entire number

of k

3. For each k 2 f1; : : : ; ˇg:

(a) Select all the study subjects withbej 2 Sk. For k 2 f2; : : : ; ˇ � 1g, these are exactly

the subjects with entire numbers in the interval Œk; k C 1/. For k D 1, these are the

subjects with entire numbers in .0; 2/, and for k D ˇ they are the subjects with entire

numbers in Œˇ;1/.

(b) Conduct 1 W k fixed-ratio matching with near-fine balance among the selected subjects.

Call the resulting match Mk, a fixed ratio match within the k partition.

4. Return
Sˇ

kD1
Mk as the final match.
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Briefly stated, the procedure separates study subjects into strata based on their entire numbers

and conducts fixed-ratio matching with near-fine balance within strata, using the appropriate

control:treatment ratio suggested by the entire number.

Since the entire number is a transformed and coarsened version of the propensity score, variable-

ratio matching with the entire number is closely related to propensity score stratification [27].

Intuitively, our procedure improves upon the propensity score stratification design by enhancing

balance on a nominal variable within strata, uniting features of matching and propensity score

stratification. In particular, matching with near fine balance on a nominal covariate separately

within entire number strata is equivalent to matching with near fine balance on the interaction of

the nominal variable with the coarsened propensity score. Rather than simply ensuring propensity

scores of paired individuals are similar or balancing important covariates between groups, our

procedure does both and also addresses possible interactions between the two.

We also propose two refinements to variable-ratio matching based on the entire number. The first

refinement is in response to finite sample constraints that may arise. As n �!1 for fixed ˇ, the

properties of the entire number ensure that each stratum will have sufficient controls to conduct

fixed ratio matching with the appropriate ratio. Within finite samples, however, it may be the

case that within some strata there are not a sufficient number of controls to form the appropriate

variable-ratio match. For example, when Oe.xt/ D 1=5, units within that entire number strata

should have four controls matched to each treated unit. Within a particular finite sample, we

may find that within this entire number strata there are 4 treated units and 15 control units.

Thus given finite sample constraints, we do not have enough control units for all four treated

units. When this situation arises, we can simply match to the highest ratio possible. Thus in this

strata, we would perform a match with a fixed 1:3 ratio of treated to control units.

Next, we alter entire number matching to deal with a lack of common support. A lack of

common support occurs when there are neighborhoods of the covariate space where there are

not sufficient numbers of treated and control units to make inferences about the treated. A lack
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of common support manifests itself in a specific way when matching with the entire number.

When Oe.xt/ � 1=2, entire matching results in a single stratum where all units are pair matched.

Within this stratum, it may be the case that the number of treated units exceeds the number

of control units. This will occur due to a lack of common support. Matching based on the

entire number makes a lack of common support readily transparent, since a pair match becomes

impossible within this strata when the number of treated exceeds the number of controls. A lack

of common support is endemic to the estimation of treatment effects with observational data and

can arise for any estimator of causal effects [28, 29].

When there is a lack of common support with entire matching, we can use extant methods to

reduce the sample to the region of common support. Crump et al. [28] recommend discarding

all units with estimated propensity scores outside a specific range, while Dehejia and Wahba [30]

suggest eliminating all treated units with propensity scores higher than the maximum propensity

score among controls, as well as trimming all control units with propensity scores lower than

the minimum propensity score among the treated units. We could also apply the method of

Traskin and Small [31] to identify and describe the population with insufficient common support

in order to exclude individuals in a more interpretable manner. Alternatively, we could use a

special case of optimal subset matching [29]. Under this solution, we relabel the control units as

treated units and allow for an optimal pair match given the fine balance constraints. This will

discard the treated units that are least comparable to the controls. As such, the algorithm will

discard treated units in an optimal manner, retaining the subset of treated units with the lowest

overall covariate dissimilarity among the candidate subsets (subject to fine and near-fine balance

constraints). Discarding treated units implies that we can only estimate the effect of a treatment

on marginal students, that is, students who might or might not receive this treatment. Such a

practice seems unobjectionable when the available data do not represent a natural population.

This is true in the PHE evaluation, since only one cohort of students happened to be exposed to

the intervention in the first year. As such, the study population is not representative of a larger

population of students.
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4 Implementation with the PHE Evaluation Data

We next use this new algorithm with the PHE evaluation data. The algorithm was implemented in

R using functions from the finebalance library [18] and the RELAX-IV algorithm as implemented

in FORTRAN by Bertsekas [20]. This is the same algorithm used to solve the minimum cost

flow problem in Hansen’s [2007] optmatch library. For more on R, see R Core Development

Team [2014]. In this match, we matched using near-fine balance within entire number strata.

We used 5 entire number strata, with a maximum of ˇ D 5 controls per treated unit (for a

discussion of this choice of ˇ see the third paragraph under section 4.1). For this match, we

minimized covariate distances based on a robust Mahalanobis distance. We applied a caliper on

the estimated propensity score through a penalty function with the caliper set to be 0.5 times

the standard deviation of the estimated propensity score.

We experimented with several possible fine balance constraints (one of the advantages of matching

is that the covariate adjustment step is separate from the testing step, so multiple matches can

be examined without introducing multiple testing issues). In this process, we focused specifically

on closely balancing the indicator for free or reduced price lunch eligibility, since it is the lone

indicator for socio-economic status in the data set. One of the most effective constraints required

near-fine balance on an interaction of drug use in the past 30 days and the indicator for eligibility

in the free or reduced price lunch program. This interaction variable had four categories, one for

those who had free lunch but no drug use, one for those with both free lunch and drug use, one

for those with drug use but no free lunch, and one for subjects with neither. We also utilized

both of our proposed refinements to matching based on the entire matching. For the stratum

with k D 4, we reduced the match to a 1:1 match due to an insufficient number of control units.

The optimal subset procedure also discarded five treated units due to a lack of common support.

As such this match is based on a somewhat different sample than the pair match. However,

the number of treated units excluded is small enough that it is still reasonable to compare the

two matches. For variable ratio matches, we calculate the effective sample size. The effective
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sample size is the sum of the harmonic means of the number units in treatment and control for

each matched group. This is necessary since ss matched groups become more unbalanced, the

effective sample size decreases. The match resulted in 116 matched sets with an effective sample

size equivalent to 135 matched pairs. In total there are 75 pair matches, 23 matches with a ratio

of 1:2, 7 matches with a ratio of 1:3, and 11 matches with a ratio of 1:5. 1

Table 4 contains a summary of the balance statistics for this match. The supplementary materials

contain detailed balanced statistics for all 21 covariates. As we noted in Section 1.2, the initial

pair match produced results with a high number of imbalances. A combination of a fine balance

constraint and variable-ratio matching is a substantial improvement over the pair match. For

this match only 3 covariates have a standardized difference of 0.10 or greater with the five

largest standardized differences average 0.15. In the pair match, 13 covariates had standardized

differences of 0.10 or greater with the largest being 0.35. Note that since we apply a near-fine

balance constraint the distribution of the free lunch measure and the use of drugs in the past 30

days is not identical as it would be under a strict fine balance constraint. In Table 4, we report

the average absolute standardized difference for the four categories of the free lunch past drug

use interaction measure as well as the proportion of treated and control units in the weighted

marginal distribution. In the unmatched data, this averaged standardized difference was 0.25,

with the near fine balance constraint it is 0.05.

Our match is based on a compromise. A pair match with similar near-fine balance constraints and

trimming for a lack of common support should reduce more overt bias than the entire number

match with the same constraints. The variable ratio match, however, will be more efficient. We

might ask whether we can judge the variable ratio match on an objective standard so that we

can be confident that we have removed enough overt bias such that we can safely use additional

controls and increase efficiency. One objective standard would be to compare the variable ratio

match balance to the balance we would expect if treatments were assigned randomly. In a
1We also performed one additional match where we dealt with the lack of common support based on trimming

the propensity score. Balance for this match was slightly better, but three more treated units were discarded.
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Table 4: Summary of covariate balance for three different matches with PHE evaluation data.
First match is based on entire number match with up to five controls per treated and near-fine
balance within strata on .free lunch � drug use/. The second match (˛1 in the text) is based
on entire number match with up to five controls per treated without any fine balance. The
third match (˛2 in the text) is a variable ratio match with up to five controls per treated that
does not use the entire number. The bottom portion of the table compares the distribution of
.free lunch � drug use/ in the treated and control groups for each match and the standardized
difference with fine balance categories. Cell entries are absolute standardized differences.

Entire Match with Entire Match Variable-Ratio Match
Fine Balance Only W/o Entire Number

African American 1/0 0.07 0.09 0.31
Multi-Racial 1/0 0.09 0.12 0.16
White 1/0 0.01 0.00 0.34
Hispanic 1/0 0.04 0.04 0.04
Female 1/0 0.16 0.19 0.16
Disability type 1 1/0 0.06 0.06 0.05
Disability type 2 1/0 0.02 0.00 0.07
Disability type 3 1/0 0.06 0.06 0.05
Free or reduced price lunch 1/0 0.01 0.09 0.41
Marijuana use 1/0 0.04 0.08 0.16
Drunk in past 30 days 1/0 0.06 0.08 0.10
5 or more drinks in past 30 days 1/0 0.15 0.17 0.11
Drug use past 30 days 1/0 0.09 0.12 0.22
Ever had sex 1/0 0.11 0.14 0.22
Understand cause of pregnancy 1/0 0.09 0.09 0.09
Can obtain contraception 1/0 0.01 0.01 0.05
Number of drug types used (0–10) 0.03 0.06 0.17
Number of sexual partners 0.06 0.07 0.14
Perception of sex safety 0.04 0.01 0.09
Decision-making skills 0.02 0.06 0.01
Knowledge of healthy eating 0.05 0.08 0.15
Number of times eating healthy 0.02 0.06 0.04
Number of days physically active 0.10 0.10 0.07

Near Fine Balance Summary

Weighted Marginal Distributions Treated Control Treated Control Treated Control

Free Lunch=0, Drug Use=0 0.06 0.06 0.06 0.04 0.06 0.21
Free Lunch=0, Drug Use=1 0.03 0.02 0.03 0.01 0.03 0.02
Free Lunch=1, Drug Use=0 0.65 0.69 0.65 0.71 0.62 0.55
Free Lunch=1, Drug Use=1 0.27 0.23 0.27 0.23 0.30 0.22

Free Lunch=0, Drug Use=0 0.00 0.04 0.43
Free Lunch=0, Drug Use=1 0.03 0.11 0.03
Free Lunch=1, Drug Use=0 0.08 0.14 0.20
Free Lunch=1, Drug Use=1 0.09 0.08 0.23
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randomized trial, the p-values from the balance tests should follow the line of equality when

compared with the quantiles of the uniform distribution. In Figure 1 we compare the two-sample

p-values for all 35 covariates in the entire number match with near-fine balance to the quantiles

of the uniform distribution. We find that the two-sample p-values tend to fall above the line

of equality, which indicates that the match produced greater balance than if we had assigned

the students to treatment or control at random. Of course, randomization would also tend

to balance unobserved covariates, which matching cannot do. However, this implies that any

additional reduction of bias provided by a pair match is probably unnecessary.
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Figure 1: The quantile-quantile plot compares the 35 two-sample p-values from the match based
on the entire number and a near-fine balance constraint with the uniform distribution. We expect
p-values from a randomized experiment to fall along the line of equality. Balance on observed
covariates does not imply balance on unobserved covariates.

We now compare the variable-ratio match with near-fine balance to two matches possible with

existing algorithms. We denote these two more conventional matches ˛1 and ˛2. Both ˛1

and ˛2 are variable-ratio matches based on minimizing the robust Mahalanobis distances with a

caliper on the propensity score. Neither has any fine or near-fine balance constraints. In ˛1, we
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Figure 2: The distribution of absolute standardized differences for the four matches and the
unmatched data.

implement variable-ratio matching using the entire number. In ˛2, we implement a variable-ratio

match using the optmatch library [16]. In the statistical package R, the fullmatch function in

the optmatch library can be used to create an optimal match with a variable control:treatment

ratio based on a minimum-cost flow algorithm.

These additional matches allow us to compare the match with a variable control:treatment ratio

and a fine balance constraint to two matches that omit fine balance but use a variable con-

trol:treatment ratio. However, the match based on the entire number removes the same five

treated units that did not meet our common support constraint. The variable ratio match based

on network flows using the fullmatch function includes all observations. Specifically under this

comparison, we can isolate whether removing observations off the common support has a large

effect on imbalances.

First, we describe ˛1. Initially we used ˇ D 10 as the maximum number of controls per treated.

However, this resulted in many small strata (4 of the 10 strata produced had fewer than 20
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subjects total) in which match quality was often poor. For example, in the stratum with entire

number 9 there were exactly 9 controls and one treated subject. This meant all the controls

were included in the match, even though the treated subject had used drugs in the past 30 days

and only one of the controls had. To avoid such imbalances we decided to reduce the value

of ˇ from 10 to 5. The resulting match used 13 fewer controls (202 total instead of 215) but

had far fewer small strata and allowed better-quality matches on average within each stratum.

Table 4 contains a summary of balance statistics with full results reported in the supplementary

materials. The ˛1 match is a major improvement over the pair match. For this match, all of the

standardized differences were smaller in magnitude than 0.2 and only five were larger than 0.1.

With this match, we also removed 5 treated units due to a lack of common support. While the

˛1 match is a clear improvement over the pair match, the fine balance constraints are useful.

If we do not enforce the fine balance constraint two of the nearly fine balance categories have

standardized differences that exceed 0.10.

Next, we describe the ˛2 match. Again Table 4 provides a brief summary of the results with full

results reported in the supplementary materials. The ˛2 match used all 121 treated observations

which produced an effective sample size of 160 pairs. That is, variable-ratio matching based on

the fullmatch function does not remove observations when there is a lack of common support.

Including the additional 5 treated units comes at a considerable cost in terms of balance. In

the ˛2 match, 13 covariates still have standardized differences above 0.10 just as in the pair

match. Without the fine balance constraint for this match balance suffers, as two of the nearly

fine balanced categories have standardized differences that exceed 0.20 and 0.50. We altered the

˛2 match to allow for up to 10 controls for each treated unit. This matched produced a much

wider variety of matched strata, and balance that is more comparable to the ˛1 match.

Figure 2 provides a final comparison of every match and the unmatched data. For each match,

we plot the distribution of absolute standardized differences. The results follow what theory

suggest. Both the pair match and the match with a variable control:treated ratio use the entire
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sample. Therefore, the effective sample size—defined in the first part of this section—for the

pair match was 121 matched pairs, and the match with a variable control:treated ratio had an

effective sample size of 160 matched pairs. The lack of common support contributes to the poor

performance of both of these matches, however, we see that the pair match removes more bias.

The entire number match without a near-fine balance constraint drops five treated observations

which produces a substantial reduction in overt bias. Finally once we add the near-fine balance

constraint, we observe additional bias reduction targeted at an interaction of two specific nominal

covariates. The effective same size for both matches that use the entire number is 134.5 matched

pairs. As such, we make more effective use of the sample while also removing as much overt bias

as would be expected from a randomized trial.

Generally, we see that to improve on the initial pair match and produce the smallest set of

imbalances using the largest possible number of control units required three separate matching

strategies. First, we implemented a variable-ratio match using the entire number. We also

enforced fine balance constraints and removed five observations that lacked common support.

This final comparison, however, demonstrates that while the common support trimming was

necessary, so too were the near-fine balance constraints.

5 Summary

By using the entire number, one can construct a fine or near-finely balanced example with a vari-

able control:treatment ratio. In the PHE example, we produce near-fine balance on an interaction

of two nominal covariates while using a variable control:treatment ratio. Using both a variable

control:treatment ratio and a near-fine balance constraint allows us to remove overt biases while

increasing efficiency. While it should be possible to remove additional bias using a pair match

with a fine balance constraint, that match will necessarily use fewer controls. Moreover, our final

match produced standardized differences such that the amount of overt bias is less than we would

expect if units had been assigned to treatment and control via randomization.
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