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Abstract

Fisher tested the fit of Gaussian linear models using replicated observations. We
refine this method by (1) constructing near-replicates using an optimal nonbipartite
matching and (2) defining a distance that focuses on predictors important to the
model’s predictions. Near-replicates may not exist unless the predictor set is low-
dimensional; the test addresses dimensionality by betting that model failures involve
a subset of predictors important in the old fit. Despite using the old fit to pair obser-
vations, the test has exactly its stated level under the null hypothesis. Simulations
show the test has reasonable power even when many spurious predictors are present.
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1 Notation and review

1.1 The Gaussian linear model

The familiar Gaussian linear model assumes that an n-dimensional stochastic outcome y

and an n× p dimensional fixed matrix X, with p < n, are related by

E (y|X) = Xβ, ε = y −Xβ ∼ Nn

(
0, σ2I

)
, (1)

where β and σ2 are unknown parameters, 0 and I are, respectively, the n-dimensional

zero vector and identity matrix, and Nn (·, ·) is the n-dimensional multivariate Normal

distribution. A test of fit of (1) is a test of the null hypothesis H0 that (1) is true, and

such a test is said to be exact, as opposed to asymptotic — that it, the test has exact

level α — if the probability that the test rejects H0 when it is true is ≤ α. Generally,

we assume that X has full column rank p, so the least squares estimate of β under (1)

is β̂ =
(
XTX

)−1
XTy, the fitted values are ŷ = Xβ̂ = X

(
XTX

)−1
XTy = Hy where

H = X
(
XTX

)−1
XT , the residuals are e = y − ŷ, and the unbiased estimate of σ2 is

σ̂2 = eTe/ (n− p).

1.2 Tests of fit based on replicates and near-replicates

Fisher (1922) proposed testing the Gaussian linear model in experiments by including

replicates of design points, thereby providing an estimate of pure error unaffected by mis-

specification of the linear model, yielding an exact F -test of H0. This device is commonly

used in central composite designs in response surface experiments, with the center-point

replicated several times, and the factorial and axial points appearing only once in isolation;

see Box and Draper (1982) and Draper (1982).

Outside of designed experiments, exact replicates occur sporadically if at all. Several

investigators have proposed an analogous test based on near-replicates; see, for instance,

Christensen (1989; 1991; 2011, §6.6.2), Daniel and Wood (1971, §7.5), Green (1971),

Joglekar et al. (1989), Neill and Johnson (1985), Shillington (1979), and Su and Yang

(2006). This work emphasizes certain options in the choice of test statistic, whereas our

contribution emphasizes the construction of the near-replicates. In particular, we use opti-
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mal nonbipartite matching, reviewed in §1.3, and the device that Tukey (1949) introduced

in constructing his “one degree of freedom for nonadditivity” test in the unreplicated row-

by-column design. For different approaches to constructing near-replicates, see Miller, Neill

and Sherfey (1998, 1999) and Miller and Neill (2008).

1.3 Optimal nonbipartite matching

Given L points with L even and an L × L symmetric matrix of nonnegative distances

between pairs of points, an optimal nonbipartite match divides the L points into L/2

nonoverlapping pairs of two points so that the total of the L/2 within-pair distances is

minimized. This combinatorial optimization problem may be solved in polynomial time

by a suitable algorithm; see Jungnickel (2013, §14.4). In R, the nbpMatching package of

Lu et al. (2011) makes available the algorithm of Derigs (1988), and we used it in the

current paper.

Nonbipartite matching has been used to solve various problems in observational studies,

including matching with time-dependent propensity scores (Lu 2005) and strengthening

instrumental variables (Baiocchi et al. 2010, Zubizarreta et al. 2013). See Lu et al.

(2011) for a survey of statistical applications of nonbipartite matching. Here, we use

optimal nonbipartite matching as one aspect of constructing near replicates. For general

discussion of optimal matching in observational studies, see Rosenbaum (2010, Part II) and

Stuart (2010).

In the statistical applications described above, it is common to form pairs using only

some of the available observations, with the algorithm itself deciding which observations

to leave unpaired. This is done using so-called “sinks”. Suppose that there are n ob-

servations with an n × n distance matrix and we want m pairs, with specified m ≤ n/2.

Then n− 2m observations are not paired. If the n× n distance matrix contains any zeros

off the diagonal, then we add a constant, say 1, to all of the off-diagonal entries, so they

are all strictly positive. Introduce n − 2m sinks that are at 0 distance to all observa-

tions and at infinite distance to one another. That is, expand the distance matrix with 3

blocks, a block of extra columns of 0’s of dimension n× (n− 2m), a block of extra rows of

0’s of dimension (n− 2m)× n, and a square lower-right-corner block of ∞’s of dimension
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(n− 2m) × (n− 2m). One then calculates an optimal nonbipartite match with this ex-

panded distance matrix, regarding any observation paired with a sink as unpaired. This

strategy forms m pairs of observations in such a way that the total of the m within pair

distances is minimized over two choices: (i) which n− 2m observations to leave unpaired,

and (ii) how to best pair the 2m observations that are paired.

In central composite experimental designs, only central points are replicated. In non-

experimental data, there are often many points that have no near-replicate. Motivated by

these considerations and some preliminary simulations, we leave approximately (n− p) /3

observations unpaired, pairing the rest. When n is large compared to p, nearly a third of

the observations are unpaired and two thirds are paired, leaving nearly n/3 degrees of free-

dom within-pairs to estimate error from near replicates. Stated precisely, we form m pairs

where m is n/2 − (n− p) /6 rounded to the nearest integer, and we leave exactly n − 2m

observations unpaired using n− 2m sinks. Here, n− 2m is approximately (n− p) /3.

1.4 Tukey’s device and its extensions

A well-known problem with techniques that rely on near-neighbors or near-replicates is

that, unless the number of predictors is very small, we will rarely see two individuals who

are nearly the same on all of the predictors. In light of this, we need to define the distance

with some guidance from the data about which predictors actually matter for prediction.

At the same time, we need to prevent this double use of the y’s from invalidating the test.

For this purpose, a device introduced by Tukey (1949) is helpful.

Tukey (1949) proposed a test for interaction in the unreplicated row-by-column design

using the following clever device. The device has been generalized several times, and we

describe the generalized form for Gaussian linear models here; see, for instance, Mandel

(1959), Scheffé (1959, Problem 4.19), Milliken and Graybill (1970), Andrews (1971), Rao

(1973, §4e.1), St. Laurent (1990), Christensen and Utts (1992) and Christensen (2011,

§9.5). A basic fact about the distribution of ε in (1) is that projections of ε onto orthogonal

subspaces are independent; this fact is the key element in the Fisher-Cochran theorem. In

particular, the fitted values ŷ = Hy and residuals e = y−ŷ = (I−H) y are independent

in (1). Write ρ (M) for the rank of a matrix M. Let L be any matrix with n rows that
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is a function of X and ŷ such that ρ ([X, L]) < n. It is easily seen that

β̂ =
(
XTX

)−1
XTy =

(
XTX

)−1
XTX

(
XTX

)−1
XTy =

(
XTX

)−1
XTHy =

(
XTX

)−1
XT ŷ,

(2)

so that β̂ is a function of X and ŷ, and in particular, L can be a function of β̂, as in Tukey

(1949). Milliken and Graybill (1970, §2) observe that if (1) is true and y is regressed on

[X, L], then the usual F -test of the hypothesis that the coefficients of L are simultaneously

zero has a central F -distribution with degrees of freedom ρ ([X, L])− p and n− ρ ([X, L]).

Here, [X, L] need not have full column rank, but must have rank less than n. As discussed

by Milliken and Graybill (1970), the distribution of this F -statistic under the alternative

that (1) is false is not, in general, a noncentral F -distribution and is typically intractable.

2 An exact test of fit for the Gaussian linear model

2.1 General procedure

Starting with a suitable distance matrix, we round n/2− (n− p) /6 to the nearest integer

to obtain m, as in §1.3, and we use optimal nonbipartite matching in §1.3 to build m pairs

of two observations and n−2m unpaired observations so that the total distance within the

m pairs is minimized. This match is intended to find the closest m pairs of near replicates

and n− 2m individuals who are further away, yielding roughly m degrees of freedom from

near replicates to estimate an error variance less affected by any misspecification of model

(1). Define L to be a matrix with m+n−2m = n−m columns, where the first m columns

of L each contain exactly two ones and n − 2 zeros, the two ones in column k indicating

the two individuals paired in pair k, k = 1, . . . ,m. The last n − 2m columns of L each

contain a one and n − 1 zeros, the 1 indicating the `th individual who was not paired,

` = 1, . . . , n − 2m. Notice that the n − 2m unpaired individuals each have their own

column and will be fitted exactly, somewhat in parallel with the proposal of Utts (1982);

see also Christensen (2011, p. 153). The n−m columns of L have rank ρ (L) = n−m− 1

because each row of L sums to 1. In general, the rank of ρ ([X, L]) will depend on X.
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The test of fit of (1) is simply an F -test of H0 : γ = 0 in the Gaussian linear model

y = [X, L]

 β

γ

+ ζ, ζ ∼ Nn

(
0, ω2I

)
(3)

with degrees of freedom ρ ([X, L])−p and n−ρ ([X, L]). In our proposed test, the residual

degrees of freedom, n − ρ ([X, L]), will approach n/3 as n → ∞ with p fixed. Because

[X, L] is not of full column rank, a little care, of a conventional sort, is needed in computing

the F -test.

Christensen (1991) proposed an alternative modified test, no longer the standard F -

test of H0 : γ = 0, with a view to gains in power. Our limited simulation (not shown)

comparing the standard F -test to this modified test suggests that the dimension reduction

devices we describe later have large effects on power, while the choice of test statistic has a

smaller effect, so we adhere to the standard F -test in our discussion here, rather than add

an extra dimension to our simulated comparisons.

If the distances were based on X alone, then [X, L] would be a function or transforma-

tion of X, and the test of (1) against (3) is simply a comparison of two nested Gaussian

linear models. If the null hypothesis, namely (1), were true, then H0 : γ = 0 is true in

(3) and, in the standard way, the corresponding F -statistic has a central F -distribution;

see, for instance, Rao (1973, §4b.2) or Christensen (2011, §3.2). In §2.2, we permit L to

depend upon both X and ŷ; then, the corresponding F -statistic is no longer a standard

test of a general linear hypothesis, but it still has a central F -distribution when the null

hypothesis (1) is true using the generalization of Tukey’s device; see Milliken and Graybill

(1970), Rao (1973, pp. 251-252) or Christensen (2011, §9.5).

For instance, the distance matrix could be the Mahalanobis distance between pairs of

rows of X. The usual Mahalanobis distance can perform oddly when a column of X is

either long tailed or a rare binary variable. An alternative robust Mahalanobis distance

addresses both issues: it replaces the columns of X by column ranks before computing the

distances, with average ranks for ties; however, it uses untied variances and covariance of

ranks, thereby reducing the role of rare binary variables; see Rosenbaum (2010, §8). As

is commonly done, we speak of the quadratic form as the Mahalanobis distance (or the

robust Mahalanobis distance), whereas technically it is its square root that is a norm.
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The estimate of ω2 in (3) may be smaller than the estimate of σ2 in (1) for two reasons.

First, the estimate of ω2 only reflects differences in y’s between paired individuals, and

paired individuals are as close as possible on the predictors. Second, the n−2m individuals

who were not paired do not contribute to the estimate of ω2 because they are fitted exactly

in (3). These n − 2m unpaired individuals are each far from all other individuals. If

some of these n− 2m unpaired individuals are poorly fit by (1), eliminating them from the

estimate of ω2 may aid in recognizing this lack of fit.

Model (3) creates an estimate ω̂2 from neighbors that may be less affected by model

misspecification than σ̂2 obtained from fitting model (1). The parameter γ is of high

dimension and is not typically of interest, so one may use computational simplifications

with the highly structured matrix L to obtain the F -test without estimating γ.

When the number of predictors is not small, close matches on all predictors will be

rare. An alternative distance matrix is discussed in §2.2: it emphasizes the predictors

that appear to matter in the fit of model (1), but avoids double use of the y by employing

Tukey’s device from §1.4.

2.2 Using y in the construction of the distance matrix

In principle, failures of model (1) could involve any of the predictors in the model. With

just a few predictors, all of them could be used to define the distance. In other cases, it

will often seem reasonable to bet that failures of model (1) involve predictors that exhibit

some predictive power in the fit of model (1). For instance, this might be true if either y or

a predictor requires a monotone increasing transformation, or if two important predictors

require inclusion of their interaction.

Tukey’s method in §1.4 permits the matrix L to be any function of X and ŷ. In

particular, Tukey’s method yields a central F -distribution for the test statistic if L is built

from an optimal nonbipartite match using a distance matrix that is itself a function of

X and ŷ. One such very simple distance matrix has as a distance between individuals i

and i′ the absolute difference in their predicted values, |ŷi − ŷi′|. However, in addition to

matching for ŷ, it makes sense to also match for several of the most important predictors.

Define dj to be the square root of the jth diagonal element of
(
XTX

)−1
. The usual
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t-statistic testing the hypothesis that the jth coordinate βj of β in (1) is 0 is β̂j/ (dj σ̂)

where β̂j is the jth coordinate of β̂. This t-statistic depends on σ̂, so it depends on the

residuals e = y − ŷ and not just on the fitted values, ŷ, so the generalization of Tukey’s

method in §1.4 does not permit the use of this t-statistic. In contrast, the quantity β̂j/dj

is a function of X and ŷ because of (2). Because σ̂ in the t-statistic β̂j/ (dj σ̂) is the same

for all predictors, we may identify the r predictors with the largest absolute t-statistics as

the r predictors with the largest
∣∣∣β̂j/dj∣∣∣, which is a function of X and ŷ. To emphasize,

we can use the generalization of Tukey’s method if we select a fixed number, r, of variables

with the largest t-statistics because we can identify those variables using X and ŷ, but we

cannot select all variables with, say,
∣∣∣β̂j∣∣∣ / (dj σ̂) ≥ 2, because that makes use of σ̂.

The proposed test computes the robust Mahalanobis distance from ŷ and the r predic-

tors with the largest
∣∣∣β̂j/dj∣∣∣. Here, ŷ depends upon all predictors. Because this distance is

a function of X and ŷ, as noted above, L too is a function of X and ŷ, so the generalization

of Tukey’s (1949) method yields a null F -distribution for the F -statistic comparing models

(1) and (3).

3 Simulation study of the power of the test

Tables 1 and 2 report simulated power of a 0.05-level test for five nonlinear functions with

Gaussian errors. In additional simulations not shown in Tables 1 and 2, we found that a

0.05-level test did indeed reject a linear model in close to 5% of simulated samples. In the

simulation, the model (1) is fit with a constant term included in X, so there are p′ = p− 1

predictors aside from the constant term. There are p′ = 10, 30 or 50 predictors and n = 100

or 500 observations; however, we do not consider the combination of p′ = 50 predictors and

n = 100 observations. In all cases, a linear model with p′ predictors is mistakenly fit to

various nonlinear surfaces, and the question is whether the test can recognize this mistake.

Each sampling situation is replicated 3000 times, so the standard error of a simulated

power is at most
√

0.25/3000 < 0.01. For p′ = 30 or p′ = 50, many of the predictors xj,

j = 1, . . . , p′, do not affect the response surface, but the investigator does not know this,

so the fitted model mistakenly uses all p′ predictors. When p′ = 30 or p′ = 50, the test is

looking for genuine model failures involving a few predictors amid distraction from many
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irrelevant predictors.

The test is performed in nine variations, 9 = 2×5−1. In five of the nine variations, the

optimal nonbiparitite matching paired for ŷ, and in four variations it did not. The optimal

nonbiparitite matching paired for the r predictors with the largest absolute t-statistics, for

r = 0, 3, 5, 10 and p′. One needs to pair for something, so the case of not pairing for

ŷ and pairing for r = 0 predictors does not occur, making 9 variations in total. When

p′ = 10, the last two columns of Tables 1 and 2 are identical for r = 10 and r = p′. Two

consecutive rows of Tables 1 and 2 — the first with 5 estimated powers, the second with 4

estimated powers — constitute one sampling situation in which 9 methods are competing

to produce the largest power. In each sampling situation, the largest power or powers are

in bold.

In matching, we use the robust Mahalanobis distance described in §2.1. As a conse-

quence in Tables 1 and 2, matching for all predictors, r = p′, and matching for all predictors

plus ŷ are slightly different. With the conventional Mahalanobis distance, ŷ would be lin-

early dependent on the constant plus p′-predictors and hence redundant, not affecting the

distance.

The five nonlinear response surfaces will now be described. In Table 1, the true

nonlinear regression is y = x1 + x2 + x3 + x4 + x3x4 + x4x5 + x25 + ε and the predictors

are multivariate Normal with covariances indicated in the table. Three of the response

surfaces in Table 2 were discussed and depicted by Friedman (1991) and have been used in

the literature before and after 1991 as test cases of nonlinear regression surfaces. In Table

2, the predictors are independent uniform random variables, with standard Normal errors,

and response surfaces given by:

Exponential: y = exp
(∑10

j=1 xj

)
+ ε

Friedman (1991), equation (56): y = 0.1e4x1 +4/
{

1 + e−20(x2−0.5)
}

+3x3+2x4+x5+ε

Friedman (1991), equation (61): y = 10 sin(πx1x2) + 20 (x3 − 0.5)2 + 10x4 + 5x5 + ε

Friedman (1991), equation (66):

y = 40
exp {8 [(x1 − 0.5)2 + (x2 − 0.5)2]}
exp {8 [(x1 − 0.2)2 + (x2 − 0.7)2]}

+ e8[(x1−0.7)
2+(x2−0.2)2] + ε.
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All five models involve 10 or fewer variables, so that, when p′ > 10, many of the variables

are simply distractions, as noted above.

Consider, now, the estimated powers. The strongest pattern in Tables 1 and 2 is the

least interesting: the power is higher when the sample size n is larger. Setting that aside,

within a sampling situation or pair of rows, the power varies dramatically among nine

methods.

Should one try to match for all p′ variables? When p′ = 30 or p′ = 50, trying to match

for all p′ variables usually reduces power: it is better to use the mistaken linear fit to reduce

the number of variables employed in the matching, even though the mistaken fit need not

be a reliable guide to the importance or role of particular variables. Also, matching for ŷ

alone with r = 0 is not the best procedure in any sampling situation, and it often has low

power.

How many variables should be used in the matching? In Table 1, only 5 variables

affect the response surface, and good power often occurs when matching for either the

r = 5 variables or r = 10 variables with the largest t-statistics. The situation is slightly

more complicated in Table 2, where the first response surface involves 10 variables and

r = 10 is best, while the last response surface involves just 2 variables and r = 3 or r = 5

is better than r = 10.

Should one match just for the r variables with the largest t-statistics or should one

additionally match for ŷ? In each sampling situation, this is the comparison of two

adjacent rows in the same column. There is no uniform winner here, but including ŷ

in a match for r = 5 or r = 10 variables rarely does much harm and sometimes greatly

increases power. For instance, consider in Table 2 the Exponential model with r = p′ = 10

where including ŷ yields power 0.99 and excluding ŷ yields power 0.69. Also in Table

2, consider Friedman’s equation (66) model with r = 10, where again including ŷ in the

matching distance increases power. In Table 1, five variables affect the response surface,

so matching for r = 3 variables must omit relevant variables: in the r = 3 column of Table

1, matching also for ŷ often yields meaningful gains in power.

The Exponential response surface in Table 2 is interesting. In this case, E (y|x) is

an increasing but nonlinear function of x1, . . . , x10, whereas x11, . . . , xp are irrelevant. As
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Table 1: Simulated power of a 0.05-level test with p′ = p − 1 predictors and n observations, y = x1 + x2 + x3 + x4 +

x3x4 + x4x5 + x25 + ε, where (x1, . . . , xp, ε) is multivariate Normal, with E(xj) = 0, var(xj) = 1 and, except as noted below,

cov(xj , xj′ ) = 0, and with E(ε) = 0 var(ε) = 1, cov(ε, xj) = 0. The matching either matched for ŷ, case 1, or did not, case

0, and it matched for r = 0, 3, 5, 10, or all p′ predictors with the largest absolute t-statistics. Each situation was replicated

3000 times. A sampling situation is two consecutive rows, and the highest power in a sampling situation is in bold.

Nonzero Matched for r predictors

Covariances p′ n Matched for ŷ 0 3 5 10 p′

None 10 100 1 0.10 0.25 0.48 0.50 0.50

10 100 0 0.19 0.48 0.48 0.48

Predictors are 10 500 1 0.13 0.64 0.87 1.00 1.00

independent 10 500 0 0.40 0.81 1.00 1.00

30 100 1 0.07 0.11 0.13 0.14 0.10

30 100 0 0.09 0.14 0.14 0.08

30 500 1 0.12 0.56 0.79 0.81 0.74

30 500 0 0.40 0.72 0.75 0.68

50 500 1 0.13 0.50 0.74 0.71 0.49

50 500 0 0.38 0.65 0.68 0.42

cov(x1, x5) = 0.8 10 100 1 0.20 0.49 0.63 0.55 0.55

10 100 0 0.34 0.62 0.45 0.45

Nonlinear x5 10 500 1 0.47 0.99 1.00 1.00 1.00

is highly correlated 10 500 0 0.73 1.00 1.00 1.00

with linear 30 100 1 0.09 0.16 0.18 0.14 0.10

predictor x1 30 100 0 0.12 0.18 0.13 0.08

30 500 1 0.42 0.96 1.00 0.98 0.83

30 500 0 0.68 1.00 0.96 0.62

50 500 1 0.36 0.93 1.00 0.95 0.55

50 500 0 0.64 0.99 0.93 0.35

cov(x5, x6) = 0.8 10 100 1 0.11 0.28 0.47 0.53 0.53

10 100 0 0.23 0.41 0.51 0.51

Nonlinear x5 10 500 1 0.17 0.75 0.99 1.00 1.00

is highly correlated 10 500 0 0.47 0.97 1.00 1.00

with irrelevant x6 30 100 1 0.08 0.12 0.15 0.14 0.10

30 100 0 0.10 0.15 0.13 0.09

30 500 1 0.16 0.68 0.98 0.95 0.88

30 500 0 0.44 0.96 0.91 0.79

50 500 1 0.14 0.62 0.96 0.91 0.60

50 500 0 0.41 0.94 0.87 0.45

cov(xj , xj′ ) = 0.5 10 100 1 0.57 0.52 0.59 0.57 0.57

for all j 6= j′ 10 100 0 0.52 0.57 0.49 0.49

10 500 1 0.99 0.96 1.00 1.00 1.00

All predictors 10 500 0 0.93 0.99 1.00 1.00

are correlated. 30 100 1 0.20 0.22 0.21 0.16 0.12

30 100 0 0.20 0.18 0.15 0.10

30 500 1 0.97 0.94 0.99 0.95 0.91

30 500 0 0.92 0.99 0.93 0.81

50 500 1 0.94 0.93 0.99 0.93 0.70

50 500 0 0.91 0.98 0.90 0.55
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Table 2: Simulated power of a 0.05-level test with p′ = p − 1 predictors and n observations, for four nonlinear functions.

The matching either matched for ŷ, case 1, or did not, case 0, and it matched for r = 0, 3, 5, 10, or p′ predictors with the

largest absolute t-statistics. Covariates are independent uniform random variables. Each situation was replicated 3000 times.

A sampling situation is two consecutive rows, and the highest power in a sampling situation is in bold.

Function Matched for r predictors

p′ n Matched for ŷ 0 3 5 10 p′

Exponential 10 100 1 0.60 0.71 0.65 0.99 0.99

10 100 0 0.36 0.53 0.69 0.69

10 active 10 500 1 0.90 0.99 0.97 1.00 1.00

predictors 10 500 0 0.41 0.74 1.00 1.00

30 100 1 0.38 0.48 0.40 0.67 0.56

30 100 0 0.18 0.25 0.40 0.16

30 500 1 0.93 1.00 0.99 1.00 1.00

30 500 0 0.38 0.74 1.00 0.78

50 500 1 0.93 1.00 0.99 1.00 1.00

50 500 0 0.36 0.70 1.00 0.56

Friedman (1991, 56) 10 100 1 0.05 0.31 0.21 0.09 0.09

10 100 0 0.38 0.22 0.09 0.09

5 active 10 500 1 0.05 0.99 0.95 0.56 0.56

predictors 10 500 0 0.98 0.96 0.48 0.48

30 100 1 0.05 0.13 0.09 0.07 0.05

30 100 0 0.15 0.10 0.07 0.05

30 500 1 0.05 0.98 0.89 0.47 0.11

30 500 0 0.97 0.94 0.42 0.09

50 500 1 0.05 0.97 0.82 0.38 0.08

50 500 0 0.94 0.89 0.37 0.07

Friedman (1991, 61) 10 100 1 0.06 0.46 0.47 0.34 0.34

10 100 0 0.50 0.48 0.32 0.32

5 active 10 500 1 0.08 1.00 1.00 1.00 1.00

predictors 10 500 0 0.99 1.00 1.00 1.00

30 100 1 0.06 0.16 0.15 0.10 0.06

30 100 0 0.18 0.15 0.11 0.06

30 500 1 0.06 1.00 1.00 0.90 0.51

30 500 0 0.99 1.00 0.88 0.43

50 500 1 0.07 1.00 0.99 0.82 0.25

50 500 0 0.99 0.99 0.81 0.21

Friedman (1991, 66) 10 100 1 0.41 0.91 0.93 0.93 0.93

10 100 0 0.80 0.74 0.52 0.52

2 active 10 500 1 0.54 1.00 1.00 1.00 1.00

predictors 10 500 0 0.97 0.96 0.85 0.85

30 100 1 0.41 0.77 0.69 0.75 0.79

30 100 0 0.62 0.59 0.60 0.22

30 500 1 0.60 1.00 1.00 1.00 1.00

30 500 0 0.97 0.97 0.91 0.61

50 500 1 0.71 1.00 1.00 1.00 1.00

50 500 0 0.97 0.97 0.93 0.50



might be expected, the highest powers occur with r = 10 including ŷ in the match. Even

when p′ = 10, so there are no irrelevant variables, it is still helpful to include ŷ, presumably

because a very high ŷ means most of x1, . . . , x10 are high. For many values of r, omitting

ŷ from the match for the Exponential surface can ruin the power. Matching for ŷ and

r = 5 variables has lower power for the Exponential surface than matching for ŷ and

r = 3 variables for reasons that are not completely clear, but perhaps because ŷ gets more

attention in the Mahalanobis distance with r = 3 variables than with r = 5 variables.

How close are the “near replicates” produced by matching? Before matching, there

were
(
n
2

)
distances in the distance matrix, whereas after matching there were m

.
= n/2 −

(n− p) /6 distances within m pairs. For n = 500 observations with p′ = 50 predictors,

p = p′ + 1, there were initially
(
500
2

)
= 124, 750 pairwise distances and m = 175 within

pair distances. How does the average distance within m pairs compare to the average of(
n
2

)
distances before matching? We computed the two averages, averaging also over 3000

simulations, and took the ratio. If we match for ŷ and r predictors, then the distance is

computed among n points in r + 1 dimensional space. Not surprisingly, if r is larger, the

average distance after matching is a larger fraction of the average distance before matching:

it is hard to find similar observations in high dimensions. Consider the case of n = 500

observations with p′ = 50 predictors, matching for ŷ and r predictors in Tables 1 and 2.

Among the eight such situations in Tables 1 and 2, the average distance within m = 175

pairs was never more than 2% of the average distance with
(
500
2

)
= 124, 750 pairs if r = 3,

was never more than 7% if r = 5, was never more than 19% if r = 10, and ranged from 54%

to 57% for r = p′ = 50. In other words, when trying to match for r + 1 = 51 variables,

the matched pairs were closer than two observations picked at random, but the distance

was reduced by less than half. This may partly explain why the power in Tables 1 and 2

is often higher when matching for ŷ and r = 5 predictors than when matching for ŷ and

r = 50 predictors.

In brief, there is no uniformly best choice among our nine methods. We must choose

a test in ignorance of the true response surface. For the admittedly limited situations we

have considered, matching for ŷ plus the r = 5 variables with the largest t-statistics would

have been a tolerable choice in most cases given our ignorance of the true response surface,
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but ŷ plus the r = 10 variables is competitive, winning in many cases.

4 Example: testing fit without replicates in an exper-

iment

Nelson (1981) discusses an experiment involving degradation of electrical insulation mea-

sured as y = dialectic strength in kV. There are two factors, duration of aging x1 as 1,

2, 4, 8, 16, 32, 48, or 64 weeks, and the temperature x2 as 180, 225, 250, 275 degrees

Celsius. Nelson makes a physical argument for a particular nonlinear relationship, but

for the purpose of illustrating our test of fit, we assume the investigator is unaware of

this argument and ask whether our test will help the investigator discover this mistake.

Each of the 8 × 4 factor combinations was replicated 4 times, making 8 × 4 × 4 = 128

observations. Although the relationship between y and (x1, x2) is highly nonlinear, this is

only very slightly apparent in the two bivariate plots of y versus x1 and y versus x2, so a

careless investigator could fail to notice a serious problem. If one fits a Gaussian linear

model, y = β0 + β1x1 + β2x2 + ε, and uses the four replicates to perform Fisher’s test with

exact replicates, then the linear model is rejected with a very small P -value. We adapted

this example for illustration in two ways.

First, we created a smaller unreplicated design by randomly picking one replicate from

each condition. This meant that each of the (x1, x2) combinations occurred once in an

unreplicated design with n = 8× 4 = 32 observations. Here X has n = 32 rows and p = 3

columns, namely a constant and p′ = 2 predictors . We then used an optimal nonbipartite

matching based on (ŷ, x1, x2) to form m = bn/2− (n− p) /6c = b32/2− (32− 3) /6c = 11

pairs and n − 2m = 10 isolated observations, so that 21 = 11 + 10 predictors in L were

added to the linear model, and [X, L] had 24 = 3+11+10 columns. We did this 10 times,

randomly picking one replicate from the 4 available each time. In 8 of the 10 tests, the

linear model y = β0 + β1x1 + β2x2 + ε was rejected at the 0.05 level, despite the reduction

in sample size from 128 to 32 and the absence of exactly replicated observations.

Second, we added 10 independent Gaussian noise predictors to the original n = 128

observation design so that the revised design was now unreplicated in terms of all 12
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predictors, and X had n = 128 rows and p = 13 columns. We then used an optimal

nonbipartite matching based on ŷ and the five predictors with the largest t-statistics to

create 45 pairs and 38 isolated observations, adding 83 = 45 + 38 predictors in L to the

model, so [X, L] had 96 = 13 + 83 columns. Again, we did this 10 times, creating 10

different sets of noise predictors. All ten tests rejected y = β0 + β1x1 + . . .+ β12x12 + ε at

the 0.05 level.

5 Discussion: Summary; Alternative methods for se-

lecting variables

We have been testing the fit of the Gaussian linear model (1) with n observations and p′ =

p− 1 predictors by: (i) determining ŷ and the r predictors xj with the largest
∣∣∣β̂j/dj∣∣∣, (ii)

creating a distance matrix using these variables, (iii) using optimal nonbipartite matching

to form roughly n/3 pairs and n/3 isolated observations, and (iv) determining whether

these 2n/3 additional predictors enhance the fit of model (1). Here, the r predictors xj

with the largest
∣∣∣β̂j/dj∣∣∣ are also the r predictors xj with the largest t-statistics, but

∣∣∣β̂j/dj∣∣∣
does not yield the numerical value of the t-statistic; that is, one cannot select the predictors

with absolute t-statistics above 2. This is an exact test: when (1) is true, the probability of

false rejection at nominal level α is ≤ α (in fact, the test has size α). A key element is the

generalization of Tukey’s device in which functions of ŷ and X may be used in test of fit of

(1). We have been using functions of ŷ and X to create near-replicate observations, yielding

an estimate of error based on paired observations less affected by model misspecification.

In simulations, matching for both ŷ and r = 5 or r = 10 predictors with large
∣∣∣β̂j/dj∣∣∣

gave good results for several nonlinear response surfaces with either few or many irrelevant

predictors.

The proposed test of fit is not a substitute for other diagnostic checks of (1). In

particular, one should check for outliers and for non-Gaussian errors. A single outlier, if

sufficiently severe, can greatly reduce the power of an F -test, including specifically the test

of (1) against (3).

There are many related methods that might be considered. For instance, if the p′
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predictors in (1) are highly correlated, it might not be wise to select r predictors xj for

the distance using
∣∣∣β̂j/dj∣∣∣ from the full p′ variable model, because an important predictor

might have a small value of
∣∣∣β̂j/dj∣∣∣ due to its high correlation with other predictors. Could

we, instead, use Mallows’ CP to select r variables xj for the distance? As with t-statistics,

the numerical value of CP depends on σ̂2, so one cannot use the numerical value of CP ,

as one cannot use the numerical value of the t-statistic, if one is going to employ the

Tukey-Milliken-Graybill device to obtain an exact test. Consider the
(
p′

r

)
submodels P ⊆

{1, . . . , p′} of (1) that involve exactly r of the p′ predictors. Write XP for the n× (r + 1)

matrix obtained from X by retaining the constant and the r columns in P , and write

HP = XP

(
XT
PXP

)−1
XP so the predicted values from model P are ŷP = HPy. It is

readily checked that ŷP is a function of X and the predicted values ŷ = Hy from the full

model (1); specifically, ŷP = HP ŷ. Also, the usual CP may be rewritten (Mallows 1973,

§1) as:

CP =
(ŷP − ŷ)T (ŷP − ŷ)

σ̂2
− p+ 2 (r + 1) . (4)

Now, (4) depends in a fundamental way upon σ̂2 to compare models with different numbers

of variables. However, if one restricts attention to models with exactly r predictors,

then the model P with the smallest CP and r predictors is the model with the smallest

(ŷP − ŷ)T (ŷP − ŷ) and r predictors, so this model can be determined from ŷ and X alone,

so the Tukey-Milliken-Graybill device may be used. In brief, instead of selecting for the

distance the r variables with the largest
∣∣∣β̂j/dj∣∣∣, we may select the r variables in the r-

variable model with the smallest (ŷP − ŷ)T (ŷP − ŷ), or equivalently in the r-variable model

with the smallest CP . The identification of this model may be based on the algorithm of

Furnival and Wilson (1974), as implemented in the R package leaps.

Tables 1 and 2 consider matching for ŷ and/or r predictors. To avoid focusing on

r individual predictors, one might match for a few functions of ŷ. For instance, let

P ⊆ {1, . . . , p′} be the model in the previous paragraph determined using CP for some

fixed r < p′, and let P = {1, . . . , p′} − P be the p′ − r variables left out of this model.

One could match for three variables, namely ŷ, ŷP = HP ŷ, and ŷP = HP ŷ. This would

avoid the impossible task of matching in high dimensions while permitting the ostensibly

less important variables in P to contribute meaningfully to the match distance.
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The proposed method forms roughly n/3 pairs and n/3 isolated observations, yielding

roughly n/3 degrees of freedom for the within-pair estimate of error. With this structure,

the simulation found good power when matching for r = 5 or r = 10 predictors with

n = 100 or n = 500 observations. If n were much larger than 500, say n = 30, 000 for data

from an administrative database, then one might reconsider these choices. In particular,

one might prefer fewer than n/3 pairs that match for more than r = 10 predictors. There

is little value in having 30, 000/3 = 10, 000 degrees of freedom for error, rather than a much

smaller number of degrees of freedom; that is, we might be happy with fewer than n/3 pairs.

On the other hand, think about cutting r = 20 predictors each at their median to form two

categories per variable; then, there would be 220 or about a million very coarse categories,

and 30,000 people would be thinly spread among a million categories. In brief, having

n = 30, 000 rather than n = 500 has a big impact on degrees of freedom, but only a small

impact on our ability to match for r = 20 predictors, so we might wish to have far fewer

than n/3 pairs that are more closely matched for additional predictors. For instance, for

large n, one might set a requirement for the distance, letting that requirement determine the

number of pairs. If two multivariate observations are drawn independently from the same

r-dimensional multivariate Gaussian distribution, then the Mahalanobis distance between

them is distributed as two-times a chi-square random variable with r degrees of freedom;

hence, the expected distance is 2r. If κ is the ζ-quantile of the chi-square distribution on

r degrees of freedom, then with probability ζ this Mahalanobis distance is less than 2κ.

For r = 20 predictors and ζ = 0.05, the expected Mahalanobis distance is 2r = 40 and

the 5% point is 2κ = 21.7. One strategy for very large n would be to solve the maximum

cardinality matching problem (Korte and Vygen 2008, §10.5): find the maximum number

of disjoint pairs such that the Mahalanobis distance within every matched pair is at most

2κ.

It is virtually impossible to find many observations that are very close on many pre-

dictors; see Giraud (2015, §1.2). In light of this, the proposed procedure bets that lack

of fit will involve predictors that appear to matter when the possibly mistaken model (1)

is fitted, and, as the discussion above indicates, there are several if not many options for

identifying these predictors. In all cases, the test has its nominal level α, because the level
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is computed assuming model (1) is true. However, the power of the test is affected by

whether the bet is correct. It is easy to construct examples in which the bet is mistaken,

and the power is low, because subtle nonlinearity in some predictor gives the false impres-

sion that the predictor is unimportant, hence not included in the matching algorithm. In

light of this, the test should be seen as a test of fit of (1) against alternatives in which the

ostensibly active predictors enter the model in a misspecified form. This is a practical and

interesting class of alternatives to (1), but it is far from exhaustive.
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