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Abstract

It is common to conduct causal inference in matched observational studies by proceeding as though
treatment assignments within matched sets are assigned uniformly at random and using this distribu-
tion as the basis for inference. This approach ignores observed discrepancies in matched sets that may
be consequential for the distribution of treatment, which are succinctly captured by within-set differ-
ences in the propensity score. We address this problem via covariate-adaptive randomization inference,
which modifies the permutation probabilities to vary with estimated propensity score discrepancies and
avoids requirements to exclude matched pairs or model an outcome variable. We show that the test
achieves type I error control arbitrarily close to the nominal level when large samples are available for
propensity score estimation. We characterize the large-sample behavior of the new randomization test
for a difference-in-means estimator of a constant additive effect. We also show that existing methods
of sensitivity analysis generalize effectively to covariate-adaptive randomization inference. Finally, we
evaluate the empirical value of combining matching and covariate-adaptive randomization procedures
using simulations and analyses of genetic damage among welders and right-heart catheterization in sur-
gical patients. Keywords: causal inference, matching, permutation test, propensity score, sensitivity
analysis.

1 Introduction

1.1 Re-evaluating a common model for inference

Randomized trials provide an effective means for measuring the effect of a treatment of interest relative

to a control condition for at least two reasons. First, random allocation of treatment to units ensures that

large differences in pre-treatment characteristics between the group of units selected for treatment and the

group of units selected for control arise in large samples only with very small probability. Second, the known

distribution of indicators of treatment across units in the study provides a basis for inference. By considering

each unit’s potential outcome values under treatment and under control as fixed latent values and repeatedly

permuting treatment labels across study units (or using tests that rely on the large-sample behavior of such

permutations) one may obtain inferences without making strong assumptions about the sampling procedure

used to select the study units or the model for the outcome variable. This conceptual approach, dating back

at least to Fisher (1935), is often known as randomization inference.

In contrast, in observational studies of a binary effect concerns arise about whether units receiving

treatment and units receiving control are otherwise comparable. If there is confounding, or systematic

differences in variables (either observed or unobserved) that are predictive of the outcome of interest, the
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effect estimate from a simple group comparison will generally differ systematically from the effect that would

have been measured in a randomized trial. To adjust for observed confounding variables, researchers may

estimate an outcome model in the absence of treatment and compare units with similar expected outcomes

under control, estimate a treatment model or propensity score and compare units with similar propensities

to receive treatment, or some combination of the two. Matched observational studies adjust for observed

confounding by grouping each treated unit with one or more similar control units and excluding controls

not sufficiently similar to any treated unit (Stuart 2010). When matching is conducted without replacement

of controls so that matched sets are disjoint, and with exact agreement on a propensity score so that units

grouped together shared identical propensities for treatment, then each matched set is like a miniature

randomized trial; conditional on one unit within the group receiving treatment, each is uniformly likely to

have been the one selected. As such, methods of randomization inference are frequently applied to matched

observational studies as though in a stratified randomized trial (Silber et al. 2020; Jain et al. 2022; Shin 2022;

Tesema et al. 2023). In the language of Zhang and Zhao (2023), the resulting procedures may be denoted

“quasi-randomization tests.”

Randomization inference in randomized trials depends on exact knowledge of the true randomization

probabilities, and use of these methods in matched studies is motivated by an ideal setting in which the true

propensity scores are known and matched exactly. In reality, however, propensity scores must be estimated,

and except in cases where the measured variables are few and discrete they are never matched exactly.

Optimal matching procedures such as those described in Rosenbaum (1989), Zubizarreta (2012), Austin and

Stuart (2015), and Pimentel et al. (2020) use estimated propensity score differences as important inputs,

so that when a match is created the researcher has information easily available about which matched sets

are relatively closer or further from achieving the ideal uniform distribution for treatment assignment. Yet

this information is not used when it comes time to do inference. By using uniform randomization inference,

researchers implicitly assume a much simpler model and hope that these differences are all small enough

not to create substantial lack of fit. While sensitivity analyses for unobserved confounding that are often

conducted post hoc can in principle subsume discrepancies in observed variables too, these analyses are not

typically presented in these terms, nor are observed differences typically used to calibrate the parameters for

these sensitivity analyses.

We propose a new method for inference in matched observational studies, covariate-adaptive randomiza-

tion inference, that explicitly uses estimated propensity score discrepancies to update permutation probabil-

ities. This approach retains most of the advantages of uniform randomization inference – clear conceptual

connections to a hypothetical randomized trial, ease of implementation, compatibility with interpretable

methods of sensitivity analysis — while addressing potential for lack of fit even in settings where propensity

score differences need not disappear in large samples. Furthermore, the lack of fit adjustment generally

does not require users to alter the match itself in ways that reduce overall sample size. Although covariate-

adaptive randomization inference can in theory fully resolve the confounding problem that matching itself

seeks to address, we also demonstrate that matching followed by covariate-adaptive randomization offers

precision and robustness benefits not enjoyed by covariate-adaptive randomization in an unmatched study.

1.2 Related work

Covariate-adaptive randomization inference builds on a quickly-growing literature that explores using

estimated propensity scores to structure permutation tests. Rosenbaum (1984) recommended permuting

treatment assignment conditional on the sufficient statistic for a propensity score fit, a closely related idea
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which works very well for settings with only one or two discrete covariates with a limited number of categories.

In a graduate dissertation Baiocchi (2011) briefly proposed permuting treatment assignments within matched

pairs in a manner similar to that described above, although with a slightly different distribution based on a

ratio of propensities on the probability scale rather than the odds scale. More recently, Branson and Bind

(2019) describe randomization tests with non-uniform treatment assignment probabilities for unmatched

Bernoulli trials; although they focus on randomized trials they also suggest the use of the method for

observational studies. The conditional permutation test of Berrett et al. (2020) proposes using permutations

of observed variables based on an estimated conditional distribution for the purposes of testing conditional

independence. Shaikh and Toulis (2021) also use permutations of observations based on estimated propensity

scores to conduct causal inference in an observational study and obtain even stronger guarantees about

large-sample performance by leveraging specific focus on a setting in which only one unit receives treatment.

Resampling observations with non-uniform probabilities is also an important component of modern conformal

inference for settings where data are not exchangeable (Tibshirani et al. 2019), including observational studies

of treatment effects (Lei and Candès 2021). Our contribution to this literature is to articulate the particular

advantages of combining non-uniform permutation with matched designs. The structure of matched sets helps

resolve many of the practical challenges that arise in conducting non-uniform permutation tests, such as the

question of how to sample from the permutation distribution discussed at length by Berrett et al. (2020).

In addition, covariate-adaptive randomization inference in concert with matching has important precision

benefits relative to covariate-adaptive randomization in an unmatched study, as we will document in Section

6. In contrast to previous authors, we also integrate covariate-adaptive randomization inference into the

sensitivity analysis framework of Rosenbaum (2002b), allowing us to conduct inference in the presence of

unobserved confounding variables.

At a high level, covariate-adaptive randomization inference may also be compared to inverse probability

weighting approaches to causal inference. Both methods rely on estimated propensity scores to adjust for

observed confounding variables, but the two approaches use the estimated scores differently. In inverse

weighting, estimators for a treatment effect are constructed by dividing each observed outcome by the

estimated probability of its observed treatment (or some function thereof) before comparing average outcomes

across groups. This corrects potential outcomes in expectation and produces unbiased estimates of average

treatment effects (Mukerjee et al. 2018), but can also lead to high-variance estimators since inverse weights

can be large when propensity scores are near zero or one (Robins and Wang 2000; Kang and Schafer 2007).

In contrast, covariate-adaptive randomization inference uses estimated propensity scores to correct the null

distribution of an arbitrary test statistic rather than to construct a specific test statistic Of course, inverse

weighting estimators may also be used within the covariate-adaptive randomization inference framework, an

idea we explore in Section A.1 of the online appendix.

Another difference between the inverse weighting framework and covariate-adaptive randomization infer-

ence is the type of null hypothesis typically tested. Weighting approaches usually test weak null hypotheses

that only place restrictions on average potential outcomes, remaining mostly agnostic to how treatment ef-

fects vary across individuals, while covariate-adaptive randomization inference as introduced here focuses on

sharp null hypotheses that define a specific treatment effect for each individual (Ding and Dasgupta 2016).

While weak-null approaches account naturally for treatment effect heterogeneity, they also rely on asymp-

totic distributions of test statistics while a covariate-adaptive test of a sharp null does not (only requiring

asymptotic convergence of the propensity score estimate to the true propensity score, a potentially weaker

assumption when the propensity score is estimated in a separate dataset as discussed in Section 4 below).
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Weak null approaches generally require more restrictive conditions on test statistics than permutation tests

of the sharp null, which are valid for arbitrary functions of treatment and outcome. Finally, an extensive

sensitivity analysis framework has been developed for tests of the sharp null (Rosenbaum 2002b), which we

adapt below in Section 5. Note also that tests designed for sharp null hypotheses can also be adapted to

test weak nulls instead (Caughey et al. 2021; Fogarty 2022), a point we discuss further in Section 8.

1.3 Outline

In what follows we develop and evaluate covariate-adaptive randomization inference. In Section 2 we

introduce a formal framework and describe the shortcomings of uniform randomization inference in detail. In

Section 3 we introduce covariate-adaptive randomization inference, giving procedures for hypothesis testing

and for estimation, and confidence interval construction under a constant additive effect model. In Section

4 we bound the error introduced into the procedure by estimation of the propensity score. In Section 5, we

generalize sensitivity analysis procedures grounded in uniform randomization inference to covariate-adaptive

randomization inference to allow valid inference in the presence of unobserved confounding variables. In

Section 6, we demonstrate finite sample performance of covariate-adaptive hypothesis tests and confidence

intervals and compare to alternative strategies, including both matching approaches that permute subjects

uniformly and unmatched approaches that use a form of covariate-adapative randomization inference. In

Section 7 we demonstrate implications for practice by reanalysis of two observational datasets: one measuring

genetic damage experienced by welders and one assessing the impact of right-heart catheterization on patient

mortality. Finally, Section 8 highlights important questions and connections raised by this work and outlines

opportunities for further research.

2 Formal framework and problem setup

2.1 Uniform randomization inference in matched designs

Consider a population of individuals each represented by a vector (Y (1), Y (0), Z,X,U). Z is a binary

indicator for membership in the treatment group, X is a vector of observed covariates, and U is an unobserved

covariate. The values Y (z) are potential outcomes under different treatment conditions as defined under

the Neyman-Rubin causal model and the stable unit treatment value assumption (Rubin 1980; Holland

1986), which specifies that an individual’s outcome depends only on its own treatment status, rather than

on the treatment status of other individuals, and that the only versions of treatment are 0 and 1. Only

the information (Y,Z,X) is observed by the analyst, where Y represents the observed outcome Y (Z). Let

λ(x) = P (Z|X = x) be the conditional probability of treatment given observed covariates, or the propensity

score, and let π(x, u) = P (Z|X = x, U = u) be the true probability of treatment (which also depends on the

unobserved U).

We assume individuals are first sampled independently from the population, and then formed into a

matched designM, consisting of K matched sets, on the basis of their treatment variables Z and covariates

X alone. Each matched set, numbered k = 1 through K, contains exactly one treated individual and one

or more control individuals. Individuals in set k are numbered k1 through knk, where nk is the number

of units in set k, in arbitrary order, so that we may refer to the treatment indicator of the ith unit in

the kth matched set as Zki. We also define n =
∑K
k=1 nk. Let vectors Y(1),Y(0),Y,Z,U ∈ Rn contain

the observed univariate data ordered so that units in the same matched set are contiguous. Let matrix X

contain all n vectors Xki in its rows with an identical ordering; in addition, we abuse notation slightly to let

λ(X) represent the n-vector of true propensity scores. A matched design is said to be exact on a particular
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variable or quantity v ∈ Rn if for any matched set k, vki = vkj for all i, j ∈ {1, . . . , nk}. Let ZM be the set

of all treatment vectors Z′ such that
∑nk

i=1 Z
′
ki = 1 for all matched sets k.

We now consider the the distribution of treatment assignments conditional on the match selected and

the potential outcomes, i.e P (Z | F) where F = {ZM,X,Y(1),Y(0)}. Rosenbaum (2002b, §3) argues that

this distribution is discrete uniform on ZM under two key assumptions: first, the absence of unobserved

confounding, under which λ(x) = π(x, u) for all u, and exact matching on covariates X (or more generally

exact matching on true propensity scores λ(X)). The null distribution for a test statistic T can then be

derived under the following sharp null hypothesis of no treatment effects for any individual in the sample:

Y(1) = Y(0). (1)

In particular, the sharp null hypothesis of no effect guarantees that the actual observed outcome Yki for

individual i in matched set k would still have been observed had Zki taken on a different value. Thus under

the sharp null the test statistic T (Z, Y ) varies conditional on ZM,X,Y(1),Y(0) only through the vector Z,

which is uniformly distributed over all permutations Zperm of the observed element of Z within matched sets.

The exact p-value for the test of the sharp null, where we reject for larger values of T (Z, Y ), can be computed

as the proportion of values of Zperm for which T (Zperm, Y ) exceeds T (Z, Y ). In practice this quantity can be

computed via repeated Monte Carlo draws from the permutation distribution or via a normal approximation

to the permutation distribution. For example, Rosenbaum (2002b)[§2] gives asymptotic distributions for a

variety of rank statistics.

Estimates of causal effects and confidence intervals can also be developed from the null distribution

associated with a sharp null hypothesis. Under a treatment effect model such as the constant additive model,

the randomization test can be inverted to produce Hodges-Lehmann point estimates and corresponding

confidence intervals. Alternatively, when the test statistic itself is an estimator for an effect of interest

(as in the case of the difference-in-means estimator), confidence intervals can be obtained under a normal

approximation in large samples by using a variance estimate obtained from the null distribution and quantiles

of the normal probability density function.

2.2 Propensity score discrepancies imperil the uniform treatment distribution

While the assumption of exact matching on a true propensity score yields convenient mathematical

symmetry matching is never exact on all measured covariates in datasets of any substantial scale, nor is it

practical to match exactly even on a univariate true propensity score, both because propensity scores must

be estimated in practice and because they are often modeled as smooth functions of continuous variables that

do not agree exactly for any two subjects. As such it is important to consider the potential for resulting lack

of fit between the nominal uniform distribution of treatment used for inference and the true distribution for

a given matched design. Hansen (2009) addressed this question for the difference-in-means estimator of an

additive treatment effect and found potential for slow-shrinking finite sample bias when the true propensity

score is not matched exactly. Other authors have shown that bias in treatment effect estimation (Sävje 2021)

and failure of Type I error control for the uniform randomization test (Guo and Rothenhäusler 2023) persist

even in infinite samples in settings where all treated units are matched in pairs without replacement except

in unusual situations such as populations where the probability of propensity scores exceeding 0.5 is zero or

the true outcome model is known. Of course, even bigger problems may arise if unobserved confounding is

also present, but methods of sensitivity analysis have been constructed with specific attention to this issue,

as will be explored in greater detail in Section 5.1.
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It has been argued that certain kinds of balance tests may be understood as tests for lack of fit between

the actual distribution of treatment and the uniform model of inference used (Hansen 2009), so that if

balance tests do not reveal problems then this problem can be ignored. This approach falls short of resolving

the problem optimally for two reasons. First and most importantly, the theory underlying these balance

tests relies on an asymptotic regime in which propensity score differences within matched sets approach

zero as sample size increases, which in turn comes from a pattern of ever-larger concentrations of control

units in a region arbitrarily close to any given treated unit. In many settings, this assumption is not

reasonable. For example, Pimentel et al. (2015) consider the common setting under which matches are

conducted within natural blocks or groups of units, such as matching patients within hospitals or students

within schools. When, as in these examples, the size of an individual block may reasonably be viewed

as bounded and the most natural way to think about increasing sample size is by adding more blocks,

there is no reason to expect propensity score differences within matched sets to shrink to zero, since the

concentration of matchable controls near a given treated unit is limited by the upper bound on the size of a

block. More generally, Sävje (2021) demonstrated that when propensity scores larger than 0.5 are present

in the population with probability exceeding 0 and matching is conducted without replacement, then some

matched sets will necessarily have propensity score discrepancies bounded away from zero. A second problem

with the balance testing solution is that it does not fully articulate how to resolve problems with a matched

design when the balance test fails. Common solutions such as using a tighter propensity score caliper lead

to tradeoffs by reducing other aspects of match quality such as the proportion of treated units retained.

Another proposed strategy is the use of regression adjustment to remove slow-shrinking bias not addressed

by close matching on a propensity score or on covariates (Abadie and Imbens 2011; Guo and Rothenhäusler

2023). Under assumptions on the outcome model, this method removes the bias, and under sufficiently

strong assumptions on the outcome model and the convergence of matched discrepancies to zero, a fast

rate is achieved. However, the assumptions may not always be plausible, particularly the condition that

the propensity score discrepancies shrink to zero as discussed by Sävje (2021). In addition, estimating an

outcome model may be inconvenient if the outcome is multivariate, is related to observed covariates in a

complex or poorly-understood manner, or is not yet measured at the time the match is conducted.

2.3 Lack of fit due to dependence between the true treatment vector and the match itself

All of the above discussion focuses on discrepancies between the uniform distribution of treatment given

F = {ZM,X,Y(1),Y(0)} and the actual distribution of treatment given these quantities, thinking of the

match M as fixed over all possible Z-values. However, if a model of independently-sampled subjects is

assumed on the original data prior to matching then one might view the matched design, which is constructed

with reference both to X and Z, as a random function of treatment. In the special case of exact matching

this issue need not arise, as the specific match chosen may remain conditionally independent of Z given

event ZM. However, when matching is not exact this guarantee no longer holds, and for some Z ∈ ZM
it may be the case that match M never would have been selected. For example, a treated unit with a

high propensity score may be difficult to match and be paired with a control having an appreciably lower

propensity score; however, if the treated unit had been a control instead, it would have been possible to form

a better match with a treated unit having a similarly high propensity score value. Values of Z that would

have produced a different match do not belong in the support of the distribution of treatment conditional

on M, but they appear with positive support in the other two distributions mentioned. The phenomenon

of reduced support will be denoted Z-dependence (with reference to the dependence of the match chosen on
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the original treatment status vector).

This issue is also discussed by Pashley et al. (2021), who note, “proper conditional analysis would need to

take into account the matching algorithm.” However, no such analysis has yet been proposed in the matching

literature, and Pashley et al. suggest that matching may perform well empirically even in the presence of

Z-dependence. Z-dependence is not a central focus in what follows, and unless otherwise noted we will take

the perspective that the matched setsM are fixed. However,in Section 6.4, we explore a “proper conditional

analysis” that does account for the matching algorithm in a very small simulated dataset using brute-force

methods, and find potential for empirically meaningful type I error violations. Z-dependence will also be

helpful in explaining the empirical performance of uniform and covariate-adaptive randomization inference

in certain larger simulation settings considered in Sections 6.2-6.3. We advocate and outline ideas for further

progress in understanding Z-dependence in Section 8.

3 Adapting randomization inference to covariate discrepancies

3.1 True and estimated conditional distributions of treatment status

To adapt randomization inference to discrepancies in observed covariates, we begin by considering the

case where no unobserved confounding is present and represent the true conditional distribution in terms of

propensity scores. Since treatment indicator Zki is Bernoulli(λ(Xki)), we have:

P {Zki = 1 | ZM,X,Y(1),Y(0)}

=
P {Zki = 1, Zk2 = 0, . . . , Zknk

= 0 | λ(Xk)}∑nk

j=1 P
{
Zk1 = 0, . . . Zk(j−1) = 0, Zkj = 1, Zk(j+1) = 0, . . . , Zknk

= 0 | λ(Xk)
}

=
λ(Xki)

∏
j 6=i[1− λ(Xkj)]∑nk

j=1 λ(Xkj)
∏
` 6=j [1− λ(Xkj`))]

=
odds{λ(Xki)}∑nk

j=1 odds{λ(Xkj)}
= pki.

Because individuals are sampled independently, the joint conditional probability for a treatment vector Z is

given by multiplying the appropriate pki terms together:

P {ZM = z | ZM,X,Y(1),Y(0)} =

{ ∏K
k=1

∏nk

i=1 p
zki

ki z ∈ ZM
0 z /∈ ZM

(2)

If the true propensity score λ(·) were known, the pkis could be calculated exactly. To conduct inference

under the sharp null, the Monte Carlo strategy described in Section 2.1 could be used, except that instead of

permuting treatment assignments within matched sets uniformly at random one would draw the identity of

the treated unit in each set from an independent multinomial random variable with 1 trial and probabilities

pk1, . . . , pknk
. Exact finite-sample confidence intervals could also be obtained by inverting the test, and the

large majority of the benefits of the uniform randomization inference procedure could be retained despite the

reality of inexact matching on the propensity score. Note that when propensity scores are matched exactly,

this procedure reduces to the uniform test.

Unfortunately, the propensity score is typically unknown, so the true conditional distribution of treat-

ment is also unknown. However, it is straightforward to construct a plugin estimator for this distribution by

substituting an estimate of the propensity score λ̂(·) for λ(·) in the formula for pki. We denote the process

of conducting hypothesis tests and creating confidence intervals using this plugin distribution as covariate-

adaptive randomization inference. In concrete terms, an investigator may conduct covariate-adaptive ran-

domization inference via the Monte Carlo approach of Section 2.1 by calculating the estimated propensity
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odds for each subject in a matched set, by dividing each estimated odds by the sum of the odds in the

matched set, by determining treatment via a single draw from a multinomial distribution with probabilities

for each subject given by these normalized odds, and by conducting this process independently within all

matched sets, repeating as necessary to generate a close approximation to the null distribution.

3.2 The difference-in-means estimator: large-sample distribution

While taking repeated Monte Carlo draws from the covariate-adaptive permutation distribution is straight-

forward, it is also instructive to construct a normal approximation using the mean and variance of the test

statistic. Here we demonstrate this approach for the standard difference-in-means estimator, defined below

(for brief discussion of an alternative estimator based on inverse propensity weighting, see Section A.1 of the

online appendix).

T (ZM,YM) =
1

K

K∑
k=1

{
nk∑
i=1

ZkiYki −
1

nk − 1

nk∑
i=1

(1− Zki)Yki

}
=

1

K

K∑
k=1

nk∑
i=1

Yki
nkZki − 1

nk − 1
.

Under the sharp null hypothesis, the Y is fixed across all values for Z so the expectation and the variance

are calculated only over the random variables Z.

E(T (ZM,YM) | ZM,XM,YM(1),YM(0)) =
1

K

K∑
k=1

nk∑
i=1

Yki
nkpki − 1

nk − 1
(3)

V ar(T (ZM,YM) | ZM,XM,YM(1),YM(0)) =
1

K2

K∑
k=1

nk∑
i=1

(
nk

nk − 1

)2

Ykipki

Yki(1− pki)−
nk∑
j 6=i

Ykjpkj


Note that these formulas get considerably simpler in the case of a matched pair design, in which nk = 2

for all k. Here the inner sum
∑nk

i=1 Yki
nkZki−1
nk−1 may be rewritten as (Zk1 − Zk2)(Yk1 − Yk2), so that the

mean of the test statistic is the sample average (across matched pairs k) of VkDk where Vk = pk1 − pk2 and

Dk = Yk1 − Yk2, and the variance is the sample average of K−1(1− V 2
k )D2

k.

While this mean and variance of the test statistic depend on the unknown true propensity score through

the pki terms, they can be estimated by substituting the p̂ki obtained by substituting the estimated propensity

score λ̂ for the true propensity score λ. Large-sample inference may be conducted by computing a normalized

deviate of the difference-in-mean statistic using estimates of the mean and variance above, and comparing to

the standard normal distribution. This relies on a finite-sample central limit theorem based on a sequence of

infinitely-expanding finite samples (Li and Ding 2017) for which the mean and variance of the test statistic

converge to stable limits. The most natural asymptotic regime places some upper bound on the size of a

matched set nk across all these samples while K grows towards infinity, since returns to matching large

numbers of controls to a single treated unit are quickly diminishing (Hansen 2004). The simplest available

central limit theorem is thus in the inner sums
∑nk

i=1 Yki
nkZki−1
nk−1 , which are independent random variables

with non-identical distributions; when nk is uniformly bounded and a Lindeberg condition holds on the

potential outcomes Y (0), they follow from results in Liu and Yang (2020). For more discussion of asymptotic

regimes in matching with restricted or fixed matching ratios, and of central limit theorems for settings with

many small strata, see Abadie and Imbens (2006) and Liu et al. (2022).

The large-sample approximation just described does not explicitly account for random variation due to

the estimation of the propensity score; in particular, the mean term, which is a function of p̂ki random

variables, is instead treated as fixed. To probe the possible role of such variation, we used the M-estimation
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framework (Stefanski and Boos 2002) to represent both the propensity score estimates and the test statistic

of interest as part of a single multivariate estimation problem and to construct a new variance estimate for

the difference between the test statistic and its estimated mean that attempts to incorporate variation in the

estimated propensity scores. However, the new variance estimates were frequently near-identical or slightly

smaller than those ignoring the propensity score estimation (presumably due to positive correlation between

the estimated mean and the test statistic across propensity score fits); in our simulations the associated

tests performed almost identically. Given the simpler form and intuitive permutation analogue for the test

ignoring propensity score estimation, we focus on this test going forward. More details are provided on the

M-estimation approach in Section A.4 of the online appendix.

3.3 Estimates and confidence intervals for an additive effect

So far we have discussed covariate-adaptive randomization inference primarily through the lens of testing

the sharp null hypothesis of zero effect. It is also possible to use covariate-adaptive randomization inference

to construct confidence intervals in settings where the primary goal is estimating a specific causal effect. The

exact details of this process depend on the estimand; for purposes of exposition, we focus on estimating a

constant additive treatment effect. More formally, we assume that there exists τ such that

Yki(1) = Yki(0) + τ for all i. (4)

and we seek to estimate τ and obtain a confidence interval for our estimate.

First, note that for τ 6= 0, the sharp null hypothesis of no effect no longer holds and observed outcomes

Yki are no longer invariant to treatment status, but the transformed outcomes Yki − Zkiτ will be invariant,

and a randomization test can be constructed by using Yki − Zkiτ as input to the test statistic rather than

Yki. This adjustment allows us to test H0 : τ = τ0 for any value τ0 ∈ R. The set of τ0-values for which the

corresponding test does not reject H0 at level α is a 1 − α confidence set for τ (Neyman 1937; Lehmann

1959, §3.5).

To obtain an estimate of τ in model (4), we may simply select the value of τ0 with the largest two-sided

p-value (or the median of such values if many share the same p-value). This estimator was previously sug-

gested for use in treatment-control studies by Branson and Bind (2019), who noted its connection to the

Hodges-Lehmann estimator (Hodges Jr and Lehmann 1963); for a helpful review of Hodges-Lehmann esti-

mation in the context of randomization inference in observational studies, see Rosenbaum (2002b, §2.7.2).

Coudin and Dufour (2020) also show that in a slightly different context, an estimator based on maximizing

the p-value of a permutation tests retains many of the attractive theoretical properties of the traditional

Hodges-Lehmann estimator, including median unbiasedness and asymptotic normality, under mild regular-

ity assumptions. Numerical simulations show that this estimator generally performs well and consistently

improves substantially on the näıve difference-in-means estimator (see Table 7 in Section A.5 of the online

supplement).

Because covariate-adaptive randomization inference induces a discrete distribution for the test statistic,

some care is require in inverting the tests to obtain confidence intervals, especially in small samples. In

particular, when the distribution’s discreteness makes it impossible to construct an interval with coverage

exactly 1 − α, it is important to ensure that intervals are made conservative rather than anticonservative.

Luo et al. (2021) provide a very helpful practical discussion; while they focus on a uniform design with-

out stratification, the key ideas translate almost without modification to covariate-adaptive randomization

inference at least when the difference-in-means statistic of Section 3.2 is used. Inverting the test requires
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repeated tests for a variety of candidate τ -values and can be computationally demanding. However, several

shortcuts are possible. In matched pair designs, Monte Carlo draws of the difference-in-means statistic from

the null distribution under H0 : τ = τ0 are simple algebraic modifications of Monte Carlo draws from the

null distribution under H0 : τ = 0. In particular, letting Zorigki represent the original value of treatment in

the observed data for subject i in pair k (as opposed to the value Zki in the draw from the null distribution),

we have the following:

T (ZM,YM − ZorigM τ0) =
1

K

K∑
k=1

(Zk1 − Zk2)[Yk1 − Yk2 − τ0(Zorigk1 − Zorigk2 )]

= T (ZM,YM)− τ0 ·
1

K

K∑
k=1

(Zk1 − Zk2)(Zorigk1 − Zorigk2 )

= T (ZM,YM)− τ0 ·
1

K

[
K∑
k=1

1
{

Zk = Zorigk

}
−

K∑
k=1

1
{

Zk 6= Zorigk

}]

In summary, as long as we keep track of the number of pairs in each null draw that have been switched

relative to the original treatment assignment, we need only take Monte Carlo draws once from the null

distribution for H0 : τ = 0 and can simply transform them as necessary to test any H0 : τ = τ0. Another

option not limited to paired designs is to use the large-sample normal approximation to the null distribution

of the difference-in-means estimator instead of Monte Carlo draws from the permutation distribution. To

invert this large-sample test, one need only evaluate a normal tail probability for each τ0 considered.

4 Assessing the impact of propensity score estimation error

A primary concern in determining the empirical value of covariate-adaptive randomization inference is

understanding the impact of errors in estimating the propensity score. To trust the method, we need some

guarantee that small deviations between λ̂(x) and true λ(x) values result in only small deviations in nominal

and actual test size and confidence interval coverage. The following results provide partial reassurance in

this regard. To lay the groundwork, let λ̂N (·) be an estimated propensity score fit on an external sample

of size N from the infinite population, and let the quantities Z,X,Y(1),Y(0) refer to a separate sample

organized into K matched pairs containing
∑K
k=1 nk = n total units. Let Fλ represent the true conditional

distribution of Z as a function of the true propensity score λ(·) and let Fλ̂N
represent the distribution of

Z used to conduct covariate-adaptive inference in practice, based on λ̂N (·). Furthermore, let pλ̂N ,n
be the

p-value produced by a nominal level-α covariate-adaptive randomization test of the sharp null hypothesis

using Fλ̂N
. The following result, adapted from Berrett et al. (2020) (who consider the slightly different case

in which permutations are across the entire dataset and not within matched sets), relates these quantities

using the total variation distance of Fλ and Fλ̂N
.

Theorem 1. If no unobserved confounding is present and the sharp null hypothesis of no effect is true, then

P (pλ̂N ,n
≤ α) ≤ α+ dTV

(
Fλ, Fλ̂

)
where dTV (P,Q) gives the total variation distance between two probability distributions P and Q.

In words, this theorem says that the true type I error of a covariate-adaptive randomization test performed

with nominal level α is no larger than α plus the total-variation discrepancy of the distributions implied by

the true and estimated propensity score. Intuitively, when the estimated propensity score is close to the true
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propensity score, this means that the nominal type I error rate is close to the true type I error rate. We

formalize this intuition for the case in which the true propensity score obeys a logistic regression model.

Theorem 2. Suppose that P (Z = 1 | X) = λ(X) = 1
1+exp(−βTX)

and that λ̂N is obtained by estimating this

model using maximum likelihood. Suppose furthermore that N increases with the primary sample size n such

that limn−→∞ n/N = 0, and suppose the covariates X have compact support. Then under the conditions of

Theorem 1,

lim sup
n,N−→∞

P (pλ̂N ,n
≤ α) ≤ α.

The proof, which uses Pinsker’s inequality to bound the total variation distance by a sum of Kullback-

Leibler divergences and a Taylor expansion to show that this sum converges to zero, is deferred to Section

A.2 of the online appendix.

A natural question is whether similar results can be obtained when the propensity model is not necessarily

logistic. Berrett et al. (2020) sketch a proof for a result similar to Theorem 2 when the propensity score is

estimated nonparametrically using a kernel method; this requires only mild smoothness conditions rather

than a correctly-specified model, although the bound on the rate of convergence of the size of the Type

I error violation towards zero is much weaker. More generally, one may turn to Theorem 1 directly to

explore misspecification: this result provides a bound on Type I error violation whenever the degree of

misspecification can be quantified by the total variation distance between estimated and true conditional

distributions of treatment. Such metrics for probing robustness appear elsewhere in the literature; for

example, Guo et al. (2022) assess robustness of inferences to covariate noise by considering a regime in which

the conditional distribution of the true covariates given treatment has bounded total variation distance from

the conditional distribution of the noise-contaminated covariates.

Another limitation of Theorem 2, which extends also to the nonparametric kernel approach just men-

tioned, is the asymptotic regime. The issues extend beyond the usual question of whether a particular

sample size is large enough to ensure that error is small; here the requirement that the pilot sample used

to estimate the propensity score grow at a larger rate than the analysis sample raises similar concerns even

for very large samples, since the key question is whether the pilot sample’s size sufficiently exceeds that of

the analysis sample. Fitting the propensity score in a large independent sample consisting of most of the

observed data while reserving a relatively smaller portion for the analysis is uncommon in applied matching

studies. However, we note that this approach is natural in settings where treatment and covariate values

are readily available but outcomes are expensive or difficult to measure, as when researchers must collect

outcomes by administering a test to study subjects (Reinisch et al. 1995) or by abstracting medical charts

(Silber et al. 2001). In Section 6, we evaluate the performance of the method by simulation in multiple

settings, including some that plausibly adhere to the assumed asymptotic regime and others that likely do

not. In general we find only minor difference in performance for tests based on estimated propensity scores

fit out-of-sample in samples much larger than the analysis samples versus tests based on propensity scores

estimated in-sample on the analysis data, suggesting that the test may be fairly robust to violations of the

asymptotic regime given in Theorem 2 in many finite sample settings.

5 Covariate-adaptive randomization inference under unobserved confounding
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5.1 Review of sensitivity analysis framework under exact matching

Results in Sections 2 -4 have all depended on the absence of unobserved confounding, but in practice it is

not plausible that all confounders are observed. To address this issue with the matched randomization infer-

ence framework, Rosenbaum (2002b, §4) presents a method of sensitivity analysis to relax the no unobserved

confounding assumption. Specifically, the true probabilities of treatment are restricted as follows:

1/Γ ≤ π(x, u)(1− π(x, u′)

π(x, u′)(1− π(x, u))
≤ Γ for all x, u, u′. (5)

This is equivalent to the following model for treatment assignment, with arbitrary κ(·):

log

(
π(X,U)

1− π(X,U)

)
= κ(X) + γU where γ = log(Γ) and 0 ≤ U ≤ 1. (6)

To complete the sensitivity analysis, some method is needed to compute worst-case p-values over all

possible values of of U allowed by the model. The method depends on the structure of matched sets

formed and the test statistic used; we focus on the approach of Rosenbaum (2018) which allows for arbitrary

numbers of controls matched to each treated unit and applies to any sum statistic, i.e. any statistic T (Z,Y) =∑K
k=1

∑nk

i=1 Zkifki(Y) for chosen functions fki of Y, which we denote as the pseudo-responses. As shown in

Rosenbaum (2018, §5), the difference-in-means statistic, the regression-adjusted test statistics of Rosenbaum

(2002a), and other M-statistics are all members of the family of sum statistics.

Without loss of generality, suppose the nk units in each matched set k are arranged in increasing order

of their pseudo-responses fki so fk1 ≤ fk2 ≤ . . . , fknk
for all k, and suppose that we are interested in a

one-sided test where larger values of the test statistic will lead to rejection. Let U+ be the set of all stratified

N-tuples u such that uki ∈ {0, 1} and uk1 ≤ uk2 ≤ . . . ≤ uknk
for all k, and let U− be the set of all stratified

N-tuples u such that uki ∈ {0, 1} and uk1 ≥ uk2 ≥ . . . ≥ uknk
for all k. Let αunif (Y,u) represent the p-value

for the uniform randomization test performed with test statistic T (Z,Y) and the uniform randomization

distribution when model (6) holds with unobserved confounder U = u. When matching on the propensity

score is exact, Rosenbaum and Krieger (1990) showed the following:

min
u∈U−

αunif (Y,u) ≤ αunif (Y,U) ≤ max
u∈U+

αunif (Y,u).

Although U is still unknown, this statement allows us to bound its impact on the result of the hypothesis test

by searching over a highly structured finite set of candidate u-values. We now show that this approach still

works to identify the worst-case p-value when matches are not exact on the propensity score and permutation

probabilities are covariate-adaptive.

5.2 Sensitivity analysis model under covariate-adaptive randomization inference.

As in the previous section, let T (ZM,YM) be a sum statistic and focus on the case of a one-sided

test where large values lead to rejection. We now define αadapt(Y,u) as the p-value obtained by conduct-

ing a covariate-adaptive randomization test (using the true propensity score) when model (6) holds with

unobserved confounder U = u.

Theorem 3. For any u ∈ [0, 1]n, minu′∈U− αadapt(Y,u′) ≤ αadapt(Y,u) ≤ maxu′′∈U+ αadapt(Y,u′′).

Intuitively, this result says that we can find the maximum (minimum) p-value by placing the maximum

(minimum) possible treatment probability on the subjects with the largest pseudo-responses, and the mini-
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mum (maximum) treatment probability on those with the smallest pseudo-responses. The full proof, which

is partially adapted from results for the exact-matching case in Rosenbaum (2002b) and from results for

weighting estimators in Zhao et al. (2019), is deferred to Section A.3 of the online appendix.

While Theorem 3 provides a foundation for sensitivity analysis, two additional issues must be addressed.

First, while in the exact-matching case the function κ(X) has no bearing on sensitivity analysis (since the

κ(X) terms cancel within matched pairs), under covariate-adaptive randomization inference some bound or

estimate of κ(X) is needed to compute sensitivity bounds. In general, the known propensity score λ(X)

provides information about κ(X) as follows:

λ(X) = E(π(X,U) | X) =

∫ 1

0

π(X,u)dP (u) =

∫ 1

0

1

1 + exp[−κ(X)− γu]
dP (u).

When γ = 0 this gives us a one-to-one mapping between κ(X) and λ(X) but otherwise such a mapping

requires knowledge about the population distribution of U . Fortunately, since π(x, u) is increasing in u for

all x, for any fixed x we have π(x, 0) ≤ λ(x) ≤ π(x, 1). This in turn implies:

κ(X) ∈
[
log

(
λ(X)

1− λ(X)

)
− γ, log

(
λ(X)

1− λ(X)

)]
Note that this bound is tight, since we can make κ(X) arbitrarily close to either bound by letting P (U = 0)

or P (U = 1) be arbitrarily close to 1. Therefore we can rewrite model (6) in terms of λ(X) as:

log

(
π(X,U)

1− π(X,U)

)
= log

(
λ(X)

1− λ(X)

)
− γV + γU, U, V ∈ [0, 1].

= log

(
λ(X)

1− λ(X)

)
− 1 + 2γU ′, U ′ ∈ [0, 1]. (7)

The second issue is computational. The bound in Theorem 3 gives us a finite set of possible distributions

over which to search to identify the worst-case p-value for a covariate-adaptive randomization test. However,

under certain configurations of strata size and number, this set may grow large and complicated so that

it is difficult to compute the exact maximum efficiently. Gastwirth et al. (2000) simplified the problem by

showing that asymptotically the overall maximum and minimum p-values for any given Γ are achieved by

solving simpler optimization problems separately for each stratum and aggregating the results. Specifically,

if Tk =
∑nk

i=1 Zkifki(YM) µk` is the additive contribution of stratum k to the test statistic and uk is the

subvector of u for stratum k, the expectation of Tk must be maximized (minimized) over all binary uk,

and when multiple values uk are maximizers (minimizers) the variance of Tk must also be maximized over

these. By an argument essentially identical to the one we use to prove Theorem 3, one may show that

Tk’s expectation is maximized only for uk such that uk1 = . . . = uk` = 0 and uk(`+1) = . . . , uknk
= 1 for

some ` = 0, 1, . . . , nk, so that it suffices to consider the nk expectations µk` and nk variances νk` associated

with these vectors (for the lower bound similar quantities are used but with a different choice of binary

uki values). Aggregating worst-case expectations and variances across many strata and letting the number

of strata go to infinity results in worst-case bounds on the overall p-value. While this result is asymptotic,

Rosenbaum (2018) later derived a one-step adjustment that renders the bounds conservative in finite samples.

Under covariate-adaptive randomization inference and representation (7) for the treatment model, the key
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quantities µk` and νk` take on the following values:

µk` =

∑`
i=1 pkifki + Γ2

∑nk

`+1 pkifki∑`
i=1 pki + Γ2

∑nk

`+1 pki
νk` =

∑`
i=1 pkif

2
ki + Γ2

∑nk

`+1 pkif
2
ki∑`

i=1 pki + Γ2
∑nk

`+1 pki
− µ2

k`

The method for combining these quantities to provide an overall conservative bound on the p-value is identical

to that described in Rosenbaum (2018).

6 Finite-sample performance via simulation

6.1 Motivation

The results of Section 4 provide some assurance that in extremely large samples, covariate-adaptive ran-

domization inference will closely approximate the true conditional distribution of treatment and outperform

uniform randomization inference. However, many matched studies work with relatively small sample sizes,

and researchers do not always have strong guarantees that fitted models are well-specified. In what follows

we assess the empirical performance of covariate-adaptive randomization inference in small to moderate

samples via a simulation, considering cases where models are correctly and incorrectly specified. First, in

Section 6.2, we consider the performance of covariate-adaptive randomization inference in matched designs

compared to more traditional inference procedures for matched studies, with a focus on Type I error control.

A second important question is whether modifying a permutation procedure to account for observed

propensity scores obviates the need for matching at all. Indeed, the test proposed by Branson and Bind

(2019), which considers a similar data setting and relies on the same idea as our test but does not incorporate

matching, is also finite-sample valid when conducted with true propensity scores. In Section 6.3, we conduct

additional simulations to demonstrate that the combination of matching and covariate-adaptive randomiza-

tion inference offers important benefits in terms of both precision and robustness to misspecification of the

propensity model relative to non-uniform permutation in an unmatched study.

6.2 Matching with and without covariate-adaptive randomization inference

We create a matrix of covariates X by drawing p vectors of independent standard normal random vari-

ables, each vector of length n. p is 2, 5, or 10, and n is either 100 or 1000. The true propensity score is then

given by one of the following two functions, one that specifies the logit of treatment as a linear function of

the columns of X and another specifying it as a nonlinear function of those columns:

logit [P (Z = 1 | X)] = log

(
0.3

0.7

)
+ ∆ ·X1 (8)

logit [P (Z = 1 | X)] = log

(
0.3

0.7

)
+

∆√
265

(
X1 + 4X3

1

)
(9)

The functional forms of these models are adapted from those used by Resa and Zubizarreta (2016). The

parameter ∆ controls the strength of the propensity score signal; we examine two signals, “weak signal”

with ∆ = 0.2 and “strong signal” with ∆ = 0.6. The intercept is chosen to ensure a treated:control ratio

in the general neighborhood of 3:7 (since all Xj variables have mean zero over repeated samples), providing

a relatively large control pool for pair matching. The scaling factor 1/
√

265 is chosen to render the overall

signal-to-noise ratio comparable across models for a given value of ∆. For a more detailed look at the

distribution of the propensity scores in the treated and control groups under this setup, see Figure 4 in

Section A.5 of the online appendix.
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Matching is conducted on the joint (X,Z) datasets created by this process. The matching is done using

a robust Mahalanobis distance on the columns of X, either with or without a propensity score caliper.

When the caliper is used, a propensity score must first be estimated. This is done by fitting a logistic

model with linear additive terms using maximum likelihood. Then matches are restricted to occur only

between individuals separated by no more than 0.2 sample standard deviations of the fitted propensity

scores (computed for the original dataset); if treated units must be excluded from the match to meet this

condition the minimal possible number of such exclusions is made.

Finally, outcomes are drawn using a linear model with the same right-hand side as the model used to

generate the true propensity score, albeit with no intercept, with ∆ = 1, and with additive independent

mean-zero normal errors with variance 4. We conduct randomization inference by reshuffling treatment

indicators within pairs uniformly at random, based on propensity scores estimated as described above, or

based on true propensity scores. The observed test statistic is compared to the null distribution obtained by

5000 Monte Carlo draws to see whether one-sided tests for a difference greater than zero reject at the 0.05

level. Results are evaluated for both raw outcomes and outcomes adjusted by ordinary least-squares linear

regression using the approach of Rosenbaum (2002a).

In addition, for each combination of simulation parameters we also test the results of inference when

the observed test statistic is not generated by the original Z-vector but by a within-match permutation of

treatment indicators using distribution (2) with the true propensity scores. This is designed to approximate

a model in which matched pairs have independent treatment assignments, and eliminates the potential for

Z-dependence as discussed in Section 2.3.

For datasets of size n = 100, p = 2 and n = 100, p = 5 we ran each unique combination of the remaining

simulation parameters (propensity model, signal strength, caliper indicator, inference method, regression

adjustment indicator, and indicator for reshuffled Z-vector in observed test statistic) 8000 times. Type I

error rates are calculated as the sample average of rejection indicators over the 8000 draws for each parameter

combination. We also ran each combination of parameters 8000 times for datasets of size n = 1000, p = 10.

We opted not to examine the n = 100, p = 10 case because we wanted to focus on cases in which completed

matches met standard balance criteria and sample runs suggested that most matches were not successful

in balancing all ten covariates, and we studied only p = 10 for the much more computationally expensive

n = 1000 case in order to produce simulation results in a reasonable timeframe.

Figure 1 shows the primary results on Type I error rate from the simulations. The most apparent

pattern is the high type I error rates for uniform inference on uncalipered matches with the difference-in-

means statistic, much higher than the rates for any method that accounts in any additional way for in-pair

covariate discrepancies. This is true across every simulation setting shown but especially so at n = 1000.

More nuanced are the distinctions among settings using covariate-adaptive inference, calipers, regression-

adjusted test statistics, and combinations thereof. In the first three columns of each table, corresponding to

settings in which Z-dependence is present, settings with calipers or regression adjusted test statistics tend

to perform best, either with or without covariate-adaptive inference; in contrast settings relying entirely on

covariate-adaptive inference tend to do slightly worse or even substantially worse when n = 1000. How-

ever, when treatment assignments within matched pairs are made independent, eliminating Z-dependence,

covariate-adaptive inference alone is generally just as effective as regression adjustment and does better than

calipers.

Across the four horizontal groupings in each table, we see different combinations of correctly/incorrectly

specified treatment and outcome models. Covariate-adaptive inference with estimated propensity scores
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tends to fare more poorly when the treatment model is misspecified, even when Z-dependence is not present.

Regression adjustment is somewhat robust to the degree of nonlinearity introduced in this simulation’s

outcome model. However, when both outcome and treatment models are nonlinear type I error control

often fails for p > 2. At n = 1000 the case with both models misspecified leads to gross violation of type I

control under any form of adjustment except oracle covariate-adaptive inference (which uses true, nonlinear

treatment probabilities that are unavailable in practice).

All the results shown above focus on the strong propensity signal case (∆ = 0.6), in which matching

tends to be substantially more difficult than in the weak signal case. Density plots and type I error rates for

the weak-signal case are given in Figures 5 and 6 in Section A.5 of the online appendix. While the overall

ordering among approaches remains similar, the size of type I error violations is greatly reduced such that

the simple uniform approach often controls Type I error when p = 2.

We also conducted two robustness checks to confirm that our results are not sensitive to secondary

aspects of our simulation setting. Firstly, we reproduced the Type I error results excluding all simulation

runs in which a matched sample failed to achieve absolute standardized differences less than 0.2 on all

measured covariates (in case the initial simulations were contaminated by poor matches in some iterations).

Secondly, we repeated our simulations with propensity scores fit on independent pilot samples of size 10,000,

simulated from the same data-generating process as the analysis sample (a setting more like the one assumed

in Theorem 2). These robustness checks all substantiated the patterns observed in the primary simulations

(see Figures 7-8 in Section A.5 of the online appendix).

Figure 2 describes confidence interval width for simulation settings that achieved approximate Type I

control. Whenever a Bonferroni-corrected test against the null hypothesis of a true Type I error rate no

more than 0.05 failed to reject, we used the central limit theorem approximation of Section 3.2 to create

large-sample confidence intervals for an additive effect. For cases with regression-adjusted test statistics,

the procedures of Section 3.2 were used with residuals from the regression model in place of raw outcomes

Yki. The two main takeaways are the value of regression adjustment for improving precision, a pattern

that appears in other parts of the causal inference literature (Rosenbaum 2002a; Fogarty 2018; Antonelli

et al. 2018), and a cost in precision associated with imposing calipers. This cost comes from reduced sample

size, since treated units may be excluded by the caliper leading to fewer matched sets formed. Notably,

introducing covariate-adaptive inference never hurt precision among cases with controlled Type I error.

In summary, the simulations emphasize the importance of taking measures of some kind beyond optimal

matching itself to control covariate discrepancies within matched pairs and guarantee Type I error control

for post-match inference. Moreover, the importance of such measures appears to increase with the size

and complexity of the dataset. With respect to Type I error control, the type of correction or adjustment

employed seems to matter less than the fact of employing it. Secondly, while covariate-adaptive inference in

isolation is slightly less successful than calipers or regression adjustment in many settings, this appears to

be largely a product of Z-dependence, since drawing treatment assignments independently across matched

pairs tends to erase this gap in most cases. This finding suggests the importance of the specific stochastic

model used to justify matched randomization inference, and the value of further work on understanding

Z-dependence and finding effective ways to remove it. Finally, the simulations show that among adjustment

strategies that do not rely on fitting some form of outcome model, covariate-adaptive inference holds a small

edge over caliper approaches because it does not require a reduction in sample size to fix problems with

in-pair covariate discrepancies.
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6.3 Covariate-adaptive randomization inference with and without matching

We next conduct simulations to articulate the possible benefits of conducting matching followed by

covariate-adaptive randomization relative to applying randomization inference directly to unmatched data

as in Branson and Bind (2019). First we consider gains to precision in inference. The results of Section

3.2 show that the null variance of the difference-in-means statistic under covariate-adaptive randomization

inference in a pair-matched study is a function of terms D2
k where Dk is the difference between the potential

outcomes under control in pair k. While the variance of the difference-in-means statistic is much harder

to compute under covariate-adaptive randomization inference under the Bernoulli assignment mechanism of

Branson and Bind (2019), it tends to depend on the overall dispersion of all outcomes in the study (rather

than on the dispersion within matched pairs). As a result, when heterogeneity in the study outcomes is

increased but the quality of the pairings remains good, we expect to see bigger gaps in performance between

matched and unmatched settings. Accordingly, for this comparison we adopt the “strong signal” version

of the simulation setting in Section 6.2 but further strengthen the outcome model by multiplying the true

signal by a factor of ten before adding noise. We then compare covariate-adaptive randomization inference

(with and without z-dependence) to unmatched covariate-adaptive randomization inference as detailed by

Branson and Bind (2019), assuming a Bernoulli design with independent treatment probabilities equal to

the propensity scores. For each design, we examine both the difference-in-means and regression-adjusted

test statistic.

Table 1 gives Type I errors and confidence interval lengths for the matched and unmatched versions

across several parameter combinations (focusing on the case with n = 100, p = 2, strong propensity signal,

and propensity scores estimated in-sample). When well-specified regression models are fit, the matched and

unmatched studies show similar performance in the absence of Z-dependence, with slightly more precise

confidence intervals coming from the unmatched study; this makes sense because the unmatched study has

more data available with which to estimate the outcome model. However, when regression adjustment is

absent or based on an incorrect model, the matched design has substantially increased precision relative to

the unmatched designs, with confidence intervals less than half as large in some cases. We note also that the

Type I errors for the unmatched cases without correctly-specified regression adjustment tend to lie orders

of magnitude below 0.05, suggesting that the inference achieved in these cases is punishingly conservative.

Evidently, matching offers potential for important precision gains relative to unmatched studies (at the cost

of introducing z-dependence) even when both employ covariate-adaptive inference.

Finally, we probe the possibility that matching confers robustness to incorrect model assumptions using

a new simulation setting with a badly misspecified propensity score. The covariate matrix X is generated

identically to previous simulations, by drawing p vectors of independent standard normal random variables,

but the true propensity score here is given by

logit [P (Z = 1 | X)] = log

(
0.2

0.7

)
+ 1{X1X2 ≥ 0}, (10)

Because of the indicator function on the sign of an interaction term X1X2, two very distinct values of the

propensity score are present, associated with subjects in different quadrants of (X1, X2) space, but each

covariate is marginally uncorrelated with treatment. The outcomes are drawn from a linear model with a

zero intercept, additive noise, and the same function of covariates on the right-hand side. Table 2 presents

the Type 1 errors for both the matched and unmatched version under the misspecified model (with n = 100,

p = 2, and propensity scores estimated in-sample). The unmatched study exhibits uncontrolled Type I errors
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due to poor propensity score estimation. However, in the matched setting, Type I errors remain close to 0.05

because matched pairs with small covariate distances tend also to group subjects in the same quadrant of

the (X1, X2) space, leading to closely-matched propensity scores. Clearly for at least some settings matching

confers robustness benefits on covariate-adaptive randomization inference not enjoyed by unmatched studies.

6.4 Removing Z-dependence: a small example

The simulations of Sections 6.2-6.3 showed that Z-dependence poses a problem for settings where the

original observations are sampled independently from a population prior to matching. One may argue that

matching itself is best understood as a preprocessing or data cleaning step and that the model of independent

assignments in matched pairs is as plausible as the model of independently sampling of observations (Ho

et al. 2007), and under such a setting the results presented above without Z-dependence are most relevant

for guiding practice. However, a method that can address Z-dependence under independent sampling of

observations seems desirable.

With unlimited computing power, it would be trivial to construct such a method. For each draw from

the null distribution, one could take the newly-generated vector of treatment assignments Z∗ and repeat the

original matching algorithm using it. If the same set of matched pairs is obtained, then Z∗ is a valid draw

from the conditional distribution of treatment given ZM; on the other hand, if a different set of matched

pairs is obtained then Z∗ is outside the support of the true conditional distribution.

We apply this procedure in an example generated from the same data-generating process described for

the unmatched vs. matched comparisons in Section 6.3 but with n = 30, p = 2, and true propensity

scores. In the particular random instance we study, there are 10 treated subjects, and 210 = 1024 unique

permutations of treatment assignment in the resulting ten matched pairs. Rerunning the matching algorithm

with each of these permutations in turn, we find that only 300 lead to the same match. Those rejected

looked systematically different than those included, with an average difference-in-means values of -0.40 vs.

1.22 respectively. The original covariate-adaptive test produces a p-value of 0.044 while the reduced-support

test gives a p-value of 0.133 which is no longer significant at the 0.05 level. Repeating this analysis a total

of 2000 times, we find the estimated Type I error of the original covariate-adaptive procedure to be 0.311

compared to 0.0421 in the reduced-support case. Unfortunately, this strategy does not scale easily to more

realistically-sized datasets due to the explosion of the number of possible permutations and the need to

compute a match for each. For more discussion, see Section 8.

7 Performance in case studies

7.1 Welders and genetic damage

We now apply the tools developed for covariate-adaptive randomization inference to a real dataset due

originally to Costa et al. (1993). This dataset compares the rate of DNA-protein cross-links, a risk factor

for gene expression problems, among welders and controls in other occupations. In addition to DNA-protein

linkage, age, race, and smoking behavior are measured for all subjects (each of whom is male). Rosenbaum

(2010a) analyzed this data by matching each of the 21 welders to one of the 26 controls. Here we replicate

this matching approach and consider the impact of covariate-adaptive randomization inference in place of

the uniform randomization inference typically used for pair-matched designs.

Following Rosenbaum, we estimate the propensity score using logistic regression against the three co-

variates discussed above and match each welder to a control using a robust Mahalanobis distance with a

propensity score caliper equal to half the standard deviation of the fitted propensity score values across the
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dataset. Since it is not possible to match all 21 welders within the caliper, a soft caliper is used in which

violations of the caliper are penalized linearly.

As noted by Rosenbaum, pair matching cannot remove all confounding in this data, particularly because

only five of the 26 controls are removed by the matching process. Table 3 shows the pair differences on

each of the three matching variables and the estimated propensity score, with average discrepancies at the

bottom. Note that although the average discrepancies are small on all variables (the average difference in age

is only 1.5 years), in the large majority of pairs the treated unit has a slightly higher propensity score, several

with differences larger than 0.1. In contrast to standard uniform randomization inference, covariate-adaptive

randomization inference will pay attention to these differences.

Using the difference in mean DNA-protein linkage between welders and matched controls as a test statis-

tic, we contrast uniform randomization inference structured by the matched pairs with covariate-adaptive

inference based on the estimated propensity score. The density plot in Figure 3 illustrates the difference

between the two null distributions. As the consistent positive sign on the propensity score discrepancies

would suggest, the covariate-adaptive randomization distribution is shifted to the right of the uniform ran-

domization distribution, showing how accounting for residual propensity score differences leads us to expect

larger values even under the null.

The data was collected based on a hypothesis that welders experience elevated levels of genetic damage

compared to controls, so we conduct a one-sided test of the Fisher sharp null hypothesis of no difference in

DNA-protein linkage due to welder status. Using the null distributions shown above, this corresponds to

calculating the proportion of null draws that exceed the observed value of 0.64. For the uniform distribution

this is 0.015, and for the covariate-adaptive distribution it is 0.029. The covariate-adaptive distribution

adjusts for the residual propensity score differences in the pairs, which are biased towards treatment for the

welders who actually experienced treatment; as such, it recognizes that part of the apparent treatment effect

in the uniform test is likely a result of bias and concludes that the weight of evidence in favor of a treatment

is weaker. While both tests are significant at the 0.05 level in this case, if researchers had been interested in

effects of both signs and had conducted a two-sided test the covariate-adaptive test does not reject in this

case. As such, failure to account properly for propensity score discrepancies in the two-sided case leads to an

anticonservative result in which the null hypothesis is rejected when most properly it should not be. When

a sensitivity analysis is run, the uniform analysis is similarly more optimistic about evidence for a treatment

effect, reporting similar qualitative results for Γ up to 1.09, while the covariate-adaptive analysis allows a

maximum value of only 1.05.

7.2 Right-heart catheterization and death after surgery

We next conduct covariate-adaptive randomization inference in the right-heart catheterization data of

Connors et al. (1996). In this study the effectiveness of the right-heart catheterization (RHC) procedure for

improving outcomes of critically ill patients was assessed by matching patients receiving the procedure to

those not receiving it and comparing mortality rates. We follow the original authors by fitting a propensity

score on 31 variables measured at intake and forming matches only between patients with propensity scores

that differ by no more than 0.03. Unlike the authors, who use a greedy matching procedure, we use an

optimal matching procedure that minimizes a robust Mahalanobis distance formed from the 31 variables in

the propensity score model within propensity score calipers, and also matches exactly on primary disease

category. Not all of the 2,184 RHC patients can be matched to distinct controls within the caliper, and in

this case we exclude the minimal number of RHC patients necessary for the caliper to be respected. This
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leaves us with 1,538 matched pairs, which is still a substantial improvement on the match conducted by the

authors, which had only 1,008 pairs. Table 4 summarizes the effectiveness of the match in removing bias

on the observed pre-treatment variables. The numbers shown are standardized treatment-control differences

in means for each variable, both before (first column) and after (second column) matching. Only the

variables with the 25 largest pre-matching absolute standardized differences are shown (but post-matching

standardized differences remain below 0.04 for all variables not shown). Clearly, although large differences

between groups are present in the raw data for numerous variables, notably APACHE risk score (aps1), mean

blood pressure (meanbp1), and P/F oxygen ratio (pafi1), matching transforms these into small differences.

Of special note is the row showing balance on the estimated propensity score, which shows a reduction from

a standardized difference exceeding 1 to a value of only 0.04.

To assess the role of the caliper in influencing the study’s results, we construct an alternative matched

design using a generalized version of optimal subset matching (Rosenbaum 2012), as implemented in the R

package rcbsubset. Instead of using a propensity score caliper, this match enforces exact balance on ventiles

of the propensity score, ensuring close balance on the propensity score without imposing hard restrictions on

the propensity score discrepancy within a matched pair. Treated units are excluded from the match if their

inclusion induces the average Mahalanobis distance across matched pairs to cross a specific threshold given

by a tuning parameter; we chose a value of the tuning parameter that induces a similar overall sample size

as in the calipered match (1,507 matched pairs). Balance on important pre-treatment variables is similar to

that in the caliper match, as shown in the third column of Table 4. However, there are important differences

between the two matches at the level of the pairs, as shown in Table 5; the caliper match achieves much

greater similarity of propensity scores within pairs, at the cost of achieving slightly reduced similarity on

a range of other variables. In practice the caliper match is likely to be more attractive, since it achieves a

major improvement in propensity score control at the cost of relatively minor changes in other variables, but

both matches are Pareto optimal in the sense of Pimentel and Kelz (2020).

The outcome of interest in this study is patient death within thirty days. For each match we conduct

four outcome analyses: uniform and covariate-adaptive randomization inference for the difference in means,

and uniform and covariate-adaptive randomization inference for a regression-adjusted difference-in-means

statistic (Rosenbaum 2002a). Although the outcome is binary, the mortality rate is sufficiently high that

an ordinary least-squares fit is reasonable. Table 6 summarizes the results of the analysis, providing point

estimates, p-values, and estimated confidence intervals from all four approaches, with the point estimates

for the covariate-adaptive procedures shifted by the mean of the covariate-adaptive null distribution given

in formula (3). In addition, results from a sensitivity analysis are reported, giving the largest values of Γ

consistent with a rejection of the null hypothesis (the “threshold” Γ).

Results are generally consistent with an increased risk of mortality associated with right-heart catheter-

ization, with all confidence intervals contained in the range 3%-11%. As in the welders data, the covariate-

adaptive procedure reports a treatment effect slightly smaller than the uniform procedure; however, in this

case the magnitude of the difference is small compared to the overall size of the effect so the methods all agree

qualitatively. Notice also that the regression-adjusted test statistics have narrower confidence intervals than

the raw risk differences, in line with principles described in Rosenbaum (2002a). The regression-adjusted

analyses lead to smaller estimates of the treatment effect which explains their greater sensitivity to unmea-

sured bias. The caliper matching has more stable threshold Γ values across analyses, consistent with the

tighter control of the propensity score it achieves. For the subset match, the covariate-adaptive procedure

tends to increase the threshold Γ despite having smaller treatment effects; this is because it also lowers the
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variance of the estimator and leads to tighter confidence intervals.

8 Discussion

Uniform randomization inference for matched studies relies, often at least in part implicitly, on a model in

which unobserved confounders are absent, in which propensity scores are matched exactly, and (depending

on the sampling model) in which the matched sets selected are conditionally independent of the original

treatment vector. Substantial failures of these assumptions lead to substantial problems with Type I error

control and require some form of correction. Covariate-adaptive randomization provides such correction by

altering permutation probabilities in the randomization test based on estimated propensity scores. Relative

to the näıve analysis for the difference-in-means statistic, covariate-adaptive randomization tends to restore

approximate control of Type I error in many settings and constitutes an attractive option alongside ap-

proaches based on regression-adjusted test statistics and matching calipers. Furthermore, the combination

of matching and covariate-adaptive randomization inference offers value not provided by incorporating esti-

mated propensity scores into permutation procedures for unmatched studies. Specifically, matched designs

can enjoy greatly improved precision relative to unmatched studies with similar non-uniform permutation

procedures, and are also more robust to misspecification of the propensity score, although they are subject

to an additional source of Type I error violations (z-dependence) to which unmatched studies are not. We

note also that the sensitivity analysis guarantees we develop in Section 5 for matched designs do not appear

to extend easily to unmatched studies, due to the greater complexity of the conditional distribution of the

treatment variable.

The applied examples show that covariate-adaptive randomization inference need not change the qual-

itative results of an observational study, especially when the study designer has given careful attention to

propensity score discrepancies. In these settings the covariate-adaptive procedure can still be a productive

robustness check to help build confidence that lingering propensity score discrepancies are not corrupting

the study’s key findings.

Covariate-adaptive inference raises several interesting future directions for theory and methods devel-

opment. First, the theoretical guarantee given in this work is limited both by a strong restriction on the

relative sample sizes of the analysis sample and of a hypothetical pilot sample used to fit the propensity

score. Clarifying whether this assumption can be relaxed and whether same-sample estimation of some kind,

such as cross-fitting, could be applied instead would be a valuable contribution. For the difference-in-means

estimator, one likely challenge is that the bias of the covariate-adaptive randomization distribution based

on the estimated propensity score may not shrink to zero at a strictly faster rate than the variance when

propensity-fitting and analysis samples are of a similar order, so that preserving valid inference may require

widening confidence intervals or reducing the significance threshold α to account for the bias.

Secondly, covariate-adaptive randomization inference offers opportunities to develop stronger model-based

guidance about the relative importance of the propensity score and the prognostic score in the construction

of matched designs. Currently many design objectives proposed as bases for constructing matched sets,

including mean balance, caliper matching, and multivariate distance matching have a heuristic element in

the sense that it is not clear for which class of overall models for treatment and outcome they provide optimal

results. While Kallus (2020) lays out a helpful overarching framework under sampling-based inference,

unifying descriptions are not present for randomization-based inferences in matching. Covariate-adaptive

inference provides important progress towards this goal by clarifying the impact of inexact propensity score

matching on the operating characteristics of the ultimate estimate and associated test. Power analysis
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and design sensitivity calculations (Rosenbaum 2010b) based on the covariate-adaptive model, if developed,

would provide valuable design-stage insight about how to properly use the propensity score in constructing

the matches, and could provide more definitive guidance to users selecting among many Pareto optimal

matches (Pimentel and Kelz 2020).

Thirdly, the evidence provided by our simulation study suggests that Z-dependence may play a limited but

non-trivial role in failures of type I error control for matched randomization tests. While from a technical

standpoint it may be sufficient toassume the matched pairs are generated independently by some model

(as opposed to assuming a model on the original observations), this makes it difficult to develop formal

understanding of how choices about matching influence inference. In particular, some statistical model on

the original subjects of the study is needed to obtain the strong model-based guidance about the proper

construction of matched sets discussed in the previous paragraph. Z-dependence differs fundamentally from

propensity score discrepancies in the sense that it alters the support of the randomization distribution,

not just the values of nonzero permutation probabilities, and new methods. The procedure outlined in

Section 6.4, in which each permutation is checked to see if it produces the same match, works well for very

small study sizes. Improving its computational performance seems possible; in particular, it should not be

necessary to create an optimal match for each separate permutation, merely to check whether the current

match is optimal or not, and this task may be easier to accomplish efficiently. We view developing such

checks for commonly-used matching procedures as a promising future research direction.

Finally, while our development has focused exclusively on sharp null hypotheses under which both po-

tential outcomes are known for all individuals, there is substantial practical interest in testing weak null

hypotheses which allow for unknown heterogenous treatment effects and merely restrict the averages of such

effects. Several threads of recent work have demonstrated that under mild conditions inference strategies de-

veloped to test sharp null hypotheses may also be valid tests for appropriately-chosen weak null hypotheses.

An important task is to determine whether these ideas work for covariate-adaptive randomization inference.

Notably, Caughey et al. (2021) showed that permutation tests of a sharp null may be reinterpreted as tests

of a weak null describing maxima of treatment effects rather than averages. Since Caughey et al. place

almost no restrictions on the permutation distribution and only mild conditions on the test statistic (all

satisfied by the difference-in-means estimator we consider above), we anticipate that this approach should

apply almost without modification to covariate-adaptive randomization tests. Fogarty (2020; 2022) describes

sharp-null-style permutation tests and sensitivity analyses that are valid for the more traditional weak null

hypothesis of zero average effect. These tests generally require studentized test statistics, and are much

harder to construct for designs with matched sets containing more than two individuals. As such, more

substantial extensions of our existing work are needed to see if the same ideas work under covariate-adaptive

randomization inference.
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Specification Type I Error Confidence interval length

Z-model Y-model Regression? Unmatched Matched. Z-dependence? Unmatched Matched. Z-dependence?

With Without With Without

Linear Linear No 0.000 0.284 0.045 8.68 3.41 3.43

Linear Linear Yes 0.053 0.166 0.047 1.81 5.73 2.01

Linear Nonlinear No 0.001 0.037 0.051 7.70 2.11 3.22

Linear Nonlinear Yes 0.041 0.014 0.052 4.76 3.57 2.03

Nonlinear Linear No 0.000 0.258 0.056 8.85 3.39 5.22

Nonlinear Linear Yes 0.048 0.265 0.055 1.78 5.89 1.90

Nonlinear Nonlinear No 0.008 0.044 0.064 7.96 2.09 5.16

Nonlinear Nonlinear Yes 0.217 0.040 0.056 4.85 3.50 1.89

Table 1: Simulation results comparing matched and unmatched studies employing covariate-adaptive randomization
inference. The first three columns describe distinct simulation settings (for n = 100 and p = 2 with other parameters
given as described in Section 6.3). The middle three columns show Type I error computed as the proportion of
rejections in a nominal level-0.05 test against a larger alternative across 5000 iterations; the first column gives the
value for covariate-adaptive randomization inference in the full dataset without matching following Branson and
Bind (2019), and the second two give values for covariate-adaptive randomization after matching (with and without
Z-dependence) as detailed in Section 6.2. The final three columns show the average of two-sided confidence interval
length (computed by inverting the two-sided version of the corresponding test) computed over the same set of
iterations.

Type I Error

Regression? Unmatched Matched, with Z-dependence Matched, no Z-dependence

No 0.135 0.072 0.064

Yes 0.139 0.059 0.058

Table 2: Simulation results comparing the robustness of matched and unmatched studies employing covariate-
adaptive randomization inference to misspecification of the propensity score. Data are generated from a process with
misspecification in both the propensity score and the outcome model as described in Section 6.4. Type I errors are
computed as the proportion of rejections in a nominal level-0.05 test against a larger alternative across 5000 iterations.
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27
n=100, p=2

Z−model Y−model Oracle Estimate Uniform Oracle Estimate Uniform Caliper? Regression?

With Z-dependence Without Z-dependence
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n=100, p=5
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n=1000, p=10
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Figure 1: Type I error results for uniform and covariate-adaptive inference across multiple simulation settings. Each
of the three tables corresponds to a separate dataset size. Within each table the first three columns contrast three
inferential approaches when the subjects are subject to Z-dependence; the last three columns do the same comparison
when treatment assignments within matched sets are permuted after matching to eliminate Z-dependence. The
rows of the table demonstrate different combinations of calipers and regression adjustment and correct or incorrect
specification of treatment and outcome models. Numbers give type I error rates with colors associated to their
magnitude; triangles indicate that a one-sample z-test rejected the null hypothesis that the error rate was 0.05 (under
a Bonferroni correction scaled to the number of results across the entire figure), with a large upper triangle indicating
a positive z-statistic and a small lower triangle indicating a negative z-statistic.
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n=100, p=2

Z−model Y−model Oracle Estimate Uniform Oracle Estimate Uniform Caliper? Regression?
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n=1000, p=10
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Figure 2: Average confidence interval length for uniform and covariate-adaptive inference across multiple simulation
settings for cases with approximate control of type I error at 0.05 or less. Within each table the first three columns
contrast three inferential approaches when the subjects are subject to Z-dependence; the last three columns do the
same comparison when treatment assignments within matched sets are permuted after matching to eliminate Z-
dependence. The rows of the table demonstrate different combinations of calipers and regression adjustment and
correct or incorrect specification of treatment and outcome models.
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African-American Age Smoker PS

Pair 1 0.00 -6.00 0.00 0.12

Pair 2 0.00 -3.00 0.00 0.05

Pair 3 0.00 4.00 0.00 0.05

Pair 4 0.00 -8.00 0.00 0.16

Pair 5 0.00 0.00 0.00 0.00

Pair 6 0.00 3.00 0.00 -0.06

Pair 7 0.00 -3.00 0.00 0.06

Pair 8 0.00 -2.00 0.00 0.17

Pair 9 0.00 3.00 0.00 -0.06

Pair 10 0.00 -5.00 0.00 0.06

Pair 11 0.00 -3.00 0.00 0.06

Pair 12 0.00 -5.00 0.00 0.10

Pair 13 0.00 -5.00 0.00 0.11

Pair 14 0.00 -5.00 0.00 0.10

Pair 15 0.00 0.00 0.00 0.00

Pair 16 0.00 -4.00 0.00 0.08

Pair 17 0.00 1.00 0.00 -0.02

Pair 18 0.00 1.00 0.00 -0.01

Pair 19 -1.00 7.00 0.00 0.04

Pair 20 0.00 -5.00 0.00 0.10

Pair 21 0.00 4.00 0.00 0.05

Average -0.05 -1.48 0.00 0.06

Table 3: Treated- control differences in matched pairs in the welders dataset.
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Figure 3: Smoothed densities for the uniform randomization distribution of the difference in means statistic and
the covariate-adaptive randomization distribution in the welders dataset, with the value of the observed statistic.
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Before Matching Caliper Match Subset Match

Est. Propensity Score 1.254 0.002 0.033

Acute Physiology Score 0.501 0.016 0.068

Mean Blood Pressure -0.455 -0.026 -0.058

PaO2/(.01*FiO2) -0.433 0.001 0.030

Serum Creatinine 0.270 0.021 0.044

Hematocrit -0.269 0.001 -0.008

Weight (kg) 0.256 0.002 -0.017

PaCO2 -0.249 0.004 -0.013

MOSF w/Sepsis (secondary) 0.230 -0.036 -0.014

Albumin -0.230 -0.018 -0.021

Predicted Survival -0.198 -0.031 -0.049

MOSF w/Sepsis (primary) 0.172 0.000 0.000

Respiration Rate -0.165 -0.002 -0.011

Heart Rate 0.147 0.027 0.000

Bilirubin 0.145 -0.013 0.010

Heart disease 0.139 0.011 0.014

MOSF w/Malignancy (secondary) -0.135 0.009 -0.017

Respiratory Disease -0.128 -0.007 -0.020

Serum pH -0.120 -0.002 -0.044

Missing ADL Score 0.117 -0.001 0.005

SUPPORT Coma Score -0.110 0.045 0.022

Neurological disease -0.108 0.006 0.001

Serum Sodium -0.092 -0.011 -0.001

Years of Education 0.091 0.022 0.024

Sepsis 0.091 0.012 0.017

Table 4: Standardized differences in means before matching and under two different matches for the 25 variables
with largest initial imbalance in the right-heart catheterization dataset.

Caliper Match Subset Match

Avg. Propensity Score Discrepancy 0.016 0.166

Max Propensity Score Discrepancy 0.030 0.672

Prop. Matched Exactly, Male Sex 0.351 0.297

Avg. Discrepancy, Age 13.469 10.892

Avg. Discrepancy, Mean Blood Pressure 27.809 25.506

Avg. Discrepancy, Heart Rate 32.677 28.858

Avg. Discrepancy, Respiration Rate 11.614 10.426

Avg. Discrepancy, PaO2/(.01*FiO2) 76.651 75.882

Table 5: Matched pair quality under two different matches for selected variables the right-heart catheterization
dataset.
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Caliper match Subset match

Uniform Covariate-Adaptive Uniform Covariate-Adaptive

Risk difference 0.074 0.073 0.068 0.062

Lower conf. limit 0.043 0.041 0.038 0.034

Upper conf. limit 0.106 0.104 0.098 0.089

Threshold Γ 1.12 1.12 1.11 1.12

Risk difference, OLS-adjusted 0.051 0.051 0.055 0.054

Lower conf. limit, OLS-adjusted 0.022 0.022 0.027 0.028

Upper conf. limit, OLS-adjusted 0.081 0.081 0.083 0.079

Threshold Γ, OLS-adjusted 1.06 1.06 1.08 1.09

Table 6: Outcome analysis for 30-day mortality in the right-heart catheterization data. Results are shown for
both the caliper match and the subset match, with and without regression adjustment, and using both uniform and
covariate-adaptive inference.
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A Appendix

A.1 Inverse propensity weighting estimator

One frustrating aspect of the difference-in-means statistic discussed in Section 3.2 in the context of

covariate-adaptive randomization inference is that it is no longer unbiased for the constant additive effect of

treatment τ in model (4) (as it would be in a randomized trial or a study with exact matching). While the

maximum p-value estimator described in Section 3.3 enjoys many good properties, its expectation in finite

samples is difficult to characterize. Instead, consider the following estimator, based on inverse probability

weighting (Mukerjee et al. 2018). For mathematical convenience, we focus on the case of matched pairs and

assume nk = 2 throughout this section:

TIPW (ZM,YM) =
1

K

K∑
k=1

1

2

(
2∑
i=1

ZkiYki
pki

−
2∑
i=1

(1− Zki)Yki
1− pki

)

=
1

2K

K∑
k=1

(Yk1 − Yk2)
Zk1 − pk1

pk1(1− pk1)

where pki is defined in Section 3.1 in the main manuscript. When true propensity scores are used to

calculate the pki terms in the denominator, this estimator is unbiased for τ under the constant additive

model (equation (4) in the main manuscript) under treatment distributed as in equation (2) in the main

manuscript. Covariate-adaptive randomization tests and associated confidence intervals could be conducted

using this test statistic instead of the difference-in-means. Some aspects of the process such as inverting the

confidence interval might become more difficult — for example, the shortcut formula for quickly inverting test

statistics in Section 3.3 would become more complicated – while some aspects would be easier; in particular,

the test statistic itself could be used as a point estimate. The sensitivity analysis results of Section 5 apply

to any sum statistic T (Z,Y) =
∑K
k=1

∑nk

i=1 Zkifki where fki is some function of Y; the inverse weighting

estimator qualifies (with fki = (Yki − Yk(3−i))/pki), so sensitivity analysis works for this estimator as well.

To get more insight into the pros and cons of the two estimators we compare their expectations and

variances when a constant additive effect τ is present:

E(T (ZM,YM))= τ +
1

K

K∑
k=1

(pk1 − pk2)(Yk1(0)− Yk2(0))

E(TIPW (ZM,YM))= τ

V ar(T (ZM,YM)) =
1

K2

K∑
k=1

4pk1(1− pk1)(Yk1(0)− Yk2(0))2

V ar(TIPW (ZM,YM)) =
1

K2

K∑
k=1

[(Yk1(0)− Yk2(0)) + (1− 2pk1)τ ]2

4pk1(1− pk1)
.

While TIPW is clearly superior to the difference in means in terms of bias, it may also exhibit a much

larger variance. Notice that for any p ∈ (0, 1), 4p(1 − p) ≤ 1 ≤ 1/ (4p(1− p)), indicating that when τ = 0,

V ar(T (ZM,YM)) is always smaller that V ar(TIPW (ZM,YM)) unless pk1 = 1/2 or Yk1 = Yk2 for any k.

In addition, when τ is sufficiently large in magnitude relative to the quantities Yk1(0) − Yk2(0) the inverse

weighted estimator will also exhibit a larger variance.

as in Section 6.3 of the main manuscript (n = 100, p = 2, strong propensity signal, propensity scores
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estimated in-sample1) , and we set the true treatment effect τ to each of four values: 0, 1, 10, and 100.

Table 7 compares the performance of the maximum p-value estimator and the IPW estimator under these

conditions. In scenarios without Z-dependence, estimates calculated using the maximum p-value and IPW

strategies appear approximately unbiased while DiM estimates are biased. The maximum p-value estimates

tend to be less variable than the IPW estimates, and in cases where IPW performs better, the differences

are small. In addition, as shown in the above variance calculation and simulation with τ = 100, the variance

of IPW estimator explodes with very large τ while the variance of the maximum p-value and DiM estimator

do not change with τ . When Z-dependence is present, all three estimators will have bigger biases but the

maximum p-value still performs better than IPW in general, and both are much better than DiM.

A.2 Proof of Theorem 2

Proof. We use Pinsker’s inequality to bound the quantity dTV (Pλ, Pλ̂) by the square root of the sum of the

Kullback-Leibler divergences between true and estimated conditional distributions of treatment for each unit

in the study, then use a Taylor expansion to show that this quantity converges in probability to zero. In

combination with Theorem 1,this suffices for the result.

We let β̂ represent the maximum likelihood estimate of β obtained from the size-N pilot sample.

d2
TV (Pλ, Pλ̂) ≤ 1

2

n∑
i=1

dKL

(
Pλi

, Pλ̂i

)

=
1

2

n∑
i=1

E log


(

1 + exp[−β̂Txi]
1 + exp[−βTxi]

)Zi
(

1 + exp[β̂Txi]

1 + exp[βTxi]

)1−Zi


=

1

2

n∑
i=1

E

{
Zi log

(
1 + exp[−β̂Txi]
1 + exp[−βTxi]

)
+ (1− Zi) log

(
1 + exp[β̂Txi]

1 + exp[βTxi]

)}

=
1

2

n∑
i=1

E

{
1

1 + exp[−βTxi]
log

(
1 + exp[−β̂Txi]
1 + exp[−βTxi]

)
+

1

1 + exp[βTxi]
log

(
1 + exp[β̂Txi]

1 + exp[βTxi]

)}

=
1

2

n∑
i=1

{
C1if(−β̂Txi) + C2if(β̂Txi) + C3i

}
= g(β̂).

where

C1i = 1/(1 + exp[−βTxi]) ∈ (0, 1)

C2i = 1/(1 + exp[βTxi]) ∈ (0, 1)

C3i = −C1i log(1 + exp[−βTxi])− C2i log(1 + exp[βTxi])

f(b) = log(1 + exp(b))

We use a first-order multivariate Taylor expansion to understand the behavior of the vector-valued non-

1Section 6.3’s simulation setup turned out to be a more interesting case than Section 6.2’s, which is similar but with a weaker
outcome signal. Initial experiments with the latter setup revealed almost identical performance between the estimators.
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linear function g around the vector βTX. First note that

f ′(b) =
exp(b)

1 + exp(b)
=

1

1 + exp(−b)

f ′′(b) =
exp(−b)

(1 + exp(−b))2
=

1

exp(b) + 2 + exp(−b)
≤ 1

2

so:

∇g(βTX) =
1

2

n∑
i=1

{
−C1if

′(−βTxi) + C2if
′(βTxi)

}
xi =

1

2

n∑
i=1

{−C1iC2i + C2iCi1}xi = 0.

Hg(β
TX) =

1

2

n∑
i=1

{
C1if

′′(−βTxi) + C2if
′′(βTxi)

}
xix

T
i

Taylor’s theorem gives us the following:

g(β̂) = g(β) +∇g(βTX)T (β̂ − β) +R2

= 0 + 0 +R2

Furthermore, using the Lagrange bound we can bound the second-order remainder R2 (letting |A| represent

a matrix with each of its elements replaced by its absolute value). Specifically, for some β̃ near β, we have

the following:

g(β̂) ≤ (β̂ − β)T |Hg(β̃)|(β̂ − β)

≤ 1

2

n∑
i=1

∣∣C1if
′′(−βTxi) + C2if

′′(βTxi)
∣∣ (β̂ − β)T |xixTi |(β̂ − β)

≤ 1

2

n∑
i=1

(
1

2
+

1

2

)
(β̂ − β)T |xixTi |(β̂ − β)

=
1

2

n∑
i=1

[√
N(β̂ − β)T |xi|

]2
N

(11)

Since β̂ is a maximum likelihood estimate fitted on a sample of size N , for any xi the quantity
√
N(β̂−β)Txi

converges in distribution to a normal random variable with mean zero and variance xTi Σxi for some variance-

covariance matrix Σ, and by the continuous mapping theorem, each term in summation (11) converges in

distribution to
WxTi Σxi

N

where W ∼ χ2
1. Since xi is chosen from compact support, there is a uniform upper bound σ̃2 on these

variances xTi Σxi for all i = 1, . . . , n. Then for any ε > 0 and any δ > 0, we may choose Nε,δ sufficiently large

to ensure that for all N ≥ Nε,δ,

P

(
W >

(
N

σ̃2

)
δ

)
< ε

Thus each term in summation (11) is Op

(
σ̃2

N

)
, and in turn the entire summation is Op

(
nσ̃2

N

)
, and it square
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root is Op

(√
nσ̃2

N

)
. Since limn−→∞ n/N = 0, this is sufficient for

√
g(β̂) to converge in probability to zero.

To complete the proof, fix any ε > 0. We now establish that there exists Nε such that for all N > Nε,

P (pλ̂N ,n
≤ α)− α < ε.

which suffices for the desired result. To do this, note that the convergence of dTV (Pλ, Pλ̂) to zero in

probability implies that there exists N ′ such that for all N > N ′,

P (dTV (Pλ, Pλ̂) > ε/2) < ε/2.

Then when N > N ′, by Theorem 1:

P (pλ̂N ,n
≤ α)− α ≤ dTV (Pλ, Pλ̂)

= 1{dTV (Pλ, Pλ̂) ≤ ε/2}dTV (Pλ, Pλ̂) + 1{dTV (Pλ, Pλ̂) > ε/2}dTV (Pλ, Pλ̂)

so

Eλ̂

[
P (pλ̂N ,n

≤ α)− α
]
≤ Eλ̂

[
1{dTV (Pλ, Pλ̂) ≤ ε/2}dTV (Pλ, Pλ̂)

]
+ Eλ̂

[
1{dTV (Pλ, Pλ̂) > ε/2}dTV (Pλ, Pλ̂)

]
P (pλ̂N ,n

≤ α)− α ≤ ε/2 + Pλ̂(dTV (Pλ, Pλ̂) > ε/2)

< ε/2 + ε/2 = ε

as desired. As indicated, expections are taken with respect to the sampling distribution of the estimated

propensity scores, which does not affect the left-hand side because it is a constant. The second-to-last line

follows from the law of total probability and the upper bound of 1 on the total variation distance.

A.3 Proof of Theorem 3

Proof. Assuming model (6) from the main manuscript for treatment assignment and test statistic
∑K
k=1

∑nk

i=1 Zkifki(Y) =

ZT f , define:

ω(f ,u) = EZ{h(Z, f)} =
∑
z∈Ω

h(z, f)P (Z = z) =
∑
z∈Ω

h(z, f)

K∏
k=1

exp
{
zk
T (κk + γuk)

}∑
b∈Ωk

exp {bT (κk + γuk)}

where h(z, f) = 1
{
zT f ≥ C

}
. By choosing C equal to the critical value for our one-sided test, we obtain

ω(f ,u) = αadapt(Y,u), so it will be sufficient to show that

min
u′∈U−

ω(f ,u′) ≤ ω(f ,u) ≤ max
u∈U+

ω(f ,u). (12)

To establish (12), we make two separate sub-arguments. First, we prove the following lemma analogous

to Proposition 18 of Rosenbaum (2002b), which suffices to show that extrema are achieved only when the

vector u is binary. Secondly, we argue that at the maximizing (minimizing) value of u, in any matched set

k, fki < fkj implies uki ≤ ukj (uki ≥ ukj).

Lemma 1. Let e`i be a vector in Rn containing a one in index i of matched set ` and zeroes in all other

indices. For each fixed f ,u, and i, ω(f ,u + δe`i) is monotone in δ.
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Proof. Let Ω1 be the set of vectors b ∈ Ω for which b`i = 1, and let Ω0 = Ω−Ω1.

ω(f ,u + δe`i) =

∑
z∈Ω h(z, f) exp

{
zT (κ+ γu + γδe`i)

}∑
b∈Ω exp {bT (κ+ γu + γδe`i)}

=

∑
z∈Ω0

h(z, f) exp
{
zT (κ+ γu)

}
+
∑

z∈Ω1
h(z, f) exp

{
zT (κ+ γu) + γδ

}∑
b∈Ω0

exp {bT (κ+ γu)}+
∑

b∈Ω1
exp {bT (κ+ γu) + γδ}

=
A0 + exp(δγ)A1

D0 + exp(δγ)D1

where Ai, Di do not depend on δ and the Di are all strictly positive. From this point on the proof is identical

to that of Proposition 18 in Rosenbaum (2002b): the partial derivative with respect to δ (computed below)

has constant sign, which is sufficient for monotonicity.

∂ω(f ,u + δe`i)

∂δ
=

(D0A1 −A0D1)γ` exp(γδ)

[D0 +D1 exp(γδ)]
2

Lemma 1 tells us that if there exists some u-element uki ∈ (0, 1), then either increasing uki to one or

decreasing it to zero will increase (or at least not decrease) the associated value of ω(f ,u); similarly, shifting

uki to the opposite extreme will decrease (or at least not increase) ω(f ,u) . As such we can restrict attention

to binary u.

Now consider the ordering of the elements of u at the extrema. We present the proof for the maximum

only, since the case of the minimum proceeds by near-identical arguments. It suffices to show that when

h(z, f) = g(z, f), the solution u to maxu∈[0,1]n ω(f ,u) satisfies uki ≤ ukj whenever fki < fkj .

Suppose not. Then there exists at least one stratum k with indices j, j′ such that ukj > ukj′ but fkj < fkj′ .

We expand ω(f ,u) as follows. We index by k (−k) to select subvectors of vectors in Rn containing only

elements in (not in) stratum k, and we let Ωk and Ω−k represent the set of all possible values for zk and

z−k.

ω(f ,u) =
∑
z∈Ω

h(z, f)P (Z = z)

=
∑

zk∈Ωk

P (Zk = zk)
∑

z−k∈Ω−k

h(z, f)P (Z−k = z−k)

=
∑

zk∈Ωk

P (Zk = zk)E
[
1
{
zT−kf−k + zTk fk > C

}∣∣Zk = zk
]

Let h∗(zk, fk) = E
[
1
{
zT−kf−k + zTk fk > C

}∣∣Zk = zk
]
. Holding u−k fixed, we can rewrite the problem of

maximizing ω(f, u) over uk as follows (abusing notation slightly to let eki indicate the vector in Rnk with

zeroes at all indices except for a one at index i):

max

∑nk

i=1 h
∗(eki, fk) exp {κki + γuki}∑nk

i=1 exp {κki + γuki}
s.t. uk ∈ [0, 1]nk

Following a similar argument of Zhao et al. (2019), we now use the Charnes-Cooper transform to write it as

a linear program by defining wki = exp(γuki)∑nk
i=1 exp{κki+γuki}

and t = 1∑nk
i=1 exp{κki+γuki}

, which gives the following
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equivalent form:

max

nk∑
i=1

h∗(eki, fk) exp(κki)wki

s.t.

t ≤ wki ≤ exp(γ)t

nk∑
i=1

exp(κki)wki = 1

t ≥ 0.

Let (wk, t) be the optimal solution derived from uk. The ordering of the wkis is identical to the ordering

of the ukis, so that wkj > wkj′ ; in addition, note that fkj < fkj′ implies h∗(ekj , fk) < h∗(ekj′ , fk) by

construction of h∗. For sufficiently small ε > 0, the solution (w∗, t∗) is also feasible where t∗ = t and

w∗ki =


wkj − ε exp(−κkj) if i = j

wkj′ + ε exp(−κkj′) if i = j′

wki otherwise

The objective value under (w∗k, t
∗) is equal to the objective value under (wk, t) plus the quantity ε[h∗(ekj′ , fk)−

h∗(ekj , fk)] which is positive under our assumptions, but this means (wk, t) cannot be optimal. Therefore in

any optimal solution, fkj < fkj′ implies ukj ≤ ukj′ (or wkj ≤ wkj′) and the proof of the theorem is complete.

A.4 Alternative large-sample null distribution accounting for propensity score estimation

In this section we construct and give intuition for an alternative variance estimator for the difference

between the difference-in-means statistic and its estimated mean under covariate-adaptive randomization

inference that accounts for estimation of the propensity score. Specifically, we are motivated by the large-

sample distribution derived for the difference-in-means statistic in Section 3.2 of the main manuscript, which

gives the following form for the mean of the difference-in-means estimator:

µ0 =
1

K

K∑
k=1

nk∑
i=1

Yki
nkpki − 1

nk − 1
.

Section 3.2 suggests a large-sample version of the covariate-adaptive randomization test that compares the

difference-in-means statistic T to a normal distribution centered at µ0, or equivalently compares T − µ0 to

a normal distribution centered at zero. However, since µ0 depends on the unknown propensity score it must

be estimated, typically using the equation above but plugging in propensity score estimates for pki to give

µ̂. This leads the variance of T − µ̂ to differ from the variance of T or T − µ0. To construct an estimate

of the variance of T̃ = T − µ̂ we represent both propensity score estimation and calculation of T̃ as tasks

within a common M-estimation framework.

While M-estimators are typically used in settings where independent samples from an infinite super-

population are available and the goal is to estimate a parameter of that infinite population (Stefanski and

Boos 2002), we focus instead on a setting with an infinite sequence of ever-larger finite populations, in each

of which only the treatment random variable Z is random. In addition, some subjects within each finite
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population are grouped into matched sets, and treatment indicators for subjects within the same matched

set are highly dependent; on the other hand, propensity score estimation typically leverages all unmatched

individuals as well as those in matched sets, and it is more reasonable to think of unmatched individuals’

treatments as mutually independent. As such, we adopt new notation as follows.

First, for a given finite population, we let Ok = {Yk,Zk,Xk} represent the set of observed data associated

with all the units in matched sets k = 1, . . .K. We also introduce quantities OK+1, . . . ,OK′ where each

Ok with k > K gives the Y,Z,X information associated with a single unmatched unit, so nk = 1 for these

units. Letting m =
∑K′

k=1 k, We define Y, Z, and Y(z) as M-tuples collecting values from all K ′ sets, with

X defined as the analogous m × p matrix. We let Zk be independent of Zk′ for all 1 ≤ k, k′ ≤ K ′, k 6= k′,

conditional on Y(1),Y(0),X.

We assume that the propensity score is fit using M-estimation (such as a logistic regression). Let θ ∈ Rp

be the parameter vector for the propensity score model, and let

ψ(Ok, θ) = (ψ1(Ok, θ), . . . , ψp(Ok, θ))
T

be the set of associated functions that define the M-estimator via the estimating equations:

K′∑
k=1

ψ(Ok, θ) = 0.

Note that for convenience we assume matched sets are given here and will not be influenced by the estimated

propensity score (see Section 2.3 of the main manuscript for more discussion of such assumptions and their

implications). We augment these equations with three more components. The first, η, represents the inverse

of the proportion of sets from 1 to K ′ that are included in the match. This is helpful since the propensity-score

fitting parts of the common framework normalize over all observations, while most of the added components

normalize only over matched sets; η rescales the latter estimating equations so they have the appropriate

denominator. The other two added components are µ, the mean of the difference-in-means statistic, and

our statistic of interest T̃ = T − µ̂. µ is added as its own entry in the parameter vector to make it easy to

represent T̃ in the M-estimation framework.

K′∑
k=1


ψ(Ok, θ)

1/η − 1{nk > 1}

η1{nk > 1}
{
µ−

∑nk

i=1 Yki

(
nk·oddski(θ)

(nk−1)
∑nk

j=1 oddskj(θ)
− 1

nk−1

)}
η1{nk > 1}

{
T̃ −

∑nk

i=1 Yki
nkZki−1
nk−1 + µ

}

 = 0

We let ψfull represent this expanded set of estimating equations. We may obtain parameter estimates

(θ̂, µ̂, T̃ ) by solving this equation. Note that our two definitions of µ̂ agree by construction, and that T̃ is

simply the actual mean-corrected difference-in-means statistic rather than an estimate of it).

Assume that θ0, µ0, η0 and T̃0 exist as unique solutions to the following equation:

lim
K′−→∞

1

K ′

K′∑
k=1

E
[
ψfull(Ok, θ, η, µ, T̃ ) | Y(1),Y(0),X

]
.

In short, θ0, µ0, and η0 are the large-sample limits of the propensity score parameter, the mean of the
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difference-in-means statistic under the covariate-adaptive randomization distribution, the ratio K ′/K, and

our chosen test statistic itself across our sequence of growing finite populations under the sharp null hypoth-

esis. Note that under these conditions we know that our new and earlier definitions of µ0 agree, and that

T̃0 = 0.

We now wish to estimate the asymptotic variance of T̃ under the sharp null hypothesis of no effect

of treatment, accounting for the estimation of the propensity score. We construct an estimator using the

sandwich variance approach described for traditional infinite-superpopulation M-estimators in Stefanski and

Boos (2002). Specifically, we construct an estimator for one scalar entry of the following matrix, analogous

to the (stabilized) asymptotic variance-covariance matrix of the parameter vector in the traditional infinite

superpopulation version of M-estimation:

V (θ0, η0, µ0) = A(θ0, η0, µ0, 0)−1B(θ0, η0, µ0, 0)[A(θ0, η0, µ0, 0)−1]T

where A(·) and B(·) are defined as follows:

A(θ0, η0, µ0, 0) = lim
K′−→∞

1

K ′

K′∑
k=1

E[−∇θ,η,µ,T̃ ,ψ
full(Ok, θ0, η0, µ0, 0)]

B(θ0, µ0, 0) = lim
K′−→∞

1

K ′

K′∑
k=1

E[ψfull(Ok, θ0, η0, µ0, 0)ψfull(Ok, θ0, η0, µ0, 0)T ]

Note that the formulas differ from the traditional ones in Stefanski and Boos (2002), which take expec-

tation over a sampling distribution for all observed elements Oi, by taking the limit of a sample average

over the non-random elements (Yki); we assume here that those limits exist and that the limit A(θ0, η0, µ0)

is invertible. We acknowledge that our use of this formula in the finite population is heuristic in the sense

that we do not provide formal regularity conditions or a result guaranteeing that the asymptotic variance

of T̃ is equal to V (θ) within our finite population framework, since this exceeds the scope of what we can

accomplish in the supplement.

We now give more explicit forms for A(·) and B(·) to provide motivation for our specific estimator of

V (θ0, η0, µ0) , using the fact that Eψj(θ0, η0, µ0, 0) = 0 to simplify.

A(θ0, η0µ0, 0) =

lim
K′−→∞


− 1
K′
∑K′

k=1E [∇θψ(Ok, θ0)] 0 0 0

0 η−2
0 0 0

− η0
K′
∑K
k=1

∑nk
i=1 Yki

nk
nk−1

(
∂
∂θ1

oddski(θ0)∑nk
j=1 oddskj(θ0)

· · · ∂
∂θp

oddski(θ0)∑nk
j=1 oddskj(θ0)

)
0 −1 0

01×p 0 −1 −1



B(θ0, η0, µ0, 0) = lim
K′−→∞

1

K′

K′∑
k=1

E


Bθθ Bθη Bθµ BθT̃
BTθη Bηη Bηµ BηT̃
BTθµ BTηµ Bµµ BµT̃
BT
θT̃

BT
ηT̃

BT
µT̃

BT̃ T̃


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where

Bθθ =
1

K′

K′∑
k=1

E
{
ψ(Ok, θ0)ψ(Ok, θ0)T

}

Bθη =
1

K′

K′∑
k=1

E
{
ψ(Ok, θ0)

(
η−1
0 − 1{nk > 1}

)}
= − η0

K′

K∑
k=1

E {ψ(Ok, θ0)}

Bθµ =
1

K′

K′∑
k=1

E

{
ψ(Ok, θ0)η01{nk > 1}

[
µ0 −

nk∑
i=1

Yki

(
nk · oddski(θ0)

(nk − 1)
∑nk
j=1 oddskj(θ0)

− 1

nk − 1

)]}

=
η0
K′

K∑
k=1

E

{
ψ(Ok, θ0)

[
µ0 −

nk∑
i=1

Yki

(
nk · oddski(θ0)

(nk − 1)
∑nk
j=1 oddskj(θ0)

− 1

nk − 1

)]}

BθT̃ =
1

K′

K′∑
k=1

E

{
ψ(Ok, θ0)η01{nk > 1}

[
T̃ −

nk∑
i=1

Yki
nkZki − 1

nk − 1
+ µ

]}

=
η0
K′

K∑
k=1

E

{
ψ(Ok, θ0)

[
µ0 −

nk∑
i=1

Yki
nkZki − 1

nk − 1

]}

Bηη =
1

K′

K′∑
k=1

E
{(
η−1
0 − 1{nk > 1}

)}
= η−2

0 +
K

K′
(1− 2η−1

0 )

Bηµ =
1

K′

K′∑
k=1

E

{
1{nk > 1} (1− η0)

[
µ−

nk∑
i=1

Yki

(
nk · oddski(θ0)

(nk − 1)
∑nk
j=1 oddskj(θ0)

− 1

nk − 1

)]}

=
1− η0
K′

K∑
k=1

[
µ0 −

nk∑
i=1

Yki

(
nk · oddski(θ0)

(nk − 1)
∑nk
j=1 oddskj(θ0)

− 1

nk − 1

)]

BηT̃ =
1

K′

K′∑
k=1

E

{
1{nk > 1} (1− η0)

[
T̃ −

nk∑
i=1

Yki
nkZki − 1

nk − 1
+ µ

]}

=
1− η0
K′

K∑
k=1

[
µ0 −

nk∑
i=1

Yki

(
nk · oddski(θ0)

(nk − 1)
∑nk
j=1 oddskj(θ0)

− 1

nk − 1

)]

Bµµ =
1

K′

K′∑
k=1

E

{
η201{nk > 1}

[
µ−

nk∑
i=1

Yki

(
nk · oddski(θ0)

(nk − 1)
∑nk
j=1 oddskj(θ0)

− 1

nk − 1

)]2}

=
η20
K′

K∑
k=1

[
µ0 −

nk∑
i=1

Yki

(
nk · oddski(θ0)

(nk − 1)
∑nk
j=1 oddskj(θ0)

− 1

nk − 1

)]2

BµT̃ =
1

K′

K′∑
k=1

E

{
eta201{nk > 1}

[
µ−

nk∑
i=1

Yki

(
nk · oddski(θ0)

(nk − 1)
∑nk
j=1 oddskj(θ0)

− 1

nk − 1

)][
T̃ −

nk∑
i=1

Yki
nkZki − 1

nk − 1
+ µ

]}

=
η20
K′

K∑
k=1

[
µ0 −

nk∑
i=1

Yki

(
nk · oddski(θ0)

(nk − 1)
∑nk
j=1 oddskj(θ0)

− 1

nk − 1

)]2

BT̃ T̃ =
1

K′

K′∑
k=1

E

{
η201{nk > 1}

[
T̃ −

nk∑
i=1

Yki
nkZki − 1

nk − 1
+ µ

]2}

=
η20
K′

K∑
k=1

{
µ2
0 − 2µ0

nk∑
i=1

Yki

(
nk · oddski(θ0)

(nk − 1)
∑nk
j=1 oddskj(θ0)

− 1

nk − 1

)
+ E

[
nk∑
i=1

Yki
nkZki − 1

nk − 1

]2}

For ease of presentation we let A(θ0) and B(θ0) be analogous to A(θ0, η0, µ0, 0) and B(θ0, η0, µ0, 0) for

the smaller M-estimation problem of fitting the propensity score alone, and we define A(θ0, η0), B(θ0, η0),

A(θ0, η0, µ0) and B(θ0, η0, µ0) analogously. We now invert A(θ0, η0, µ0, 0). We proceed by representing it as

a block matrix:
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A(θ0, η0, µ0, 0)−1 =

(
A(θ0, η0, µ0) 0

(0,−1) −1

)−1

=

(
A(θ0, η0, µ0)−1 0

(0,−1)A(θ0, η0, µ0)−1 −1

)

We use a similar strategy to compute A(θ0, η0, µ0)−1:

A(θ0, η0, µ0)−1 =

(
A(θ0, η0) 0(

limK′−→∞
η0
K

∑K
k=1

∑nk

i=1 Yki
nk

nk−1dk(θ0), 0
)
−1

)−1

=

(
A(θ0, η0)−1 0(

limK′−→∞
η0
K

∑K
k=1

∑nk

i=1 Yki
nk

nk−1dk(θ0), 0
)
A(θ0, η0)−1 −1

)

where dk(θ0) =

(
∂
∂θ1

oddski(θ0)∑nk
j=1 oddskj(θ0)

· · · ∂
∂θp

oddski(θ0)∑nk
j=1 oddskj(θ0)

)
for each k = 1, . . . ,K. Finally, we compute

A(θ0, η0)−1:

A(θ0, η0)−1 =

(
A(θ0) 0

0 η−2
0

)−1

=

(
A(θ0)−1 0

0 η2
0

)

We now evaluate our quantity of interest, entry ((p + 3), (p + 3)) of the matrix V (θ0, η0, µ0), which we

will denote vT̃ (θ0, η0, µ0).

vT̃ (θ0, η0, µ0) = a(θ0)B(θ0, η0, µ0, 0)a(θ0)T

where

a(θ0) =
(
− limK′−→∞

η0
K′

∑K
k=1

∑nk

i=1 Yki
nk

nk−1dk(θ0)A(θ0)−1 0 1 −1
)
.
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Expanding this, we obtain the following:

vT̃ (θ0, η0, µ0) ={
lim

K′−→∞

1

K′

K∑
k=1

nk∑
i=1

Yki
nk

nk − 1
dk(θ0)

}
A(θ0)−1B(θ0)[A(θ0)−1]T

{
lim

K′−→∞

η0
K′

K∑
k=1

nk∑
i=1

Yki
nk

nk − 1
dk(θ0)

}T

− 2

{
lim

K′−→∞

η0
K′

K∑
k=1

nk∑
i=1

Yki
nk

nk − 1
dk(θ0)

}
A(θ0)−1

{

lim
K′−→∞

η0
K′

K∑
k=1

E

{
ψ(Ok, θ0)

[
µ−

nk∑
i=1

Yki

(
nk · oddski(θ0)

(nk − 1)
∑nk
j=1 oddskj(θ0)

− 1

nk − 1

)]}}

− 2

{
lim

K′−→∞

η0
K′

K∑
k=1

nk∑
i=1

Yki
nk

nk − 1
dk(θ0)

}
A(θ0)−1

{
lim

K′−→∞

η0
K′

K∑
k=1

E

{
ψ(Ok, θ0)

[
µ−

nk∑
i=1

Yki
nkZki − 1

nk − 1

]}}

+ lim
K′−→∞

η20
K′

K∑
k=1

E

[
nk∑
i=1

Yki
nkZki − 1

nk − 1

]2
− lim
K′−→∞

η20
K′

K∑
k=1

[
nk∑
i=1

Yki

(
nk · oddski(θ0)

(nk − 1)
∑nk
j=1 oddskj(θ0)

− 1

nk − 1

)]2

=

{
lim

K′−→∞

η0
K′

K∑
k=1

nk∑
i=1

Yki
nk

nk − 1
dk(θ0)

}
A(θ0)−1B(θ0)[A(θ0)−1]T

{
lim

K′−→∞

η0
K′

K∑
k=1

nk∑
i=1

Yki
nk

nk − 1
dk(θ0)

}T

− 2

{
lim

K′−→∞

η0
K′

K∑
k=1

nk∑
i=1

Yki
nk

nk − 1
dk(θ0)

}
A(θ0)−1

{

lim
K′−→∞

η0
K′

K∑
k=1

E

{
ψ(Ok, θ0)

[
µ−

nk∑
i=1

Yki

(
nk · oddski(θ0)

(nk − 1)
∑nk
j=1 oddskj(θ0)

− 1

nk − 1

)]}}

− 2

{
lim

K′−→∞

η0
K′

K∑
k=1

nk∑
i=1

Yki
nk

nk − 1
dk(θ0)

}
A(θ0)−1

{
lim

K′−→∞

η0
K′

K∑
k=1

E

{
ψ(Ok, θ0)

[
µ−

nk∑
i=1

Yki
nkZki − 1

nk − 1

]}}

+ lim
K′−→∞

η20
K′

K∑
k=1

nk∑
i=1

(
nk

nk − 1

)2

Ykipki

Yki(1− pki)−
nk∑
j 6=i

Ykjpkj


Notice that the last term is identical to the variance of the original difference-in-means estimator T when

the true propensity scores are known, derived above (after normalizing both sides by K). While vT̃ (θ0, η0, µ0)

cannot be calculated in practice without knowledge of the true parameters, the moments of the derivatives

of the ψ functions, and the limits in K, we can estimate it by substituting estimated parameters and sample

moments/estimates as follows. For convenience, we let O`
k = {Yk,Z

`
k,Xk} where Z`k be the length-nk vector

containing a 1 at element ` and zeroes otherwise. Note also that to estimate the variance of T̃ , rather than

the variance of
√
K ′T̃ , we must also divide our estimate for vT̃ (θ0, η0, µ0) by K ′.
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V̂ ar(T̃ ) =
1

K′
v̂
T̃
(θ̂, η̂, µ̂) ={

1

K

K∑
k=1

nk∑
i=1

Yki
nk

nk − 1
dk(θ̂0)

}
An(θ̂0)−1Bn(θ̂0)[An(θ̂0)−1]T

K′

{
1

K

K∑
k=1

nk∑
i=1

Yki
nk

nk − 1
dk(θ̂0)

}T

−
2

K′

{
1

K

K∑
k=1

nk∑
i=1

Yki
nk

nk − 1
dk(θ̂0)

}
An(θ̂0)

−1

{
1

K

K∑
k=1

nk∑
`=1

oddsk`(θ̂0)∑nk
j=1 oddskj(θ̂0)

ψ(O`
k, θ̂0)

[

1

K

K∑
k′=1

nk′∑
i=1

Yki

(
nk′ · oddsk′i(θ)

(nk′ − 1)
∑nk′
j=1 oddsk′j(θ)

−
1

nk′ − 1

)
−

nk∑
i=1

Yki

(
nk · oddski(θ̂0)

(nk − 1)
∑nk
j=1 oddskj(θ̂0)

−
1

nk − 1

)]}

−
2

K′

{
1

K

K∑
k=1

nk∑
i=1

Yki
nk

nk − 1
dk(θ̂0)

}
An(θ̂0)

−1

{
1

K

K∑
k=1

nk∑
`=1

oddsk`(θ̂0)∑nk
j=1 oddskj(θ̂0)

ψ(O`
k, θ̂0)

[

1

K

K∑
k′=1

nk′∑
i=1

Yki

(
nk′ · oddsk′i(θ)

(nk′ − 1)
∑nk′
j=1 oddsk′j(θ)

−
1

nk′ − 1

)
−

nk∑
i=1

Yki
nkZ

`
ki − 1

nk − 1

]}

+
1

K2

K∑
k=1

nk∑
i=1

(
nk

nk − 1

)2

Yki

(
oddski(θ̂0)∑nk
`=1 oddsk`(θ̂0)

)Yki
[
1−

(
oddski(θ̂0)∑nk
`=1 oddsk`(θ̂0)

)]
−

nk∑
j 6=i

Ykj

(
oddskj(θ̂0)∑nk
`=1 oddsk`(θ̂0)

)
We now give a closed form for the `th element of dk(θ0), i.e. ∂

∂θ`

oddski(θ0)∑nk
j=1 oddskj(θ0)

, in the special case of the

logistic regression model defined by log(P (Z = 1|X)/P (Z = 0|X)) = Xθ where the first column of X

consists entirely of 1s (and where we index the `th column of Xki as X`ki).

oddski(θ)∑nk

j=1 oddskj(θ)
=

exp(Xkiθ)∑nk

j=1 exp(Xkjθ)
=

1∑nk

j=1 exp[(Xkj −Xki)θ]

∂

∂θ`

oddski(θ)∑nk

j=1 oddskj(θ)
= − 1{∑nk

j=1 exp[(Xkj −Xki)θ]
}2

nk∑
j=1

exp[(Xkj −Xki)θ](X`kj −X`ki)

This quantity will be zero for ` = 1 since X1kj = X1ki = 1 for all i, j. The estimating equations ψ(Ok, θ̂0)

are discussed in many standard textbooks and have the following form in our notation:

ψj(Ok, θ̂0) =
1

K ′

K′∑
k=1

nk∑
i=1

(
Zki −

1

1 + exp(−Xkiθ)

)
Xj,ki

where X1,ki = 1 for all k, i. In turn, the gradient of ψj has the following form:

∇ψj(Ok, θ̂0) = −
nk∑
i=1

(
exp(−Xkiθ)X1,kiXj,ki

[1+exp(−Xkiθ)]2
, · · · ,

exp(−Xkiθ)X
2
j,ki

[1+exp(−Xkiθ)]2
, · · · ,

exp(−Xkiθ)Xp,kiXj,ki

[1+exp(−Xkiθ)]2

)
Sample averages of these gradients (multiplied by−1 and evaluated at estimated values of θ0) form the rows of

the matrix An(θ̂0) in the variance estimate given above. Note also that the term An(θ̂0)−1Bn(θ̂0)[An(θ̂0)−1]T

is simply an estimate of the variance-covariance matrix for propensity score estimation; in our framework,

in which finite populations exhibit internal matched-set structure and in which individual Ok terms may

correspond to clusters of units rather than distinct subjects, this is a clustered covariance estimate such as

that of ? with clustering over matched sets (and unmatched individuals treated as their own clusters).

The above all assumes that the propensity score is estimated in the same sample in which the match is

conducted. Note that Theorems 1-2 instead assume the propensity score estimation is done in a different

sample. In this case the variance estimation problem becomes simpler and does not actually require an
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M-estimation framework, since the propensity score estimates and the Zkis are independent. Instead, the

delta method can be used to calculate the variance of µ̂ and this variance can be added to the estimated

variance of T to obtain an overall variance. More specifically, we can write:

h(θ) =

nk∑
i=1

Yki

(
nk · oddski(θ)

(nk − 1)
∑nk

j=1 oddskj(θ)
− 1

nk − 1

)

Let Σ be the asymptotic variance of θ̂. Then by the delta method,

Var(h(θ)) ≈ ∇h(θ)TΣ∇h(θ).

where

∇h(θ) =
1

K

K∑
k=1

nk∑
i=1

Yki

(
nk

nk − 1

)(
∂

∂θ1

oddski(θ)∑nk

j=1 oddskj(θ)
· · · ∂

∂θp

oddski(θ)∑nk

j=1 oddskj(θ)

)

This quantity may be estimated by substituting θ̂ for θ. Note that the resulting variance estimate is almost

identical to V̂ar(T̃ ) as given above for the case of in-sample estimation, except with no cross-terms and with

matrix Σ, which must be estimated in the pilot sample, in place of the in-sample covariance matrix for θ̂.

A.5 Additional simulation results

We provide further detail on the simulation settings explored in Section 6.2 of the main manuscript and

give results for several alternate settings. First, for the primary setting considered in the main manuscript,

Figure 4 shows smoothed density plots comparing the true propensity score distribution across treatment

and control groups for sample draws from each of six different simulation settings affecting the treatment

model. The density plots are scaled by the relative size of the two groups; in large samples, regions of

the plots where the control density exceeds the treated density indicate propensity score values at which

near-exact matching on the propensity score is possible, while regions with larger treated density suggest

regions in which either poorer matches must be accepted or treated units must be trimmed (?); the number

given in the title of the plot is an estimate of the proportion of the probability mass in the treated group

that overlaps with the scaled control density, indicating easy matchability. In all the settings shown here,

most treated units can be matched closely but in most cases there is some region in which matching is more

difficult, ensuring that inexact matches occur systematically. Of course these plots are smoothed depictions

that mask the underlying discreteness of the data, particularly in the n = 100 case, but they suggest the

general difficulty of the matching problem.

The next set of figures repeat the analyses given in Figure 1 from the main manuscript for several other

simulation settings as discussed in Section 6.2 . In particular, Figures 5 - 6 give results for a weak propensity

score setting where the treated and control groups are more similar than in the primary simulations; Figure

7 gives results averaging only over simulations in which good covariate balance was achieved in the sense that

absolute standardized differences in means for all measured covariates were under 0.2 after matching; and

Figure 8 gives results for a setting in which propensity scores were estimated in a large external sample. The

weak-signal results show similar patterns to the primary simulations but the size of type I error violations

is substantially reduced and uniform randomization inference sometimes achieves Type I error control. The

density plots reveal that the weak-signal settings correspond to a setting in which the distribution of true

propensity scores is very similar between groups; when propensity score distributions show such similarity in
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real datasets this suggests that uniform randomization inference may be warranted. The other two simulation

settings produce patterns of Type I error rates almost identical to those in Figure 1 in the main manuscript.

Finally, we examine the quality of point estimates constructed using the maximum p-value procedure

of Section 3.3 in the main manuscript. We repeat the simulations described in Section 6.2 with a strong

propensity score signal and without introducing regression adjustment, calipers, uniform inference, or nonlin-

earity in the outcome model; we also add a treatment effect of magnitude 1 and compute both the maximum

p-value point estimate and the traditional difference-in-means. Table 8 reports results. The maximum p-

value estimates are uniformly preferable to the difference-in-means estimates, and except in a few cases with

Z-dependence they are very close to the true effect.
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Figure 4: Smoothed and scaled density plots of one random draw each from six different simulation settings for
the treatment model. The first and second columns contrast weak and strong propensity score signals (τ = 0.2
vs. τ = 0.6), and the three rows contrast three different sizes for the initial dataset: (n, p) = (100, 2), (100, 5), and
(1000,10) respectively.
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Figure 5: Relative density of treated and control groups by propensity score value under a weak propensity score
signal. For more detail, see caption to Figure 4.
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Figure 6: Type I error results under weak propensity score signal for uniform and covariate-adaptive inference
across multiple simulation settings. Each of the three tables corresponds to a separate dataset size. Within each
table the first three columns contrast three inferential approaches when the subjects are subject to Z-dependence;
the last three columns do the same comparison when treatment assignments within matched sets are permuted
after matching to eliminate Z-dependence. The rows of the table demonstrate different combinations of calipers and
regression adjustment and correct or incorrect specification of treatment and outcome models. Numbers give type
I error rates with colors associated to their magnitude; triangles indicate that a one-sample z-test rejected the null
hypothesis that the error rate was 0.05 (under a Bonferroni correction scaled to the number of results across the entire
figure), with a large upper triangle indicating a positive z-statistic and a small lower triangle indicating a negative
z-statistic.
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n=100, p=2
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Figure 7: Type I error results conditional on good covariate balance for uniform and covariate-adaptive inference
across multiple simulation settings. For a more thorough description of how the tables are organized see the caption
to Figure 6.
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Figure 8: Type I error results for uniform and covariate-adaptive inference across multiple simulation settings, using
out-of-sample propensity scores. For a more thorough description of how the tables are organized see the caption to
Figure 6.
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Z-model Y-model Z-dependence? τ Maxp.est IPW.est DiM.est

Linear Linear No 0 -0.076(0.906) -0.110(1.119) 0.468(0.970)

Linear Linear Yes 0 0.825(1.070) 0.842(1.044) 1.284(1.255)

Linear Nonlinear No 0 -0.250(1.620) -0.221(2.548) 0.792(1.693)

Linear Nonlinear Yes 0 0.598(1.530) 0.829(1.741) 1.582(1.859)

Nonlinear Linear No 0 0.328(0.852) 0.364(0.878) 0.679(0.898)

Nonlinear Linear Yes 0 0.806(0.883) 0.841(0.881) 1.124(1.038)

Nonlinear Nonlinear No 0 0.882(1.344) 1.125(1.489) 1.696(1.743)

Nonlinear Nonlinear Yes 0 1.357(1.380) 1.602(1.507) 2.134(1.870)

Linear Linear No 1 0.924 (0.906) 0.899 (1.086) 1.468 (0.907)

Linear Linear Yes 1 1.825 (1.07) 1.806 (1.01) 2.284 (1.255)

Linear Nonlinear No 1 0.75 (1.62) 0.788 (2.518) 1.792 (1.693)

Linear Nonlinear Yes 1 1.598 (1.53) 1.793 (1.718) 2.582 (1.859)

Nonlinear Linear No 1 1.328 (0.852) 1.36 (0.865) 1.679 (0.898)

Nonlinear Linear Yes 1 1.806 (0.883) 1.817 (0.864) 2.124 (1.038)

Nonlinear Nonlinear No 1 1.882 (1.344) 2.121 (1.476) 2.696 (1.743)

Nonlinear Nonlinear Yes 1 2.357 (1.38) 2.579 (1.494) 3.134 (1.87)

Linear Linear No 10 9.924 (0.906) 9.981 (0.819) 10.468 (0.907)

Linear Linear Yes 10 10.825 (1.07) 10.482 (0.754) 11.284 (1.255)

Linear Nonlinear No 10 9.75 (1.62) 9.87 (2.263) 10.792 (1.693)

Linear Nonlinear Yes 10 10.598 (1.53) 10.47 (1.553) 11.582 (1.859)

Nonlinear Linear No 10 10.328 (0.852) 10.322 (0.762) 10.679 (0.898)

Nonlinear Linear Yes 10 10.806 (0.883) 10.603 (0.734) 11.124 (1.038)

Nonlinear Nonlinear No 10 10.882 (1.344) 11.084 (1.374) 11.696 (1.743)

Nonlinear Nonlinear Yes 10 11.357 (1.38) 11.365 (1.389) 12.134 (1.87)

Linear Linear No 100 99.924 (0.906) 100.798 (3.224) 100.468 (0.907)

Linear Linear Yes 100 100.825 (1.07) 97.246 (3.535) 101.284 (1.255)

Linear Nonlinear No 100 99.75 (1.62) 100.687 (2.786) 100.792 (1.693)

Linear Nonlinear Yes 100 100.598 (1.53) 97.233 (3.668) 101.582 (1.859)

Nonlinear Linear No 100 100.328 (0.852) 99.946 (1.805) 100.679 (0.898)

Nonlinear Linear Yes 100 100.806 (0.883) 98.467 (2.15) 101.124 (1.038)

Nonlinear Nonlinear No 100 100.882 (1.344) 100.708 (1.822) 101.696 (1.743)

Nonlinear Nonlinear Yes 100 101.357 (1.38) 99.229 (2.249) 102.134 (1.87)

Table 7: Point estimates from three estimation approaches under a true constant additive effect model: the
maximum p-value strategy, inverse propensity weighting, and näıve difference-in-means. Numbers are averaged over
1000 simulation replicates with n = 100, p = 2, strong propensity signal, and propensity scores estimated in-sample
(as in Section 6.3 of the main manuscript). Standard deviations across the 1000 replicates are shown in brackets.
The column τ gives the true value of the constant additive effect.



56

Point Estimates

n p Z-model Z-dependence? Propensity Score Max P-value Diff. in Means

100 2 Linear Yes Estimated 1.09 1.14

100 2 Linear Yes Oracle 1.09 1.14

100 2 Linear No Estimated 0.99 1.04

100 2 Linear No Oracle 1.00 1.04

100 2 Nonlinear Yes Estimated 1.09 1.12

100 2 Nonlinear Yes Oracle 1.06 1.12

100 2 Nonlinear No Estimated 1.03 1.07

100 2 Nonlinear No Oracle 1.00 1.07

100 5 Linear Yes Estimated 1.11 1.25

100 5 Linear Yes Oracle 1.12 1.25

100 5 Linear No Estimated 0.97 1.13

100 5 Linear No Oracle 0.99 1.13

100 5 Nonlinear Yes Estimated 1.11 1.21

100 5 Nonlinear Yes Oracle 1.07 1.21

100 5 Nonlinear No Estimated 1.03 1.14

100 5 Nonlinear No Oracle 1.01 1.14

1000 10 Linear Yes Estimated 1.10 1.25

1000 10 Linear Yes Oracle 1.11 1.25

1000 10 Linear No Estimated 1.00 1.15

1000 10 Linear No Oracle 1.00 1.15

1000 10 Nonlinear Yes Estimated 1.10 1.20

1000 10 Nonlinear Yes Oracle 1.06 1.20

1000 10 Nonlinear No Estimated 1.04 1.15

1000 10 Nonlinear No Oracle 1.00 1.15

Table 8: Point estimates from the maximum p-value strategy described in Section 3.3 in the main manuscript vs.
difference-in-means estimates. The true value of the parameter is 1.



List of figure captions

1. Type I error results for uniform and covariate-adaptive inference across multiple simulation settings.

Each of the three tables corresponds to a separate dataset size. Within each table the first three

columns contrast three inferential approaches when the subjects are subject to Z-dependence; the last

three columns do the same comparison when treatment assignments within matched sets are permuted

after matching to eliminate Z-dependence. The rows of the table demonstrate different combinations

of calipers and regression adjustment and correct or incorrect specification of treatment and outcome

models. Numbers give type I error rates with colors associated to their magnitude; triangles indicate

that a one-sample z-test rejected the null hypothesis that the error rate was 0.05 (under a Bonferroni

correction scaled to the number of results across the entire figure), with a large upper triangle indicating

a positive z-statistic and a small lower triangle indicating a negative z-statistic.

2. Average confidence interval length for uniform and covariate-adaptive inference across multiple simu-

lation settings for cases with approximate control of type I error at 0.05 or less. Within each table the

first three columns contrast three inferential approaches when the subjects are subject to Z-dependence;

the last three columns do the same comparison when treatment assignments within matched sets are

permuted after matching to eliminate Z-dependence. The rows of the table demonstrate different com-

binations of calipers and regression adjustment and correct or incorrect specification of treatment and

outcome models.

3. Smoothed densities for the uniform randomization distribution of the difference in means statistic and

the covariate-adaptive randomization distribution in the welders dataset, with the value of the observed

statistic.
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