Research
PREPRINTS
Pimentel, S.D., and Yu, R. (2025+).
Re-evaluating the impact of hormone replacement therapy on heart disease using match-adaptive randomization inference.
arxiv:2403.01330.
Huang, M., Soriano, D., and Pimentel, S.D. (2025+).
Design sensitivity and its implications for weighted observational studies.
arxiv:2307.00093.
PUBLICATIONS
Statistical Methodology
Shen, A., Visoki, E., Barzilay, R., and Pimentel, S.D. (2025).
A calibrated
sensitivity analysis for weighted causal decompositions.
Statistics in Medicine 44(5), e70010.
arxiv:2407.00139.
Huang, M., and Pimentel, S.D. (2025).
Variance-based
sensitivity analysis for weighting estimators results in more informative bounds.
Biometrika 112(1), asae040.
Download.
Won 2023 Best Theory Poster Award from the Society for Political Methodology.
Pimentel, S.D. and Huang, Y. (2024).
Covariate-adaptive randomization inference in matched designs.
Journal of the Royal Statistical Society - Series B (Statistical Methodology) 86(5), 1312-1338.
Download.
Liao, L.D., Zhu, Y., Ngo, A.L., Chehab, R.F., and Pimentel, S.D. (2024).
Prioritizing variables for observational study design using the joint variable importance plot.
The American Statistician 78(3), 318-326.
Download.
Soriano, D., Ben-Michael, E., Bickel, P.J., Feller, A., and Pimentel, S.D. (2023).
Interpretable sensitivity analysis for balancing weights. Journal of the Royal
Statistical Society - Series A 186(4), 707-721.
arxiv:2102.13218.
Glazer, A.K., and Pimentel, S.D. (2023).
Robust inference for matching under rolling enrollment. Journal of Causal Inference 11(1), 2022-0055.
arxiv:2205.01061.
Howard, S.R., and Pimentel, S.D. (2021). The uniform general signed rank test and its
design sensitivity. Biometrika 108, 381-396.
arXiv:1904.08895.
Pimentel, S.D., and Kelz, R.R. (2020). Optimal tradeoffs in
matched designs comparing
US-trained and internationally trained surgeons. Journal of the
American Statistical Association 115 (532), 1675-1688.
Download
Pimentel, S.D., Forrow, L.V., Gellar, J., and Li, J. (2020).
Optimal matching
approaches in health policy evaluations under rolling enrolment.
Journal of the Royal Statistical Society - Series A 183 (4), 1411-1435.
Download
Keele, L., Harris, S., Pimentel, S.D., and Grieve, R. (2020).
Stronger instruments and refined covariate balance in an observational study
of the effectiveness of prompt admission to the ICU in the UK.
Journal of the Royal Statistical Society - Series A 183 (4), 1501-1521.
Download
Keele, L., and Pimentel, S.D. (2019). Matching with attention to effect
modification in a data challenge. Observational Studies 5, 83-92.
Pimentel, S.D., Page, L., Lenard, M., and Keele, L. (2018). Optimal multilevel
matching using network flows: an application to a summer reading intervention.
Annals of Applied Statistics, 12:3, 1479-1505. Download
Pimentel, S.D., Small, D.S. , and Rosenbaum, P.R. (2017). An exact test of fit for
the Gaussian linear model using optimal nonbipartite matching. Technometrics, 59 (3), 330-337. Download
Pimentel, S.D., Small, D.S., and Rosenbaum, P.R. (2016).
Constructed
second control groups and attenuation of unmeasured biases. Journal of the
American Statistical Association, 111 (515), 1157-1167.
Download
Pimentel, S.D., Kelz, R.R., Silber, J.H., and Rosenbaum, P.R. (2015). Large, sparse optimal matching with refined covariate balance in an observational study of the health outcomes produced by new surgeons. Journal of the American Statistical Association, 110 (510), 515-527. Download
Pimentel, S.D., Yoon, F., and Keele, L. (2015).
Variable-ratio
matching with fine balance in a study of the Peer Health Exchange. Statistics in
Medicine, 34 (30), 4070-4082.
Download
Statistical Applications
Breithaupt, A., Mohan, S., Thombley, R., Pimentel, S. D., ad Douglas, V. C. (2025).
Education research: exploring the impact of standardized, condition-specific note
templates on quality metrics and efficiency in multiple resident clinics.
Neurology Education, 4(1), e200200.
Feinstein, M., Ing, C., Knapp, A., Li, G., and Pimentel, S. D. (2025).
Research methods and approaches for studies in pediatric anesthesia safety.
Journal of Neurosurgical Anesthesiology, 37(1), 100-102.
Merlino, B., Pimentel, D., Pimentel S.D., Ugurgieri, L., and Waters, A. (2024).
‘You’re gonna need a bigger boat’: assessing the relationship between economic
performance and ethnonationalism in Bosnia and Herzegovina (2002-2022).
Contemporary Southeastern Europe 11(1), 91-115.
Kuzniewicz, M.W., Campbell, C.I., Li, S., Walsh, E.M., Croen, L.A., Comer, S.D.,
Pimentel, S.D., Hedderson, M. and Sun, L.S. (2022).
Accuracy of diagnostic codes for prenatal opioid exposure and neonatal opioid withdrawal
syndrome
.
Journal of Perinatology, 1-7.
Silber, J.H., Rosenbaum, P.R., Pimentel, S.D., Calhoun, S., Wang, W., Sharpe, J.E.,
Reiter, J.G., Shah, S.A., Hochman, L.A., and Even-Shoshan, O. (2019).
Comparing
resource use in medical admissions of children with complex chronic conditions.
Medical Care, 57 (8), 615-624.
Zaheer, S., Pimentel, S.D., Simmons, K.D., Kuo, L.E.Y, Datta, J., Williams, N.,
Fraker, D.L., and Kelz, R.R. (2017).
Comparing international and United States undergraduate medical education and surgical
outcomes using a refined balance methodology. Annals of Surgery, 265 (5),
916-922.
Grossman, G., Gazal-Ayal, O., Pimentel, S.D., and Weinstein, J. (2016). Descriptive representation and judicial outcomes in multi-ethnic societies. American Journal of Political Science, 60 (1), 44-69. doi:10.1111/ajps.12187.
Software for Statistics and Data Visualization
Han, S., and Pimentel, S.D. (2024). MultiObjMatch: matching with optimal tradeoffs
between multiple objectives in R. Observational Studies 10(2), 1-32.
Liao, L.D., and Pimentel, S.D. (2024).
jointVIP: prioritizing variables in observational study design with joint variable
importance plot in R. Journal of Open Source Software 9(103), 6093.
Liao., L.D., and Pimentel, S.D. (2023). R package
jointVIP: prioritize variables with joint variable importance plot in
observational study design. Published on The
Comprehensive R Archive Network.
Han, S., and Pimentel, S.D. (2022). R package
MultiObjMatch:
multi-objective matching algorithm. Published on The
Comprehensive R Archive Network.
Gellar, J., Hansen, B.B., Fredrickson, M., Glazer, A.K., Forrow, L.V., and Pimentel,
S.D. (2021). R package
GroupMatch:
optimal matching under rolling enrollment.
Pimentel, S.D. (2016). Large,
sparse optimal matching with R package rcbalance. Observational Studies, 2,
4-23.
Pimentel, S.D., and Keele, L. (2016). R package
matchMulti: optimal
multilevel matching using a network algorithm.
Published on The Comprehensive R Archive Network.
Pimentel, S.D. (2016). R package
rcbsubset: optimal
subset matching with refined covariate balance. Published on
The Comprehensive R Archive Network.
Pimentel, S.D. (2014). R package
rcbalance: large,
sparse optimal matching with refined covariate balance. Published on
The Comprehensive R Archive Network.
Pimentel, S.D. (2014). Choosing a clustering: an a posteriori method for social networks. Journal of Social Structure Vol. 15, No. 1.
Pimentel, S., Walbot, V., and Fernandes, J. (2011). GRFT – genetic records family tree web applet. Frontiers in Genetics 2.
Invited Chapters
Pimentel, S.D. (2023). Fine balance and its variations in modern optimal matching. In
Handbook of Matching and Weighting Adjustments for Causal Inference,
eds. Zubizarreta, J.R., Stuart, E. A., Small, D.S., and Rosenbaum, P.R. CRC Press: Boca Raton, FL.
Keele, L., and Pimentel, S.D. (2023). Matching with multilevel data. In
Handbook of Matching and Weighting Adjustments for Causal Inference,
eds. Zubizarreta, J.R., Stuart, E. A., Small, D.S., and Rosenbaum, P.R. CRC Press: Boca Raton, FL.