
Statistical Models and Graphics in Splus

Phil Spector (spector@stat.berkeley.edu)
Statistical Computing Facility

Department of Statistics
University of California, Berkeley

1 Overview

One of the major additions to Splus in recent years has been a unified framework for working with statistical
models. The key to this unification is the use of the data frame, which is an Splus object which can contain
both numeric and character variables, and some special operators which are used to describe statistical mod-
els. More recently, this framework has been extended to the arena of statistical graphics, where the same
model operators are used to describe a wide variety of graphical displays of data. The purpose of this paper
is to introduce the concept of data frames and the statistical modeling operators and to show how these tools
can be used both for working with statistical models and producing useful statistical graphics.

2 Data for Statistical Analysis

Most model building techniques make a distinctionbetween variables which are factors (i.e. categorical vari-
ables), representing discrete levels of a quantity, and regressors, which are a numeric quantity expressed as
a continuous range of values. For example, an analysis of variance model would estimate three parameters
for a factor which takes on four distinct values, while it would estimate only one parameter for a regressor,
regardless of the number of different values which it may have. It is very common for the different levels of
a factor to be indexed by a character string, and, under old versions of Splus, this created some problems in
storing factors and regressors in the same data object. To solve this problem, a new type of object called a
data frame was created.

A data frame is a cross between a matrix and a list. Thus, it can have a mixture of character variables and
numeric variables, but specific columns of the data frame, representing specific variables, can be accessed
through either list techniques (using the$ or [[operators), or through matrix subscripting techniques (using
[). More importantly, since each variable is a separate object in the data frame’s internal representation, a
variety of information about each variable can be stored within the data frame. Data frames can be created
in a variety of ways. If your data is either all character or all numeric, you can convert a data matrix into a
data frame with theas.data.frame function; if you wish to combine a number of vectors of equal length,
each representing a different variable into a data frame, you can use thedata.frame function, and if you
need to read raw data from a file directly into a data frame, you can use theread.table function. Each
variable in the data frame must have a unique (within the data frame) name; these can be accessed or set with
thenames function (like a list) or by using the second component of the list returned by thedimnames
function (like a matrix). It is often helpful to use descriptive names for the variables in a data frame, but be
aware of the fact that if you include blanks in a variable name, it may be difficult to refer to the variables
in some settings. Regardless of the names of the variables (columns) of a data frame, you can also access
elements in a data frame in exactly the same way as is done with a matrix, using either numeric, character or
logical subscripts.

1

3 An Example

Consider a data set containing information about growing conditions of apples, their mineral content, mean
weight and incidence of bitter pits. (This data set is a modification of one from the book “Data” by Andrews
and Herzberg.) The variables in the data set are treatment, block, total nitrogen, active nitrogen, phosphorus,
potassium, calcium, magnesium, fruit weight and percent incidence of bitter pit. A sample of lines from the
data set look like this:

Control 1 2880 1670 0836 9840 142 367 113.8 3.2
Urea 4 4340 1990 0916 10440 180 428 99.9 20.4
Urea 4 4130 1870 0710 9040 199 363 84.6 0.0
Nitrate 4 4370 2080 0874 12560 183 404 110.8 10.0

Note that, since one of the variables is a character variable, you can not create a matrix out of this data using
thescan function of Splus. The simplest way to read this data set is using theread.table function,
which automatically determines which variables are character and which are numeric, and whose output is
a data frame:

apple <- read.table("apple.data")

assuming the data was stored in a file calledapple.data . If the first line of the file contains variable names,
they are read automatically using theheader=T argument toread.table . Otherwise the names can be
assigned using thenames()<- function:

names(apple) <- c("Treatment","Block","TN","AN","P","K","Ca","Mg",
"Weight","Bitter")

If desired, a character vector can be stored as a label for each row of the matrix. The functionrow.names
works in an analogous manner to the functionnames in the example above. By default, the row names of a
data frame are a character representation of the integers from 1 to the number of rows in the data frame.

Once the data frame has been created, variables can be identified as factors by using thefactor func-
tion. Since Treatment is a character variable, there is no need to identify it as a factor, since Splus automat-
ically changes character variables in a data frame into factors. Block, on the other hand, should not be used
as a numeric variable, but as a factor. This information can be stored in the data frame as follows:

apple$Block <- factor(apple$Block)

Whenever the variable Block in the apple data frame is referred to in a statistical formula, it will be treated
as a categorical variable. If you want a label for the levels of a factor which is not just a character represen-
tation of the numeric value, you can use thelevels= andlabels= arguments to thefactor function.
For example, to use roman numerals to identify the levels of Block, you could use the following:

apple$Block <- factor(apple$Block,levels=c(1,2,3,4),
labels=c("I","II","III","IV"))

Note that once you have converted a variable to a factor, it’s labelled values will appear whenever the
variable is printed. To convert the labeled levels of a factor to a set of consecutive integers, you can use the
functioncode .

2

Model Function Model Function
Linear Models lm Local Regression loess
Analysis of Variance aov Tree-based Models tree
Generalized Linear Models glm Non-linear Models nls
Generalized Additive Models gam Optimization ms
Proportional Hazards coxph Variance Componentsvarcomp

Table 1: Statistical Modeling Functions

4 Functions for Statistical Modeling

Table 1 shows some of the statistical modeling functions provided as part of the Splus language; in addition,
many user-written functions also support the modeling language, so this list should not be thought of as all-
inclusive.

Each of the functions shares a common syntax and creates as output an object which can be displayed
and manipulated by a set of common routines. Thus, once one analysis is carried out on a data set, it is very
easy to modify either the method or the specifics of the analysis. In fact, the major breakthrough with regard
to statistical models in Splus is more in the tools and methods surrounding the analyses than in the algorithms
themselves. Using an object oriented framework, each of the statistical modeling functions produces an ob-
ject which has a class attribute equal to the name of the analysis itself. So, for example, theglm function
produces an object which has a class of “glm ”; this fact is often abbreviated by saying that theglm function
produces a glm object. A wide variety of functions, known as generic functions, are provided to operate on
these different objects. You can recognize a generic function because the function body consists of nothing
more than a call to the Splus functionUseMethod . Table 2 shows some of these functions. For each generic
function, there will exist a variety of related functions with names of the formfunction.object, represent-
ing the genericfunction for object typeobject. For example, the actual print function which would print
a glm object is calledprint.glm ; the function which would plot a tree object is calledplot.tree . The
utility of this system is that you need not concern yourself with these details; when you pass a tree object
to the plot routine, it knows to use theplot.tree function. In addition, to extend the system to produce
and operate on some new class of analysis object, you simply need to write a function to produce the ob-
ject, and then write a collection of appropriately named functions (often called methods) to operate on the
object. If a specific method for a class does not exist, then the system uses the function of the formfunc-

tionname.default .

5 Expressing a Statistical Model in Splus

All of the modeling functions mentioned in Table 1 (except for nonlinear modeling and optimization) accept
formulas as described in this section. In addition, the graphics functions described in Section 12 also use
formulas to express the relations between the variables to be plotted. Statistical models in Splus are facilitated
through a new operator, the tilde (˜), which can be loosely translated as ”is modeled by”. Thus, we can create
a formula which models the weights of the apples as a function of the total nitrogen levels with the formula

Weight ˜ TN

The exact nature of the function which is being used to model the response (in this example the variable
Weight) varies from method to method. For example, thelm function creates a linear additive model with
normally distributed errors, while theglm function models the response as a specified function (known as
the link function) of a linear additive model, with an error term arising from one of a variety of distributions.

3

General Purpose Functions
print Displays the contents of an object
plot Produces a graphical display on a graphics device
text Annotates a graphical display with text
all.equal Checks for equality of two objects
summary Displays Summary information about an object

Statistical Modeling Functions
predict Calculates Predicted Values from a model
fitted Calculates Fitted Values from a model
coef Extracts Coefficients from a model
deviance Reports the deviance for a model
update Modifies an existing model
resid Calculates residuals from a model
anova Displays an ANOVA table for a model
step Builds a model in a stepwise fashion
add1 Adds a term to a model
drop1 Drops a term from a model

Table 2: Generic Methods

(One special note about models using the binomial error distribution: in these cases, you should express your
dependent variable as a two column matrix, with the first column representing the number of “successes” and
the second column representing the number of “failures”, unless your dependent variable is a vector of zeroes
and ones representing individual observations.)

Additional terms can be added to the model using the “+” operator. To add Treatment and Block to the
analysis, for example, you could use the following formula:

Weight ˜ Treatment + Block + TN

By default, an intercept is fitted to all models. To fit a model without an intercept, include the term-1
in the formula; to fit a model which contains only an intercept, explicitly include the term1 as the only term
on the right hand side of the formula.

More complicated terms can be created using the “: ” (interaction), “* ” (crossing) and “/ ”” (nesting)
operators. To fit an interaction between Block and Treatment, we could add (using the “+” operator) the term
Block:Treatment . Alternatively, we could fit both the Block and Treatment main effects along with the
interaction with the termBlock*Treatment . If the levels of Block had different meanings within each
of the levels of treatment, then no main effect for Block alone should be fit; only a main effect for Treatment
and the interaction between Block and Treatment. Such an effect can be added to the model using the term
Treatment/Block , representing Block nested withinTreatment. Finally, if there are more than two terms
in a crossed effect, but higher order interactions are not desired in the model, you can specify the maximum
order of interactions to include using the “ˆ ” operator. Thus, the term(A*B*C)ˆ2 would include only
interactions up to order 2, i.e.A, B, C, A:B , A:C andB:C ; the three way interactionA:B:C would not be
included.

Terms in a model are not limited to just variables; any valid Splus expression is acceptable. For example,
if we wished to fit a model where the variable TN is divided into three ranges with values 1, 2 and 3, we could
fit the model:

Weight ˜ cut(TN,3)

4

(Splus knows that the result of the cut command should be treated as a factor; if this is not the case, you
can use the functioncodes as described above.)

Because some of the modeling operators have other meanings within Splus, care must be taken when us-
ing expressions within formulas. For example, suppose we wish to fit a term representing the square of cal-
cium (Ca) concentration in the apple example. If we simply include the termCa*Ca in the formula, nothing
will be added to the model because, within the context of a formula, the “* ” represents the interaction opera-
tor, and interactions which do not involve at least one factor are not defined. In cases like these, the function
I can be used to “protect” the expression from expansion. Thus, to fit a third order polynomial model relating
Weight to Ca, we could use the formula:

Weight ˜ Ca + I(Ca*Ca) + I(Ca*Ca*Ca)

Of course problems such as these can usually be avoided by creating new variables.

6 Data Frames and Statistical Models

Since a data frame is a list inside of Splus, one way of specifying the variables within a model is by using
their “complete” names. For example, to model the 0-1 variable indicating whether more than 10 per cent of
apple seeds were bitter, we could express the model described above as

(apple$Bitter >= 10) ˜ apple$TN + apple$Ca

Of course, having to type in the word “apple” each time becomes tiring. Since the idea of accessing a data
frame as the source of all the variables in an analysis is a basic operation in data analysis, there are two meth-
ods provided in Splus to allow you to refer to the variable names directly, without specifying the name of the
data frame each time.

First, each of the statistical modeling functions accepts an argument calleddata which allows you to
specify the name of the data frame which should be used to resolve variable references within a formula.1

For example, to fit the previously described model in a logistic regression, the following two statements are
equivalent:

z <- glm((apple$Bitter >= 10) ˜ apple$TN + apple$Ca,family = binomial)
z <- glm(data=apple,(Bitter >= 10) ˜ TN + Ca,family = binomial)

One additional feature which is available when specifying the data frame through thedata= argument is
the ability to use the symbol “. ” to represent the additive effect of all the other variables in a data frame. In
the apple example, if we used the statement

z <- glm(data=apple,(Bitter >= 10) ˜ .,family = binomial)

we would fit a logistic regression to theBitter >= 10 variable using all the other variables in theapple
data frame. Since thedata= argument will accept any part of a data frame, this can be a useful way to express
a fairly complex model. Suppose we wished to fit a dependent variableX to five independent variables out
of a set of 20 stored in a data frame calledmydata . Assume thatX is the first variable in the data frame,
followed by the five variables of interest. Since data frames can be accessed using matrix operations, we
could write

1A similar mechanism is available for evaluating arbitrary expressions in a given data frame through the functioneval() .
However, since the Splus parser would try to evaluate an unprotected expression, it must be passed to eval as a call to the
function expression() . For example, to calculate the mean of the variable Bitter in the apple data frame, you could use
eval(expression(mean(Bitter)),apple) .

5

z <- glm(data=mydata[,1:6],X ˜ .,family = binomial)

and the. in the model formula will represent only the selected variables. Alternatively, you can explicitly
exclude certain variables from the model using a minus sign (“- ”). This is especially useful when you are
using a dot to represent all the other variables in the data frame, and you are also specifying aweights=
variable, because in such a case you generally do not want to fit theweights= variable to the data. In the
above example, if the sixth column ofmydata was calledV6, we could use it as a weighting variable as
follows:

z <- glm(data=mydata[,1:6],X ˜ . - V6,family = binomial,weights=V6)

When you will be usinga particular data frame more extensively, it may be easier to attach it to the current
environment in much the same way that a directory is added to the search list of Splus functions. Following
the example above, we could make the apple data frame the first area searched by Splus with the command

attach(apple,1)

Now, whenever you refer to, say,Bitter , Splus will know that you are referring to the variable Bitter in the
apple data frame. (If a variable does not exist in the first attached data frame or directory, Splus will continue
searching through other attached data frames and/or directories to find it. To see what is attached, use the
Splus functionsearch() .) Two caveats apply to the technique of attaching a data frame. First, thels()
function does not operate on data frames. Instead, you must use the new functionobjects() which works
correctly on both data frames and directories. Second, when a data frame is attached, only a copy of the data
frame is actually being used by Splus. Thus, if you wish to save the changes made to an attached data base
before you terminate your Splus session, you should detach the data frame using thesave= argument of the
detach() command.

7 Missing Values

Along with a unified approach to statistical modeling, the new modeling functions also provide new and
unified facilities for handling missing values. (Missing values are represented in Splus by the symbolNA.)
Each of the modeling procedures accepts an argument calledna.action= , which is the name of an Splus
function which will check the data set in question for missing values, and perform an appropriate action.
The two most common functions supplied with Splus which are suitable for thena.action= argument are
na.fail , the default, which simply causes the function to quit when any missing values are found in the
data, andna.omit , which omits any case which is found to have missing values. Additionally, the function
na.include will create an additional level (representing missing values) for any factor in your data which
has missing values, since by default,NAis not a valid value for any variable. While these functions will serve
most needs, you can customize missing value handling to suit your particular needs by writing a function
which operates on the evaluation frame of the data in question, and passing it’s name as thena.action=
argument to any of the modeling functions. You can examine the code for the functionna.omit by typing
the function name if you wish to see how such functions are constructed.

Functions such asna.omit are also useful in their own right. If a modeling function which specifies
na.omit as itsna.action removes observations due to the presence of missing values, it may be nec-
essary to recreate the data frame with those observations removed. Since thena.omit function returns a
data frame with those observations removed, it can be called directly to create a data frame corresponding to
the one used in the analysis.

6

8 Classes of Objects

Central to the way in which statistical models are implemented inside of Splus is the concept of a class of
objects. A class of objects is simply a specification of an object which conforms to certain rules regarding
the information which it contains. More importantly, methods can be developed which are capable of deal-
ing with a wide class of objects. Producing objects and developing methods capable of dealing with them
is the core of a technique known as object oriented programming. In Splus, methods are implemented for
a specific type of object by appending a period and the name of the object class to a method’s name. When
confronted with a request for a method, the Splus parser will first check to see if the object being passed to
the method is of a particular class; if so, it will automatically search for the appropriate function. For exam-
ple, theglm() function returns a glm object; when you typesummary(z) , where z is a glm object, the
summary() function automatically searches for a function calledsummary.glm() . (If it fails to find the
appropriate function for the glm object, it uses the functionsummary.default() .) In this way, useful
summaries of different types of objects can be produced through a single user interface, namely the func-
tion summary() . Note that when you specify the method of choice, you do not need to specify or even
be aware of the class of the object you are passing to the method; the resolution is done automatically. A
number of method oriented functions are implemented within Splus to deal with statistical modeling. For
example, a family of functions (based on theprint() function), exists to allow printing of the various
model objects (including the default action when an object’s name is printed.) If you were to create a new
type of object, say an “xyz” object, then theprint() function would automatically try to access a function
calledprint.xyz() (if it existed) whenever theprint() function was called with an xyz object as it’s
argument. Some other functions which use this mechanism are shown in Table 2.

To provide ready access to information about the various classes, the help facility of Splushas been ex-
tended to provide information about objects and classes. Typing a question mark (“?”) before the name of
any Splus object will access information about either the object itself (like thehelp() function for func-
tions and data sets) or about the nature of the class or classes to which the object belongs (for data frames,
model objects and other entities which belong to a class.) Typing “?methods(action) ” will display a
menu providing access to the help files which implementaction for various classes of objects.

9 Non-linear models

For most of the model fitting procedures in Splus, there is no need to explicitly state the parameters which are
to be estimated, because models are expressed as a linear combination of variables or expressions separated
by plus signs (+), to indicate the linearity. The procedure can then estimate one or more parameters for each
term in the model, and assign a name to the parameter based on the variable which was fit. In the case of
non-linear models, or for optimization of general functions, obviously this mechanism will no longer work,
because of the wide range of functional forms which need to be accommodated. For example, suppose we
wish to fit an exponential model to a data set consisting of two variables, x and y; in other words we are
assuming that the expected value of y can be expressed as the following function of x:

E(y) = α + βeγx

Obviously, we must provide the non-linear modeling functions with more information than just the names
of the variables to fit; we must explicitly express the model and make the routine aware of the parameters
which need to be estimated. To do so, formulas for nonlinear models should explicitly include the parameters
being estimated. In addition, starting values for the estimation procedure must be passed to the nonlinear
modeling function through an argument namedstart= , which is a list with one named element for each of

7

the parameters to be estimated, with the value of each element representing the starting value for the model
fitting process.

The function which performs nonlinear modeling is callednls . For example, the model described above
could be fit using the following Splus statements:

z <- nls(y˜alpha+beta*exp(gamma*x),start=list(alpha=a0,beta=b0,gamma=g0))

(It is assumed that the variablesa0, b0 andg0 contain suitablestartingvalues foralpha , beta andgamma,
respectively.) As with the other modeling procedures, if the data were stored in a data frame, it’s name could
be specified using thedata= argument. It is also possible to store starting values with the data frame, elim-
inating the need for thestart= argument to thenls() function. The functionparameters() stores a
named list of parameters along with the data frame, creating an object called a parameterized data frame, or
pframe . You can see the parameters stored in a pframe by calling the functionparameters() with the
pframe as an argument. Assuming that a data frame calledxy existed, with variablesx andy , the previous
statement could be replaced by the following:

parameters(xy) <- list(alpha=580,beta=-180,gamma=-0.16)
z <- nls(data=xy,y˜alpha+beta*exp(gamma*x))

The values stored as parameters in the pframe can be used anywhere in the model formula, and will be per-
manently stored along with the data in the pframe. The print method for pframes will display the values of
both the parameters and the variables.

10 Derivatives with Nonlinear Models

In the previous example, no derivatives were passed to thenls() function. In such a case, the routine com-
putes numerical derivatives, which may be more costly (in terms of additional function evaluations) than if
the analytical derivatives were supplied. In addition, analytical derivatives often helpnls produce more ac-
curate parameter estimates, especially for more complex functions than the example given. Derivatives of
the nonlinear function with respect to each of the parameters being estimated can be passed tonls() by
using the “gradient” attribute of the formula being fitted. The gradient attribute should be assigned a matrix
with as many rows as there are observations in the data set, and each column representing the derivative of
the function being fit with respect to one of the parameters. In the exponential example above, we have:

y = α + βeγx + error

∂y

∂α
= 1

∂y

∂β
= eγx

∂y

∂γ
= βxeγx

While we could express the gradient as a single expression, it is more efficient to use a function to calculate
the gradient, since there is a common expression (eγx) in the derivative with respect to bothβ andγ. The
following function will calculate both the function and the gradient for this example:

expfun <- function(x,alpha,beta,gamma)
{

8

egx <- exp(gamma * x)
value <- alpha + beta * egx
attr(value,"gradient") <- cbind(rep(1,length(x)),egx,beta*x*egx)
value

}

We could then usenls() to perform the model fitting, with the call toexpfun() as the right hand side of
the model. Note that the data (in this case,x) should be an explicit argument to the function, since evaluations
in the function are performed in a separate frame, even ifnls() is called with adata= argument. The Splus
statement to perform the fit would now be:

z <- nls(data=xy,y ˜ expfun(x,alpha,beta,gamma))

The symbolx is correctly resolved in this case as being a variable in thexy data frame because arguments
in thenls() call are evaluated with respect to that frame due to thedata=xy argument tonls() . Note
again that starting values need not be explicitly stated, because they have been stored in the pframe using the
parameters() function. You can also use thederiv function in Splus to generate a function definition
like the one above, with the associated gradient attribute. For simple models like the one described here,
deriv() will create a function which can be used as is; for more complex models, it may complain that
it doesn’t know how to calculate a derivative, or it may create a function which needs to be edited before it
will work properly. To create theexpfun() function described above usingderiv() , we could use the
following statements:

expfun <- deriv(˜alpha+beta*exp(gamma*x),c("alpha","beta","gamma"),
function(x,alpha,beta,gamma)NULL)}

The first argument toderiv() is the right hand side of the formula to be fit, preceded by atilde (̃) to let
Splus know that it is a formula, and not an expression to be evaluated. The second argument is a character
vector containing the names of the parameters which are to be estimated.deriv() will create a gradient
attribute with one column for each of the parameters named in the vector. Finally, the third argument is a
dummy function with a body consisting ofNULL, showing the argument list which should be used in the
function whichderiv() will create. Once it is established thatderiv() has successfully created a func-
tion, it can be used in exactly the same way as one which was written by hand.

11 General Optimization

Optimization of general functions is performed using thems function. Unlike the other modeling functions
discussed here, formulas passed toms will have no argument to the left of the tilde (), that is, they have
no dependent variable. Starting values for optimization are passed toms in exactly the same way as was
done fornls() ; either through thestart= argument toms, or by storing starting values in a pframe. It
should be noted thatms performs minimization, so that if maximization of a function is desired, an appro-
priate transformation should be used. Usually it is sufficient to multiply the function in question by -1.

As an example of a maximization problem, consider maximum likelihood estimation for a beta distribu-
tion with two parameters,a andb. Problems such as these are usually solved by minimizing the negative of
the sum of the log likelihood, that is we wish to minimize the quantityF , where

F = −
n∑

i=1

log(f(a, b|xi))

9

wheren is the number of observations,xi is the data for theith observation, andf(a, b|x) is the probability
density function for the beta distribution,viewed as a function of the parameters to be estimated,a andb. The
probability density function for the beta distribution is available in Splus as the functiondbeta . Maximum
likelihoodestimates for this distribution, for a data vectorx could be obtained through the following function
call:

z <- ms(˜-log(dbeta(x,a,b)),start=list(a=starta,b=startb))

Note that the sum does not have to be explicitly entered in the formula passed toms. You must include a tilde
(˜) before the formula so that Splus interprets the model as a formula instead of evaluating it before pass-
ing it on toms() . Thus, the tilde is required, even though there is no dependent variable. Information about
derivatives is provided toms() in the same way asnls() ; if you are calculating analytical derivatives, you
should set the gradient attribute of the returned value equal to a matrix with as many rows as there are obser-
vations in the data, and one column for each parameter being estimated, representing the partial derivative
of the function being minimized with respect to that parameter. Thederiv() function can also be used to
help make this task easier.

12 Trellis Graphics

One of the most appealing features of Splus has always been the ability to produce high quality graphics, with
complete control over most aspects of the graph. This has been achieved by using combining three separate
elements: a set of graphical parameters (set with thepar function) to control the overall appearance of the
graph, a collection of high-level graphing functions (likeplot or hist) which produce a complete graph
with a single function call, and auxiliary routines, known as low-level graphing functions, which can be used
to augment an existing display. Taken together, these elements are known as the core graphics of Splus.

But the core graphics have their limitations. The ability of different display devices makes it difficult to
consistentlyproduce graphics that look the same on different devices, like the screen and a printer. Displaying
several graphs on the same page often requires a fair amount of programming, and gettingcontrol of some fine
points of the appearance of graphics generally required a level of understanding of the core graphics which
most users simply don’t have. Another problem is that the core graphics routines have always been different
from other Splus functions in that they did not correctly return an object representing the graphics which
they produced. The Trellis graphics system solves these problems, and at the same time uses the formula
notation described in Section 5 to choose which variables will be used to construct a graph, thereby focusing
on the relationships which are being studied, instead of an arbitrary assignment to parameters. It should be
mentioned, however, that all the Trellis functions do their work using the core graphics functions, so, at the
lowest level, the user still has total control of the way the graphics will look.

Central to the overall design of the Trellis functions is the concept of a conditioning plot. A condition-
ing plot is actually a collection of plots, each with common axes, which represent the relationships among
variables for several subgroups of the data. For example, to study the effects of a treatment on survival rates
using several different treatments, we might produce a plot of time versus survival, conditionedon treatment.
This means that, for each treatment, a separate graph of time versus survival will be produced. The Trellis
functions will lay out the various plots in an ordered grid (hence the name trellis), appropriately labeling
them and constructing their axes identically to promote easy and valid comparisons, using a set of param-
eters which was specifically chosen for the output device in use. Such a graph might be produced by the
functionxyplot , given a formula

Survival ˜ Time | Treatment

10

The vertical bar (|) is used to delineate the relationship being studied from the so-called given variables,
which are used to specify the subsets of the data which will be displayed. Two given variables can also be
specified. In this case, the y-dimension of the grid will represent the varying levels of the first given vari-
able, and the x-dimension will represent the levels of the second given variable. It should also be pointed
out that, when no given variables are used, the Trellis functions will produce single panel displays which
are often more attractive than those produced by the corresponding high-level core graphics routines. A
list of some of the Trellis functions is provided in Table 12. One good way to learn about these functions
is to view their help pages from within Splus. In addition, two other help files which you may find useful
aretrellis.examples which lists the names of a variety of functions which will produce examples of
the various displays, andtrellis.args which describes the arguments which are common to the Trellis
functions.

Univariate Data
barchart Bar plot
bwplot Box-and-whisker plot
densityplot Kernel Density plot
dotplot Dot plot
histogram Histogram
piechart Pie chart
qqmath Quantile plot against specified distribution
stripplot One-dimensional scatter plots

Bivariate Data
qq Quantile-Quantile plot for comparing 2 distributions
timeplot Time Series Plot
xyplot Scatter Plot

Trivariate Data
contourplot Contour Plot
levelplot Level Plot

Multivariate Data
splom Scatterplot Matrix
parallel Parallel Coordinate Plot

3-D Displays
wireframe Wireframe display (regular grid points)
cloud 3-D Point Cloud (irregularly spaced data)

Table 3: Trellis Display Functions

13 Using Trellis

One convenient feature of the Trellis system is that it will automatically open an appropriate display device
when you first call any of the Trellis display functions. (If you want to override the default choice, or spec-
ify special parameters to the display device, use the functiontrellis.device .) If you are used to the
core graphics of Splus, it may take a while to get used to the fact that the usual arguments to thepar func-
tion will probably not do what you expect. The Trellis graphics are designed to make intelligent choices
about most of the usual graphics parameters (margins, axes, scales, etc.), so you shouldn’t need to change
most of the values from their defaults. If you do need to make changes, they can be done through the function

11

trellis.par.set . To see a list of the parameters you can control, examine eithertrellis.settings
or its help file; to examine the value of a specific parameter use the functiontrellis.par.get . Alsokeep
in mind that, if the default graphics device changes, many of the Trellis parameters will also change, since
the display functions have been customized for different display types.

14 Trellis Objects

While the main goal of most Trellis commands is to produce a plot, all of the functions in Table 12 return
an object of classtrellis . When these functions are called without assigning their output to an object,
they follow the usual default of being “printed”; in the case of graphical functions, that means that they are
displayed on the current output device. So the Trellis functions can be assigned to objects and displayed at a
later time, perhaps using a different output device. This is especially useful because theprint.trellis
function provides a number of options for combining several Trellis objects on one display, similar to the
mfrow or mfcol graphical parameters of the core graphics system. In addition, theupdate function al-
lows you to change your plot by modifying any of the arguments which were used when the plot was first
created.

15 Formulas for Graphics

All of the Trellis display functions expect their first argument to be a formula representing the relationship to
be graphically displayed. Since the Trellis functions allaccept adata= argument, if you are working with
a data frame, you can simply use the variable names, and specify the data frame just once with thedata=
argument. Perhaps the simplest case isplotxy which plots a bivariate scattergram; the function call

xyplot(y˜x)

produces a plot withy on the vertical axis andx on the horizontal axis. Most other Trellis functions follow
this general rule. For example, to produce a histogram of a numeric variable, you would use a call like:

histogram(˜variable)

Since no variable is represented on the vertical axis of a histogram, the formula has no left hand side. Simi-
larly, a box-and-whiskers plot for a variable, using a different vertical plot for each of several groups would
be invoked through a call like

bwplot(group˜variable)

because the variable’s values will be plotted along the horizontal axis, and the different levels ofgroup will
be plotted along the vertical axis.

Simple formulas like those above will produce a single plot on the page, similar to plots produced by the
olderplot , hist , andboxplot functions. The true power of the Trellis graphics becomes clear when
you use the vertical bar (|) to specify one or more given variables. The given variables are used to define
subsets of the data which are graphed separately, in interlocking plots, all of which have identical scales.

Returning to the apple data set, suppose we wish to investigate the relationship betweenCa the calcium
concentration in the soil, andBitter , a measure of the apple’s bitterness. A logical tool would be a scat-
terplot ofBitter versusCa. The following command produces the plot displayed in Figure 1.

xyplot(Bitter˜Ca,data=apple)

12

0

20

40

60

80

150 200 250 300

Ca

B
itt

er

Figure 1: Plot of Bitter vs Ca for entire apple data set

To investigatewhether this relationshipchanges withdifferentTreatment s, we could introduceTreatment
as a conditioning variable by including it in the formula after a bar (|):

xyplot(Bitter˜Ca|Treatment,data=apple)

The resulting plot, shown in Figure 2, clearly shows that the relationship betweenBitter andCalcium
is only present in the test groups; no such relationship exists within the control group. The shaded areas
on the labels of the individual plots in Figure 2 are intended as a visual cue to show the relative values of
the conditioning variable. For a classification variable such asTreatment in this example, the shading is
probably of little value. In Section 19, methods of modifying these labels will be discussed.

16 Thepanel= function

In Section 15, scatterplots for the relation ofCa andBitter were compared for four different values of
Treatment . To facilitate the comparison of these plots, it would be helpful to place a line representing the

13

0

20

40

60

80

Control

150 200 250 300

Nitrate

Sulphate

0

20

40

60

80

Urea

150 200 250 300

Ca

B
itt

er

Figure 2: Plot of Bitter vs Ca conditioned by Treatment

least squares (or some other) fit for these points. In the Trellis system, you can specify exactly what gets plot-
ted for each subset of data in thepanel= argument. Since each of the Trellis functions has a corresponding
default panel function namedpanel. functionname, panel functions often consist of a call to the default
function, followed by some additional graphics commands. If this model does not suffice, then the default
panel function can be used as a model for a customized panel function. In the present example, we need to
add a regression line to the plots, which can be easily done with a call to the functionabline , or the cor-
responding trellis functionpanel.lmline . Examination of the default panel functionpanel.xyplot ,
obtained in Splus by simply typing the function name, indicates that, among other arguments, it accepts two
argumentsx andy , representing the data to be plotted for each subset. So to add a regression line to each of
the plots in Figure 2, the following command could be used:

xyplot(Bitter˜Ca|Treatment, panel=function(x,y){
panel.xyplot(x,y)
panel.lmline(x,y)}, data=apple)

The resulting plot is shown in Figure 3.
Two other useful functions for customizing panel functions arepanel.grid andpanel.fill .

14

0

20

40

60

80

Control

150 200 250 300

Nitrate

Sulphate

0

20

40

60

80

Urea

150 200 250 300

Ca

B
itt

er

Figure 3: Plot of Bitter vs Ca condition by Treatment with regression line

17 Conditioning on Numeric Variables

In the previous example, where a plot was conditioned on a categorical variable, it was easy to decide how
to divide the data to produce the various panels in the plot; simply create a separate panel for each level of
Treatment. But for numeric variables, this choice is not so clear cut. To make it easier to generate groupings
for numeric variables, two functions are provided:equal.count andshingle . Both functions return
an object of classshingle , which is simply a collection of data with a set of intervals which maps the
(continuous) variable into a small number of groups. The name shingle derives from the fact that the default
behavior of both functions is to create overlapping groups, so that data points may fall into more than one
grouping. (Contrast this with thefactor s introduced in Section 3, where there is a one-to-one mapping
of data to a factor value.) This overlap turns out to be very useful when examining conditioning plots. The
functionequal.count divides your data into groups with approximately equal numbers in each group,
and the fraction of overlap specified by theoverlap= argument, which defaults to 0.5. This means that
when using the default value half of the data will be shared with adjacent intervals. As an alternative, you
can specify a number greater than one, which will be interpreted as the number of points shared with adjacent

15

intervals. Using the apple data as an example, suppose we wish to compare the distributionof the variableMg
(magnesium) for different values ofCa. SinceCa is a continuous numeric variable, it needs to be converted
to a shingle before it can be used as a conditioningvariable. Suppose we want to produce six histograms, one
for each of six equal-count overlapped groups based on the value ofMg. The following commands produce
the plot shown in Figure 4:

histogram(˜Mg|equal.count(Ca),data=apple)

0

10

20

30

40

50

60
1

350 400 450 500

2

3

0

10

20

30

40

50

60
4

0

10

20

30

40

50

60
5 6

350 400 450 500

Mg

P
er

ce
nt

 o
f T

ot
al

Figure 4: Histogram ofMg, conditioned byCa

The shaded areas on at the top of each panel provide a visual cue as to which shingle of the data is being
displayed; the plot based on data corresponding to the smallest values of the conditioning variable are repre-
sented in the panel with the leftmost shaded area within the strip, and the plot based on the data representing
the largest value of the conditioning variable are represented in the plot with the shaded area on the right.

16

18 Multiple Conditioning Variables

You are not limited to a single conditioning variable when creating trellis plots; you can condition on two
variables by joining their names after the bar of the formula with an asterisk (*). Two strips will then appear
over each panel of the display, representing the levels of the two conditioning variables. As an example,
Figure 5 is a quantile-quantileplot for the variableBitter from theapple data set, conditionedby shingles
formed from the variablesCa andMg. This plot was produced with the statements

MgConc <- equal.count(apple$Mg,n=3)
CaConc <- equal.count(apple$Ca,n=3)
qqmath(˜Bitter|CaConc*MgConc,dist=qnorm,data=apple,

panel=function(x,y){
panel.qqmath(x,y)
panel.qqmathline(y,dist=qnorm)
})

To provide sufficient points for each panel, the number of intervals was limited to three for each shingle. The
shingles were stored in named objects so that the strips above the plots would be appropriately labeled. As
in the previous example, a reference line was added to the plot using thepanel= argument toqqmath ,
this time invoking the functionpanel.qqmathline in addition topanel.qqmath . The shaded areas
in the strips provide a relative notion of the range of the conditioning variables required to produce shingles
containing (approximately) equal numbers.

19 Customizing Trellis Plots

In addition to thepanel= argument to the trellis plot commands there are a number of other ways that you
can customize trellis plots. The argumentsxlab= andylab= can provide labels for thex- andy-axes in
the usual way, or they can be used to pass a list containing named graphics parameters (likecol , cex , etc.)
to control the way the labels are printed. The title at the top ofeach page of output can be controlled in a
similar way through the argumentmain= .

The style of the strip on top of each panel can be controlled through thestrip= argument. This ar-
gument should be a function which passes its arguments to the supplied functionstrip.default , with
the necessary parameters changed to meet your needs. Perhaps the most common use of this parameter is
to change the overall style of the strip. Figure 6 illustrates the five available types of panels, using the lev-
els ofapple$Treatment as an example. When the conditioning variable is a shingle, the interval num-
ber appears in place of the factor level; the name of the shingle can be included in the strip by setting the
strip.names= argument ofstrip.default to c(T,T) .

Thus, to change from the default (style=1), to style=5 , an argument of the form

strip = function(...)strip.default(...,style=5)

should be passed to the appropriate trellis function. Other arguments tostrip.default can be modi-
fied in a similar way. Further modifications to the way labels print on strips can be achieved through the
par.strip.text= argument of the trellis functions.

20 Advanced Topics

Many more functions are arguments are available within the Trellis system to provide more control over
the appearance of your plots. Theprepanel= argument allows you to specify a function which is called

17

0

20

40

60

80

CaConc
MgConc

-1 0 1

CaConc
MgConc

CaConc
MgConc

-1 0 1

CaConc
MgConc

CaConc
MgConc

0

20

40

60

80

CaConc
MgConc

0

20

40

60

80

CaConc
MgConc

CaConc
MgConc

-1 0 1

CaConc
MgConc

qnorm

B
itt

er

Figure 5: Q-Q plot ofBitter , conditioned byCa andMg

prior to plotting, to allow you set up axes and specify aspect ratios of the plots which will be produced. The
subscripts= argument, when set toT, adds a third argument to the panel function, representing the sub-
scripts of the selected observations for the current panel. This can be useful, for example, if plottingsymbols
based on some other variable in a data frame are to be used. A more complete descriptionof the Trellis graph-
ics, including an extended User’s Guide, is available at the Bell Labs web site:
http://netlib.bell-labs.com/cm/ms/departments/sia/project/trellis/ .

18

style=1 - The active level name appears on a background col-
ored strip with no shading

style=2 - All level names appear in the strip - the active one is
shaded

style=3 - Level names appear in the strip, along with shading
to serve as a visual cue which level is represented

style=4 - Like style=2 , but the strip is colored using the
background color

style=5 - Like style=1 , but the placement of the label serves
as a visual cue of what level is represented

Figure 6: Different strip styles available under Trellis

19

