Algorithm AS 197: A Fast Algorithm for the Exact Likelihood of
Autoregressive-Moving Average Models

G. Melard

Applied Statistics, Volume 33, Issue 1 (1984), 104-114.

Your use of the JSTOR database indicates your acceptance of JISTOR’s Terms and Conditions of Use. A copy of
JSTOR’s Terms and Conditions of Use is available at http://www.jstor.org/about/terms.html, by contacting JSTOR
at jstor-info@umich.edu, or by calling JSTOR at (888)388-3574, (734)998-9101 or (FAX) (734)998-9113. No part
of a JSTOR transmission may be copied, downloaded, stored, further transmitted, transferred, distributed, altered, or
otherwise used, in any form or by any means, except: (1) one stored electronic and one paper copy of any article
solely for your personal, non-commercial use, or (2) with prior written permission of JSTOR and the publisher of
the article or other text.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

Applied Statistics s published by Royal Statistical Society. Please contact the publisher for further permissions
regarding the use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/rss.html.

Applied Statistics
©1984 Royal Statistical Society

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office.
For more information on JSTOR contact jstor-info@umich.edu.

©2001 JSTOR

http://www.jstor.org/
Wed Mar 7 13:47:19 2001

104 APPLIED STATISTICS
Algorithm AS 197

A Fast Algorithm for the Exact Likelihood of Autoregressive-moving
Average Models

By G. Mélard
Université Libre de Bruxelles, Belgium
[Received July 1982. Revised June 1983]

Keywords: Maximum likelihood; Autoregressive-moving average model; Fast algorithm

Language
Fortran 66

Description and Purpose

This algorithm has the same purpose as Algorithm AS 154 of Gardner et al. (1980), namely
to compute the exact likelihood function of a stationary autoregressive-moving average (ARMA)
process of order (p, q). That algorithm appears to be slower, and requires more storage than is
necessary, particularly for large p and q. The computer program described here is a combination
of an improved version of an algorithm due to Pearlman (1980) with the quick recursion switching
suggested by Gardner et al. (1980) and an algorithm of Wilson (1979). The program is extremely
efficient both in terms of computing time and amount of storage.

Theory and Method

We want to compute the likelihood function of the ARMA (p, q) process, defined by the
equation

Wt=¢1 Wt—l +... +¢p Wt_p +dt_01at_l .. ‘_ant—q (1)

associated to a time series (w;;# =1, .. ., n), under the assumptions that the a, are normally and
independently distributed with zero mean and constant variance o and that the process is
stationary. The basic principle con51sts (Ansley, 1979; Harvey and Phillips, 1979) of computing
the values taken by the innovations @, of the stochastic process (we; £=1,2,...). The likelihood
is then given by the expression

n

4 "
(277)—"/2(I1 0t> exp {"% Y (‘;tlot)z}’ 2

t=1 t=1

where o0y = h;0 is the standard deviation of ;. Maximizing (2) with respect to the parameters
included in ¢ and 0 is equivalent (Ansley, 1979) to minimizing the sum of squares

2

n 1/n n "
(fm)" £ ()
t=1 =1 ht

t

The maximum likelihood estimate of o® is then given by n™* T (@,/h;)?, evaluated at the optimal
parameter point. Subroutine FLIKAM can be used to compute (3) as the product FACT«SUMSQ.

One method of obtaining the @, (Caines and Rissanen, 1974; Gardner ef al., 1980) is to use the
Kalman filter recursions based on a state space representation of (1), e.g.

Present address: Institut de Statistique —C.P. 210, Université Libre de Bruxelles, Bruxelles, Belgium.
© 1984 Royal Statistical Society 0035—9254/84/33104 $2.00

STATISTICAL ALGORITHMS 105

Wy = HWt,

W,=FW,_ + Ga;, 4)
where W, is the rx 1 state vector, r=max (p,q +1), H=(10... 0), G'=(1—-0;...0,_1),
F=(F;,;) is an r X r matrix such that F; ; = ¢; and F;, ;= ; j+1 G=2,..,r)fori=1,2,...,7,
with the notations ¢; =0,i>p, 8y =—1 and 6; =0, i > q. Pearlman (1980) has suggested replac-
ing the (matrix) Ricatti-type difference equation used in the Kalman filter by a (vector)

Chandrasekhar-type difference equation, see Rissanen (1973), Lindquist (1974) and Morf ez al.
(1974). His first algorithm consists of the recursions

iy = wy — HW,,)
I'T/t+1 = FI';/t + Ky(@y/n?), ()
Ktv1 = Ky — g FLy, ™
Lyyy =FLy— oKy, (®)
Mpyy =W = 0}), ©)

where «; is written for HL;/h?. The same idea was implicit in the paper of Caines and Rissanen
(1974, p. 103, footnote).

Our implementation of this algorithm includes an improvement for the case where p >gq.
Indeed, (5-6) implies that

p(?) p(®) q(®) Kejj
we= Y wej=d— Y Gyt Y

i = j = i= 2
i=1 j=1 i=1 hi;

2, (10)

where p(f) =min (t —2,p), q(t) =min (¢ —1,7) and K,_; ; is the jth element of K;._;. Since a, is
the innovation at time ¢ of the stochastic process (w;;¢=1,2,...), the right-hand side of (10)
is, for t =p + 2, the innovations representation (Cramér, 1961) of a non-stationary moving average
process of order g which is known to be unique. Hence the terms for j >g vanish, so that
K,_j,j/hf_j = ¢;. Consequently, the jth elements of (Ks/h?),j=q +1,...,r, do not change when
t=p—q+1. Updating of these elements of K; and L; by (7)-(8) can be skipped over and the
ratio (K,]-/h%) must accordingly be replaced by ¢; in (6) for j = p + 1. Note that Pearlman (1980)
states a similar property for his second algorithm (erroneously for #=>q +1 instead of
t=p—q+1). The present variant of his first algorithm, in terms of the total number of multi-
plications and divisions, is as fast as these two algorithms, uniformly in p and g.

The starting conditions for (5)-(9) are W, =0, K, =L, = FPH', h} = HPH', where P is the co-
variance matrix in the marginal distribution of W;. Since

.
Wi i= 2 (@ Weojri-1 = 0j-1 Gzoj 1)

j=i
we have Py | =7 and Py ; = u;, where

,
w= 2 ($Vjei+1 —0j-1 Nop)y i=1,...7
j=i
and
Py =cov(Wy, Weg), 02 Ng=cov Wy arg), k=0,1,...

Hence

106 APPLIED STATISTICS

Ky,:i=Ly,:= ¢vo t Mi+1, (11)

where we let y,.; =0. Note that Gardner et al. (1980) mention the suggestion from a referee
that the autocovariances be used in the calculation of P.

The autocovariances vy (k=0,1,...,R), where R=max (p,q), are determined by an
algorithm due to Wilson (1979). The covariances Agx (k=0,1,...,q) are then given by the
formula

min(p, k)

Ne==Okt X G gy
j=1

The vx and Ay are obtained by using subroutine TWACF.
We have retained the proposal of Gardner et al. (1980) to allow for a switching from the state
space recursions (5)-(9) to the quick recursions

p q
21- = Wt - Z ¢]'Wt_j + Z 0, 3;_;, (12)
j=1 j=1

hiiy =1
as soon as h? <1+, where 8 is a small positive real number. The switching has been delayed
until £=r+1 in order to avoid unnecessary complications. For the same reason, unnecessary
updating of some elements of K, and L, has been maintained until £ = p —q + 1. The switching
always occurs at time p + 1 for pure autoregressive processes.

Note also that working storage is restricted to three vectors of length 7 + 1, which is really
negligible by comparison with the n* memory cells required by the direct inversion of the
covariance matrix. Our implementation of Wilson’s algorithm uses the same three vectors as
workspace without the need to reconstruct some coefficients (compare with Wilson, 1979, p.
303).

The algorithm can still be improved in the case of a seasonal moving average process, defined
by the equation

w = 0(B) ©(B°) a;, (13)

where B is the backshift operator, 6(B) is a polynomial in B of degree q', ©(B®) is a polynomial
in BS of degree ¢" and s is the length of the seasonal cycle, such that ¢’ <s. Let ¢*> be the
covariance matrix of w=(wy,...,w,)" and Q=TT', the Cholesky factorization of §2, where
T is a lower triangular matrix. The elements Ty of T are related to the elements K; ; of vectors
K; by Ty,4j= Ky g, j/hs;. Consequently by Theorem 4.1 of Ansley (1979), we have K; ;=0
for t=h's+k—jand j=h"s+Iwith h',n"=0,1,...,k=1,...,5—¢",and [=¢q'+1,...,s—1.
There is no simple generalization of this property when p >0, except when the autoregressive
operator 1 —¢;B—...—¢,BP is a polynomial in BS. A transformation like the one suggested by
Ansley (1979, p. 64) can be used for mixed models but, since the algorithm is restricted to a
time-invariant state space representation (4), the Kalman filter algorithm would become necessary.
These refinements for seasonal models are not implemented in subroutine FLIKAM.

Structure

SUBROUTINE FLIKAM(P, MP, Q, MQ, W, E, N, SUMSQ, FACT, VW, VL, MRP1, VK, MR,
TOLER,IFAULT)

Formal parameters

P: Real array (MP) input: the value of ¢ in the first p locations
MP Integer input: the value of p

STATISTICAL ALGORITHMS 107

0 Real array (MQ) input:
MQ Integer input:
W Real array (V) input:
E Real array (V) output:
N Integer input:
SUMSQ Real output:
FACT Real output:
VW Real array (MRP1) workspace:
VL Real array (MRP1) workspace:
MRP1 Integer input:
VK Real array (MR) workspace:
MR Integer input:

TOLER Real input:

IFAULT Integer output:

the value of 0 in the first g locations

the value of ¢

the observations, wy

the corresponding residuals d;/o;

n, the number of observations

the value of T (@,/h;)*

the value of (Il h2)1/7

used to store the state vector W;

used to store vector L;

the value of max (p,q +1) +1

used to store vector K;

the value of max (p, ¢ +1)

the value of §. It should be negative if the exact

likelihood is desired. Otherwise, switching to

approximate recursions occurs when A2 <1+8§

a fault indicator, equal to

1to5 indicates an error detected in sub-
routine TWACF (see below)

6 if MR # max (MP, MQ + 1)

7 if MRP1 MR + 1

8 if h?<107'® This indicates bad
numerical behaviour. Check the coeff-
icients ¢ and 6

9 ifN< 0

—-m not a failure: indicates that quick recur-
sions took place from ¢ =m

0 otherwise

Constant .
The constant 10 % used in the eighth failure test is identified by variable EPSIL1, which is

DATA-initialized.

SUBROUTINE TWACF(P, MP, Q, MQ, ACF, MA, CVLI, MXPQP1, ALPHA, MXPQ, IFAULT)

Formal parameters

P Real array (MP) input:
MP Integer input:
Q Real array (MQ) input:
MQ Integer input:
ACF Real array (MA) output:
MA Integer input:
CVLI Real array (MXPQP1l) output:
MXPQP1 Integer input:
ALPHA Real array (MXPQ) workspace

MXPQ . Integer input:
IFAULT Integer output:

the value of ¢ in the first p locations

the value of p

the value of 0 in the first g locations

the value of ¢

the autocovariances of order 0 to M4 — 1

the maximum lag in the autocovariances plus 1
the covariances between w; and @, for
k=0,1,...,MXPQP1 -1

the value of max (p, q) +1

the value of max (p, q)

a fault indicator, equal to

ifMP<0orMQ<O0

if MXPQ # max (MP, MQ)

if MXPQP1 #MXPQ + 1

if MA < MXPQP1

if, for some k, (ALPHA(k+1))* > 1—-1071°,
indicating that the nonstationarity boundary
is too close.

0 otherwise

N A WN =

108 APPLIED STATISTICS

Constant
The constant 10 1% used in the fifth failure test is known as variable EPSIL?2, and is DATA-
initialized.
Precision

On machines with small word length, all the real variables should be replaced by double
precision variables. Overflow or underflow will not occur in the calculation of (I #2)1/7 because
the product is stored in the form ¢2? (Martin and Wilkinson, 1965; Ansley, 1979).

Time
The number of time-consuming operations—multiplications and divisions—is given by the
formula

Nn(P,q) =No(p,q) + Nn,p,q),
where

2 2
No(p, q) = p* +—q; t2pR+qS+ —,

N(n,p,q)=n(p +3q +.5),
where R =max (p, q), and S=min (p, g). Terms of lower power have been omitted. Note that
the use of McLeod’s (1975) algorithm would have given a term O(p>/2) in No(p, q). The approxi-

mate conditional and unconditional methods (Box and Jenkins, 1976) correspond respectively
to

N'(n,p,q) =n +q),
N'(n,p,g)={2n+2w+(k—-1)Qn+4)} (p +q),

where v is the maximum leadtime for backforecasting or forecasting and k is the number of
iterations of the backforecasting procedure. With »=n/2 and k=1, we obtain N'(n,p, q) =
3n(p +q), i.e. more than N(n, p, q) for the exact method. Table 1 shows the average computation

TABLE 1
Average computation times in milliseconds required to evaluate the conditional sum
of squares (by the code used by Gardner et al., and that in the comment in FLIKAM),
and the exact likelihood (by a method of Ansley improved, see Mélard, 1982, by the
Algorithm AS 154 of Gardner et al. and the present algorithm)

Model Conditional method Exact method
Comment Ansley

@, 9) AS 154 in FLIKAM (improved) AS 154 AS 197
1,0) 1.1 0.7 0.7 4.1 0.6
0,1) 1.2 0.8 3.6 4.8 3.1
(2,0) 1.2 0.8 0.9 5.4 0.8
0,2) 1.6 0.8 4.6 5.9 3.3
(1,1) 1.5 0.9 4.1 5.4 3.3
(13,0) 2.7 1.9 12 77 3.4
(12,1) 3.1 1.9 13 61 5.6
1,12) 4.4 1.9 19 75 5.2
0,13) 4.6, 1.9 21 37 5.0

times in milliseconds for execution on a CDC Cyber 170-750 computer using the FTN compiler
with optimization option 2, for series of length n = 100. The ratio of the computing times of the

STATISTICAL ALGORITHMS 109

exact likelihood over the conditional approximation is not greater than 4 for most of the models
which have been tried and is less than 3 for the high-order models. If the quick recursion switching
is allowed for still better results can be obtained when q >0. For a more complete discussion
of this point, see Gardner et al. (1980). We have given the code used for the conditional method
in the comment near the end of SUBROUTINE FLIKAM. The code given in the program of
Gardner et al. (1980) was also considered. We recall that even ratios can be highly dependent on
the computer and on the compiler, especially its level of optimization (see Mélard, 1982). Any-
way, the code was written in order to possibly take advantage of compiler optimization, in accord-
ance with the recommendations of, for example, Kernighan and Plauger (1978).

If computation of the ratio a;/h; is not necessary (e.g. when a general purpose optimization
algorithm is used instead of a non-linear least-squares algorithm) the algorithm can be slightly
modified in order to avoid all square roots except g of them when switching to quick recursions
occurs.

Related Algorithms

The number of multiplications and divisions required by the original algorithms of Pearlman
(1980) is always as large as ours. Pearlman (1980) pointed out that algorithms based on the Morf
et al. recursions are not necessarily faster than the algorithm of Ansley (1979) based on a
Cholesky factorization of a band matrix. Between the original Ansley’s algorithm, the improved
version (Mélard, 1982) and the Kalman filter algorithm of Gardner et al., (1980), the second one
is faster when p >q whereas the third one requires about p?7* /2 operations for the determination
of the starting matrix P. The storage requirements are respectively rn, 72 and r*/8. For ARMA
models with time-dependent coefficients, an algorithm has been given by Mélard (1982).

Execution times of the programs on series of length 100 in the experiments reported in Table 1
seem to confirm that the program of Gardner et al. (1980) should not be used. The algorithm
of Ansley improved (with the algorithm of McLeod, to tell the truth) is sometimes nearly as fast
as the present algorithm except for high-order models, confirming the conclusions of Pearlman
(1980).

The possible improvements for seasonal moving average processes (13) would reduce the
apProximate number of multiplications and divisions at each time from 3(g"s +gq") to
3¢"(1 +24").

Acknowledgements

This paper was written while at the “Université de Montréal” under the sponsorship of the
international co-operation between Belgium and the Province of Quebec.

We thank the Algorithm Editor and the referee, especially for suggesting the examination of
models with sparse coefficients.

References

Ansley, C. F. (1979) An algorithm for the exact likelihood of a mixed autoregressive-moving average process.
Biometrika, 66, 59 —65.

Box, G. E. P. and Jenkins, G. M. (1976) Time Series Analysis, Forecasting and Control (revised edition). San
Francisco: Holden Day.

Caines, P. E. and Rissanen, J. (1974) Maximum likelihood estimation of parameters in multivariate Gaussian
stochastic processes. /[EEE Trans. Inf. Theory, IT-20, 102—104.

Cramér, H. (1961) On some classes of nonstationary stochastic processes. In Proc. 4th Berkeley Symp. Math.
Statist. and Prob., Vol. 2, pp. 57—78. Berkeley and Los Angeles: University of California Press.

Gardner, G., Harvey, A. C. and Phillips, G. D. A. (1980) Algorithm AS 154. An algorithm for exact maximum
likelihood estimation of autoregressive-moving average models by means of Kalman filtering. Appl. Statist.,
29, 311-322.

Harvey, A. C. and Phillips, G. D. A. (1979) Maximum likelihood estimation of regression models with auto-
regressive-moving average disturbances. Biometrika, 66, 49—58.

:Kernighan, B. W. and Plauger, P. J. (1978) The Elements of Programming Style. New York: McGraw-Hill.

Lindquist, A. (1974) A new algorithm for optimal filtering of discrete-time stationary processes. Siam J. Control,
12, 736-746.

110 APPLIED STATISTICS

Mcbegd, L. (1975) Derivation of the theoretical autocovariance function of autoregressive-moving average time
series. Appl. Statist., 24,255-256.

Martin, R. S. and Wilkinson, J. H. (1965) Symmetric decomposition of positive definite band matrices. Num.
Math.,7,355-361.

Mélard, G. '(1982) The likelihood function of a time-dependent ARMA model. In Applied Time Series Analysis,
Proceeding of the International Conference held at Houston, Texas, August, 1981 (O. D. Anderson and
M. R. Pe.rryman, eds). Amsterdam: North-Holland, to appear.

Morff M., Sldh}l, G. S. and Kailath, T. (1974) Some new algorithms for recursive estimation on constant, linear,
discrete-tinie systems. I[EEE Trans. Auto. Control, AC-19, 315-323.

Pearlman, J. G. (1980) An algorithm for the exact likelihood of a high-order autoregressive-moving average
process. Biometrika, 67,232-233.

Rissan;n, J. (1973) Algorithms for triangular decomposition of block Hankel and Toeplitz matrices with appli-
cation to factoring positive matrix polynomials. Math. Comp., 27, 147—-154.

Tunnicliffe, Wilson, G. (1979) Some efficient computational procedures for high order ARMA models. J. Statist.
Comp. Simul., 8, 301-309.

SUBROUTINE FLIKAM(P, MP, Q, M@, W, E, N, SUMSQ, FACT, VW, VL,
* MRP1, VK, MR, TOLER, IFAULT)

C
c ALGORITHM AS 197 APPL. STATIST. (1984) VOL.33, NO.1
C
C COMPUTES THE LIKELIHOOD FUNCTION OF AN AUTOREGRESSIVE-
C MOVING AVERAGE PROCESS, EXPRESSED AS FACT*SUMSQ.
C
REAL P(MP), Q(MQ), W(N), E(N), VW(MRP1), VL(MRP1), VK(MR)
C
REAL FACT, SUMSQ, TOLER, EPSIL1, ZERO, P0625, ONE, TWO, FOUR,
* SIXTEN, A, ALF, AOR, DETCAR, DETMAN, FLJ, FN, R, VL1, VW1
C
REAL ABS, SQRT
C
DATA EPSIL1 /1.0E-10/
DATA ZERO, P0625, ONE, TWO, FOUR, SIXTEN /0.0, 0.0625, 1.0, 2.0,
* 4.0, 16.0/
C
FACT = ZERO
DETMAN = ONE
DETCAR = ZERO
SUMSQ = ZERO
MXPQ = MAXO(MP, MQ)
MXPQP1 = MXPQ + 1
MaP1 = MQ + 1
MPP1 = MP + 1
C
C CALCULATION OF THE AUTOCOVARIANCE FUNCTION OF A PROCESS WITH
C UNIT INNOVATION VARIANCE (VW) AND THE COVARIANCES BETWEEN THE
c VARIABLE AND THE LAGGED INNOVATIONS (VL).
C
CALL TWACF(P, MP, @, M@, VW, MXPaQP1, VL, MXPQP1, VK, MXPQ, IFAULT)
IF (MR .NE. MAXO(MP, MQP1)) IFAULT = 6
IF (MRP1 .NE. MR + 1) IFAULT =7
IF (IFAULT .GT. 0) RETURN
c
C COMPUTATION OF THE FIRST COLUMN OF MATRIX P (VK)

VK(1) = VWD)
IF (MR .EQ. 1) GOTO 150
DO 140 K = 2, MR
_ VK(K) = ZERO
" IF (K .GT. MP) GOTO 120
DO 110 J = K, MP
JP2MK = J + 2 - K
CVK(K) = VKC(K) + P(J) * VW(JP2MK)
110" CONTINUE
120 IF (K .GT. MQP1) GOTO 140
D0 130 J = K, M@P1
JPIMK = J + 1 - K
VKC(K) = VKC(K) - QCJ = 1) * VL(JPTMK)
130 CONTINUE
140 CONTINUE

o

o

STATISTICAL ALGORITHMS

COMPUTATION OF THE INITIAL VECTORS L AND K (VL,VK).

150 R = VK(1)
VL(MR) = ZERO
DO 160 J = 1, MR
VW(J) = ZERO
IF (J .NE. MR) VL(J)
IF (J .LE. MP) VL(J)
VK(J) = VL)

160 CONTINUE

VK(J + 1)
VL) + PWJ) * R

INITIALIZATION
LAST = MPP1 - MQ
LOOP = MP

JFROM = MPP1
VW(MPP1) = ZERO
VL(MXPQP1) = ZERO

EXIT IF NO OBSERVATION, OTHERWISE LOOP ON TIME.

IF (N .LE. 0) GOTO 500
DO 290 1 = 1, N

TEST FOR SKIPPED UPDATING

IF (I .NE. LAST) GOTO 170
LOOP = MINO(MP, MQ)
JFROM = LOOP + 1

TEST FOR SWITCHING

IF (M@ .LE. 0) GOTO 300
170 IF (R .LE. EPSIL1) GOTO 400
- IF (ABS(R - ONE) .LT. TOLER .AND. I .GT. MXPQ) GOTO 300

UPDATING SCALARS

DETMAN = DETMAN * R
190 IF (ABS(DETMAN) .LT. ONE) GOTO 200
DETMAN = DETMAN * P0625
DETCAR = DETCAR + FOUR
GOTO 190
200 IF (ABS(DETMAN) .GE. P0625) GOTO 210
DETMAN = DETMAN * ‘SIXTEN
DETCAR = DETCAR - FOUR
GOTO 200
210 VW1 = VW)
A = W(I) - VW1
ECI) = A / SQRT(R)
AOR = A / R
SUMSQ = SUMSQ + A * AOR
VL1 = VL(1D)
ALF = VL1 / R
R = R - ALF * vL1
IF (LOOP .E@. 0) GOTO 230

UPDATING VECTORS

DO 220 J = 1, LOOP
FLJ = VL(J + 1) + PWJ) * VL1

VW(J) = VW@ + 1) + P(J) * VW1 + AOR * VK(J)
VL(J) = FLJ = ALF * VK(J)
VK(J) = VK(J) - ALF * FLJ

220 CONTINUE
230 IF (JFROM .GT. MQ) GOTO 250
DO 240 J = JFROM, MQ
VW(@J) = VW(J + 1) + AOR * VK(WJ)
VL(J) = VLW + 1) - ALF * VK(QJ)
VK(J) = VK(J) - ALF * VL(J + 1)
240 CONTINUE
250 IF (JFROM .GT. MP) GOTO 270

112

OO0 OOOOOO0OO

C
C
C

260
270
290

300

310

320
330
340

350
360

370
380

APPLIED STATISTICS

DO 260 J = JFROM, MP

VW@) = VWA + 1) + PQJ) * W(I)
CONTINUE

CONTINUE

GOTO 390

QUICK RECURSIONS

NEXTI =1

IFAULT = -NEXTI

DO 310 I = NEXTI, N

ECI) = W(I)

IF (MP .EQ. 0) GOTO 340

DO 330 I = NEXTI, N

DO 320 J 1, mp

IMJ =1 -1

ECI) = EC(I) - P(J) * W(IMJ)
CONTINUE
CONTINUE
IF (MQ .E
DO 360 I
DO 350 J
IMJ =1-1J

ECI) = ECI) + Q(J) * ECIMJ)
CONTINUE

CONTINUE

0) GOoTO 370
NEXTI, N
1, Ma

nno

RETURN SUM OF SQUARES AND DETERMINANT

DO 380 I = NEXTI, N
SUMSQ = SUuMsSQ + E(I) * E(I)

CODE FOR CONDITIONAL SUM OF SQUARES
REPLACES ALL EXECUTABLE STATEMENTS UPTO AND
INCLUDING THAT LABELLED 380

FACT = ZERO
DETMAN = ONE
DETCAR = ZERO
SUMSQ = ZERO
MXPQ = MAXO(MP, MQ)
DO 380 I=MXPQ,N
ECI)=W(I)
IF (MP.LE.0) GOTO 340
DO 320 J=1,MP
IMJ=1-J
ECI)=ECI)-P(J)*W(IMJ)
320 CONTINUE
340 IF (MQ.LE.0) GOTO 380
DO 350 J=1,Ma
IMJ=1-J
ECI)=E(I)+QCJI*ECIMJ)
350 CONTINUE
380 SUMSQ=SUMSQ+E(I)*E(I)

390 FN = N

400

500

*

FACT = DETMAN ** (ONE / FN) * TWO ** (DETCAR / FN)
RETURN

EXECUTION ERRORS

IFAULT = 8
RETURN
IFAULT = 9
RETURN

END

SUBROUTINE TWACF(P, MP, @, MQ, ACF, MA, CVLI, MXPQP1,

IFAULT)

ALGORITHM AS 197.1 APPL. STATIST. (1984) vOL.33,

ALPHA, MXPQ,

NO.1

OOOOOOOO0O

o

o

OO0

[z Xz Xz Xzl

10

20
90

110
120
130

180

190

STATISTICAL ALGORITHMS 113

IMPLEMENTATION OF THE ALGORITHM OF G. TUNNICLIFFE WILSON

(J. STATIST. COMPUT. SIMUL. 8, 1979, 301-309) FOR THE
COMPUTATION OF THE AUTOCOVARIANCE FUNCTION (ACF) OF AN ARMA
PROCESS OF ORDER (MP,MQ) AND UNIT INNOVATION VARIANCE.

THE AUTOREGRESSIVE AND MOVING AVERAGE COEFFICIENTS ARE STORED
IN VECTORS P AND Q, USING BOX AND JENKINS NOTATION. ON OUTPUT
VECTOR CVLI CONTAINS THE COVARIANCES BETWEEN THE VARIABLE AND
THE (K-1)-LAGGED INNOVATION, FOR K=1,...,MQ+1.

REAL P(MP), Q(MQ), ACF(MA), CVLI(MXPQP1), ALPHA(MXPQ)
REAL EPSIL2, ZERO, HALF, ONE, TWO, DIV

DATA EPSIL2 /1.0E-10/
DATA ZERO, HALF, ONE, TWO /0.0, 0.5, 1.0, 2.0/

IFAULT = 0

IF (MP .LT. O .OR. MQ .LT. 0) IFAULT =
IF (MXPQ .NE. MAXO(MP, MQ)) IFAULT = 2
IF (MXPQP1 .NE. MXPQ + 1) IFAULT = 3
IF (MA .LT. MXPQP1) IFAULT = &4

IF (IFAULT .GT. 0) RETURN

1

INITIALIZATION AND RETURN IF MP=MQ=0

ACF(1) = ONE

CVLI(1) = ONE

IF (MA .EQ. 1) RETURN

DO 10 I = 2, MA

ACF(I) = ZERO

IF (MXPQP1 .EQ. 1) RETURN

DO 20 I = 2, MXPQP1
CVLICI) = ZERO
DO 90 K = 1, MXPQ

ALPHA(K) = ZERO

COMPUTATION OF THE A.C.F. OF THE MOVING AVERAGE PART,
STORED IN ACF.

IF (M@ .EQ. 0) GOTO 180

DO 130 K = 1, MQ

CVLI(K + 1) = -Q(K)

ACF(K + 1) = -Q(K)

KC = M@ - K

IF (KC .EQ@. 0) GOTO 120

bo 110 J = 1, KC

JPK = J + K

ACF(K + 1) = ACF(K + 1) + Q@WJ) * Q(JPK)

CONTINUE
ACF(1) = ACF(1) + Q(K) * Q(K)
CONTINUE
INITIALIZATION OF CVLI = T.W.-S PHI -- RETURN IF MP=0.

IF (MP .EQ. 0) RETURN
DO 190 K = 1, MP
ALPHA(K) = P(K)
CVLI(K) = P(K)
CONTINUE

COMPUTATION OF T.W.-S ALPHA AND DELTA
(DELTA STORED IN ACF WHICH IS GRADUALLY OVERWRITTEN)

DO 290 K = 1, MXPQ

KC = MXPa - K

IF (KC .GE. MP) GOTO 240

DIV = ONE - ALPHA(CKC + 1) * ALPHA(KC + 1)

IF (DIV .LE. EPSIL2) GOTO 700

IF (KC .EQ. 0) GOTO 290

D0 230 J = 1, KC

KCPIMJ = KC + 1 - J

ALPHA(J) = (CVLI(J) + ALPHACKC + 1) * CVLICKCP1MJ)) / DIV

114

[z N eNeNel

o

o

230
240

250
260

270
290

310

320
330

420
430

520
530

600

700

APPLIED STATISTICS

CONTINUE
IF (KC .GE. MQ) GOTO 260

J1 = MAXO(KC + 1 - MP, 1)

DO 250 J = J1, KC

KCPIMJ = KC + 1 - J

ACF(J + 1) = ACF(J + 1) + ACF(KC + 2) * ALPHA(KCP1MJ)
CONTINUE

IF (KC .GE. MP) GOTO 290

DO 270 J = 1, KC

CVLI(J) = ALPHACJ)

CONTINUE

COMPUTATION OF T.W.-S NU
(NU IS STORED IN CVLI, COPIED INTO ACF)

ACF(1) = HALF * ACF(1)

DO 330 K = 1, MXPQ

IF (K .GT. MP) GOTO 330

KP1 = K + 1

DIV = ONE - ALPHA(K) * ALPHA(K)
DO 310 J = 1, KP1

KP2MJ = K + 2 - J

CVLI(J) = (ACF(J) + ALPHA(K) * ACF(KP2MJ)) / DIV
CONTINUE

DO 320 J = 1, KP1

ACF(J) = CVLICJ)

CONTINUE

COMPUTATION OF ACF (ACF IS GRADUALLY OVERWRITTEN)

DO 430 I = 1, MA

MIIM1P = MINOCI - 1, MP)

IF (MIIM1P .EQ. 0) GOTO 430
DO 420 J = 1, MIIMI1P

IMJ =1 -1

ACF(I) = ACF(I) + P(J) * ACF(IMJ)
CONTINUE

CONTINUE

ACF(1) = ACF(1) * TWO
COMPUTATION OF CVLI - RETURN WHEN MQ=0

CVLI(1) = ONE

IF (M@ .LE. 0) GOTO 600
DO 530 K = 1, MQ

CVLICK + 1) = -Q(K)

IF (MP .EQ. 0) GOTO 530
MIKP = MINOCK, MP)

DO 520 J = 1, MIKP
KP1MJ = K + 1 - J
CVLICK + 1) = CVLICK + 1) + P(J) * CVLICKPIMJ)
CONTINUE

CONTINUE

RETURN
EXECUTION ERROR DUE TO (NEAR) NON-STATIONARITY
IFAULT = 5

RETURN
END

