It is well known that if a covariance matrix, Σ is decomposed by the Cholesky decomposition, such that

$$
\Sigma=\mathbf{U}^{\prime} \mathbf{U}
$$

where \mathbf{U} is an upper triangular matrix, then, given a $p \times 1$ vector x, consisting of i.i.d. uncorrelated random variables with $\operatorname{var} x=\mathbf{I}$, we can construct a $p \times 1$ vector x^{*} with var $x^{*}=\Sigma$ by calculating

$$
x^{*}=\mathbf{U}^{\prime} x
$$

The problem arises when we try to translate this to a matrix of random variables, where the rows of the matrix each represent an observation (similar to x in the above discussion) consisting of p values to be transformed. Since the rows of such a matrix (which we shall refer to as \mathbf{X}), are $1 \times p$ vectors, and not $p \times 1$ vectors, clearly some adjustment needs to be made.

First, let us consider in detail the computatation involved in calculating x^{*} :

$$
\begin{aligned}
x_{j}^{*} & =\sum_{k=1}^{p} \mathbf{U}_{j k}^{\prime} x_{k} \\
& =\sum_{k=1}^{p} \mathbf{U}_{k j} x_{k}
\end{aligned}
$$

Translating this relationship to the rows of \mathbf{X} means duplicating this relationship for each of the rows of \mathbf{X} :

$$
\begin{aligned}
\mathbf{X}_{i j} & =\sum_{k=1}^{p} \mathbf{U}_{k j} \mathbf{X}_{i k} \\
& =\sum_{k=1}^{p} \mathbf{X}_{i k} \mathbf{U}_{k j}
\end{aligned}
$$

Thus, the correct multiplication to transform each of the rows of \mathbf{X} by \mathbf{U} is:

$$
\mathbf{X}^{*}=\mathbf{X U}
$$

