It is well known that if a covariance matrix, Σ is decomposed by the Cholesky decomposition, such that

$$\Sigma = \mathbf{U}'\mathbf{U}$$

where **U** is an upper triangular matrix, then, given a $p \times 1$ vector x, consisting of *i.i.d.* uncorrelated random variables with var $x = \mathbf{I}$, we can construct a $p \times 1$ vector x^* with var $x^* = \Sigma$ by calculating

$$x^* = \mathbf{U}'x$$

The problem arises when we try to translate this to a *matrix* of random variables, where the rows of the matrix each represent an observation (similar to x in the above discussion) consisting of p values to be transformed. Since the rows of such a matrix (which we shall refer to as \mathbf{X}), are $1 \times p$ vectors, and not $p \times 1$ vectors, clearly some adjustment needs to be made.

First, let us consider in detail the computatation involved in calculating x^* :

$$x_j^* = \sum_{k=1}^p \mathbf{U}_{jk}' x_k$$
$$= \sum_{k=1}^p \mathbf{U}_{kj} x_k$$

Translating this relationship to the rows of \mathbf{X} means duplicating this relationship for each of the rows of \mathbf{X} :

$$\mathbf{X}_{ij} = \sum_{k=1}^{p} \mathbf{U}_{kj} \mathbf{X}_{ik}$$
$$= \sum_{k=1}^{p} \mathbf{X}_{ik} \mathbf{U}_{kj}$$

Thus, the correct multiplication to transform each of the rows of \mathbf{X} by \mathbf{U} is:

$$\mathbf{X}^* = \mathbf{X}\mathbf{U}.$$