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Lecture 1: Introduction to the mean field asymptotics
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In this course, we study the computational and statistical aspects of statistical models in the high
dimensional asymptotic limit (the mean-field asymptotics). We will introduce heuristic tools in physics
including the replica method and the cavity method. These tools can be made rigorous using approaches
including the Gaussian comparison inequality, the leave-one-out analysis and approximate message passing
algorithms. Applications of these methods include the spiked matrix model, the LASSO problem, and the
double-descent phenomenon.

1 Motivating example: The LASSO problem

We will get a flavor of the difference between the non-asymptotic theory and the asymptotic theory using
the example of LASSO.

Let ¢y € R, A e R"*? w € R and y = Axg + w € R™. We consider the case d > n but hope that x
is sparse in some sense. To recover g given A and y, we solve the following LASSO problem
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Note that different papers use different normalization of the LASSO problem. Here the normalization I used
is such that the presentation is simpler. When you read a paper on LASSO, you should first look at their
normalization and then interpret the results.

1.1 Non-asymptotic theory of LASSO

A line of papers studied the LASSO risk in the non-asymptotic regime. The following result is due to
[NRWY12]. Theorem 2 is a fully deterministic statement: the result is satisfied by any deterministic A, o,
w, and y.

Definition 1 (Restricted strong convexity). We say a matriz A € R"*? satisfy restricted strong convezity
property, if there exists universal constants c; and cy, such that for any € R, we have
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Theorem 2 ([NRWY12]). For any A € R"*4 satisfying the RSC property (2) with constant c; and cq, there
exists universal constants ¢ < oo such that as long as A\ > 2||ATw| s, for any xo € RY and S C [d] with
|S| < n/(clogd), the LASSO estimator (1) satisfies
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Theorem 2 does not tell us whether there exists a matrix that satisfy the RSC property. The following
proposition tells us that, for Gaussian random matrix A, RSC property holds with high probability.

Proposition 3. For A € R"™¢ with A;; ~ N(0,1), Eq. (2) is satisfied for some constant ¢; and ca with
high probability as n — oo.

In the following, we will make simpler assumptions to understand Theorem 2.



Corollary 4. Let A € R™ 4 with A;; ~ N(0,1/||zo|3). Let xg € RY be k-sparse with the support of xg
given by S. Let w be o?-sub-Gaussian. Then for any § > 0, there exists constant C(8) such that, as long as
we take n > C(d)klogd and X\ > C(9) - ov/nlogd, then with probability at least 1 — &, the LASSO estimator
(1) satisfies
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The corollary tells us that, to well-estimate a k-sparse ground truth vector, it is enough to have sample
size n > klogd.

1.2 High dimensional asymptotics of LASSO

Note that the non-asymptotic theory of LASSO does not allow us to consider the proportional regime
n « k « d. In many cases, however, this proportional regime is very interesting. It would be desirable to
establish a theory to characterize the performance of LASSO in this regime.

Theorem 5 ([BM11]). We consider the asymptotic limit when n/d — § € (0,00) as d — co. Let A € R"*4
with A;; ~ N(0,1/n). Let zq € RY with xo; ~iia Po. Let w ~ N(0,0%L,). Let & be the LASSO estimator
(1). Then we have
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where n(x) = sign(x) - (|x| — 1)4 is the soft thresholding function and 7, = T«(aw) is the largest solution of
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and oy is the unique non-negative solution of
A =ar(a)- [1 — 6B (Xo 4 7o (a) Z; ar(a))] |-

Moreover, for any Lipschitz function v, we have almost surely

We can plot the limiting risk versus the regularization parameter A, which is given in Figure 1.2. This
curve gives the precise U-shaped curve for the Bias and Variance tradeoff of LASSO estimator. Note that
this U-shaped curve cannot be completely captured by the non-asymptotic theory, since the non-asymptotic
theory doesn’t give lower and upper bounds that match up to 1 + o(1). The sharp characterization of the
risk is an advantage of the high dimensional asymptotic theory.

1.3 Comparison of non-asymptotic theory and high dimensional asympotics

Here we present a table that compares the non-asymptotic theory versus the asymptotic theory.
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Figure 1: The risk of the LASSO estimator
Non-asymptotics theory High dimensional asymptotics

Typical regime | (Relatively) Strong signal-to-noise ratio Constant signal-to-noise ratio
(n > klogd) (nocdo k)

Advantages Less model assumptions. Result holds for | Precise asymptotic formula: upper and
any finite parameter size. lower bounds match sharply.

Limitations A gap of upper and lower bounds up to con- | More detailed model assumptions. (Some-
stant or logarithmic factors. times) hard to control how large should the

parameter be so that the asymptotic regime
kick in.

When useful? Characterize the behavior of a model or an | Identify the exact location of phase transi-
algorithm with general assumptions. tion.

Examples Statistical learning theory: bounding exces- | The phase transition phenomenon for com-
sive risk by uniform convergence. Analyz- | pressed sensing. Understanding the double-
ing the non-convex landscape of empirical | descent phenomenon. The optimal loss
risk minimization. function in machine learning

2 Methods from statistical physics

The focus of this course is to analyze statistical models through the high dimensional asymptotic viewpoint.
In many cases, we are interested in deriving the asymptotic formula instead of proving the formula rigorously,
and statistical physics tools can be used to predict these formula. These predicted formula can be simply
verified through experiments, but they are difficult to be made rigorous. Many predictions have been made
rigorous in some way, and typically proving these formula is much more complicated than deriving them.
Furthermore, there are still some predictions that are hard to be proved rigorously.

In this course, we will introduce two useful tools in physics: the “replica method” and the “cavity
method”. We will show how these tools can be used to predict interesting behaviors of statistical models
and algorithms. Simple models will be used as examples in class: the spiked GOE matrix and the LASSO
problem. We will revisit these models several times. First we will show how the replica method can be
used to predict the behavior of these models. Then we will show how these predictions can be proved using
rigorous tools. These rigorous tools include the Gaussian comparison theorem, the Stieltjes transforms, and



approximate message passing (AMP) algorithms, etc.
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