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1 The Spiked GOE matrix and the free energy approach

In this lecture, we explore using one technique from statistical physics, known as the Replica Method, to
help us calculate the asymptotic behavior of the Spiked GOE matrix, given as follows:

Let u ∈ Sn−1 = {x ∈ Rn : ‖x‖2 = 1}, λ ∈ R+, W ∼ GOE(n), and Y = λuuT +w ∈ Rn×n. Then, we
are particularly interested in calculating:

φ(λ) ≡ lim
n→∞

E[ sup
σ∈Sn−1

〈σ, Y σ〉], (1)

m(λ) ≡ lim
n→∞

E[〈vmax(Y ),u〉2], (2)

where vmax(Y ) = arg maxσ∈Sn−1〈σ, Y σ〉.

1.1 The Free Energy Approach
1 Towards the end of calculating the free energy density φ(λ) and the ensemble average of the observable
m(λ), we introduce a perturbed system given by the Hamiltonian Hλ(σ). With the configuration space
Ω = Sn−1 and the reference measure ν0 = Unif, we have that

Hλ(σ) ≡− n〈σ,Wσ〉 − nλ〈σ,u〉2, (3)

Zn(β, λ) ≡
∫
Sn−1

exp{−βHλ(σ)}ν0(dσ), (4)

Φn(β, λ) ≡ logZn(β, λ), (5)

φ(β, λ) ≡ lim
n→∞

E[logZn(β, λ)]/n, (6)

φ(λ) ≡ lim
β→∞

1

β
φ(β, λ), (7)

m(λ) ≡φ′(λ). (8)

As is, the above formulas are difficult to work with, especially φ(β, λ), which contains the expectation of
a logarithm.

2 The Replica Trick

From Sherrington’s 1975 work [?], we now introduce the Replica Trick, a helpful technique for simplifying
the calculation of φ(β, λ) = limn→∞ E[logZn(β, λ)]/n. For this, we introduce the following Lemma:

Lemma 1. For a given random variable Z, we have that

E[logZ] = lim
k→0

1

k
logE[Zk].

1For background on this section, please refer to [?]
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The usefulness of this lemma lies in its ability to equate the expectation over a logarithm to the expec-
tation over moments, which is much more tractable to analyze.

Applying this lemma to φ(β, λ), we have that

φ(β, λ) = lim
k→0

lim
n→∞

1

nk
logE[Zn(β, λ)k].

This gives rise to the following 4 step procedure to calculate m(λ):

a) S(k, β, λ) = lim
n→∞

1

n
logE[Zkn] The n limit

b) φ(β, λ) = lim
k→0

1

k
S(k, β, λ) The k limit

c) φ(λ) = lim
β→∞

1

β
φ(β, λ) The β limit

d) m(λ) = φ′(λ) The λ differentiation

We will now calculate the four steps individually for the Spiked GOE matrix.

3 Calculating the n limit

In order to make the calculation of S(k, β, λ) tractable, we first introduce the following lemma:

Lemma 2. For k ∈ N+, we have that

S(k, β, λ) ≡ lim
n→∞

1

n
logE[Zn(β, λ)k]

= sup
Q∈R(k+1)×(k+1)diag(Q)=1Q�0

U(Q),

where

U(Q) = βλ

k∑
i=1

q20i + β2
k∑

i,j=1

q2ij +
1

2
log det(Q),

and Q = (qij)0≤i,j≤k.

With this lemma, we have the following derivation:

E[Zn(β, λ)k] = E
[(∫

Sn−1

exp{βHλ(σ)}ν0(dσ)

)k]
= E

[ ∫
(Sn−1)

⊗
k

exp

{
−β

k∑
a=1

Hλ(σa)

}
k∏
a=1

ν0(dσa)
]

=

∫
(Sn−1)

⊗
k

E
[

exp
{
βn

k∑
a=1

(
λ〈u,σa〉2 + 〈σa,Wσa〉

)}] k∏
a=1

ν0(dσa)

=

∫
(Sn−1)

⊗
k

exp
{
βn

k∑
a=1

λ〈u,σa〉2
}
E
[

exp
{
βn

k∑
a=1

〈σa,Wσa〉
}]

︸ ︷︷ ︸
E

k∏
a=1

ν0(dσa).
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Recalling that W = (G+GT )/
√

2n, G ∈ Rn×n, Gij ∼i.i.d. N(0, 1), we have from last lecture that

E = E
[

exp
{
βn

k∑
a=1

〈σa, (G+GT )σa〉/
√

2n
}]

= exp
{
β2n

k∑
a,b=1

〈σa, σb〉2
}
.

Substituting E, we have that

E[Zn(β, λ)k] =

∫
(Sn−1)

⊗
k

exp
{
βn

k∑
a=1

λ〈u,σa〉2 + β2n

k∑
a,b=1

〈σa,σb〉2
} k∏
a=1

ν0(dσa).

Plugging in

1 =

∫ k∏
a=1

δ(〈u,σa〉 − q0a)

k∏
a,b=1

δ(〈σa,σb〉 − qab)
∏

dqab.

We have that

E[Zn(β, λ)k] =

∫
(Sn−1)

⊗
k

k∏
0≤a<b≤k

dqab exp
{
βλn

k∑
a=1

q20a + β2n

k∑
a,b=1

q2ab

}

×
∫
(Sn−1)+

k∏
a=1

δ(〈u,σa〉 − q0a)

k∏
1≤a<b=≤k

δ(〈σa,σb〉 − qab)
∏

dν0(dσa)︸ ︷︷ ︸
Ent

.

Using the Laplace Method, we have that

E[Zn(β, λ)k] = sup
Q�0
qii=1

exp
{
βλn

k∑
a=1

q20a + β2n

k∑
a,b=1

q2ab

}
× Ent,

where Q = (qij)0≤i,j≤k.

Simplifying Ent, we have that

Ent =

∫
Sn−1

ν(dσ0)

∫
(Sn−1)k

k∏
a=1

δ(〈σ0,σa〉 − q0a)

k∏
a,b=1

δ(〈σa,σb〉 − qab)
k∏
a=1

ν0(dσa)

=

∫
Sn−1(

√
n)

ν(dσ̄0)

∫
(Sn−1(

√
n))k

k∏
a=1

δ(〈σ̄0, σ̄a〉 − nq0a)

k∏
a,b=1

δ(〈σ̄a, σ̄b〉 − nqab)
k∏
a=1

ν0(dσ̄a)

=P(Q̄(σ̄) ≈ Q) = exp
{
n

1

2
log det(Q)

}
.
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Taking everything together, we have that

E[Zn(β, λ)k] = sup
Q�0
Qii=1

exp
{
n
(
βλ

k∑
a=1

q20a + β2
k∑

ab=1

q2ab +
1

2
log det(Q)

}
,

which implies that

S(k, β, λ) = sup
Q�0
Qii=1

U(Q)

U(Q) = exp
{
n
(
βλ

k∑
a=1

q20a + β2
k∑

ab=1

q2ab +
1

2
log det(Q)

}
.

4 Calculating the k limit

From the previous section, we have that

ψ(β, λ) = lim
k→0

1

k
S(k, β, λ) = lim

k→0

1

k
sup
Q�0
Qii=1

U(Q).

There are two problems with the above equation. First, the formula is derived for an integer k. Addi-
tionally, k is the dimension of Q matrix, leads to no closed form solution for the argmax.

Our approach is to ignore these problems and guess a form of the solution (ansatz). The hope is that
the solution will be correct, which we can verify with simulation studies, and we can return and rigorize the
argument.

Defining Q as a k × k matrix with entries (qij)0≤i,j≤k, and Π ∈ R(k+1)×(k+1) as

Π =

[
1 0
0 Π̄

]
,

where Π̄ is any permutation matrix. We have the following lemma:

Lemma 3. If U(ΠQΠT ) = U(Q), then there exists some Q∗ ∈ R(k+1)×(k+1) that is stationary and Q∗ =
ΠQ∗Π

T for all permutation matrices Π̄.

A reasonable guess is that the supremum is taken at this Q∗. Let us posit that Q takes the following
form:

Q =


1 µ . . . µ
µ 1 q
... q
µ . . . 1

 ,
where q0a = µ for all 1 ≤ a ≤ k. and qab = q fpr a;; 1 ≤ a 6= b ≤ k. Then, we have the Replica

Symmetric Ansatz:

U(k, µ, q) = βλkµ2 + β2(k + k(k − 1)q2) +
1

2
log det(Q).

We note that for matrices in the form of Q, with a k × k block A, we caluclate its determinant via the
Schur Complement:
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det


1 µ . . . µ
µ
... A
µ

 = det(A− µ21k1Tk ),

where A = q11T + (1− q)Ik.
Then, we have that

log det(Q) = log det((1− q)Ik + (q − µ2)1k1Tk )

= log
(

1 + k
(q − µ2)

(1− q)

)
+ k log(1− q).

Simplifying U(k, µ, q), we have that

U(k, µ, q) = βλkµ2 + β2(k + k(k − 1)q2) +
1

2

[
k log(1− q) + log

(
1 + k

(q − µ2)

(1− q)

)]
.

With our guess, we have the following:

φ(β, λ) = lim
k→0

sup
µ,q

1

k
U(k, µ, q)

=extµ,q lim
k→0

1

k
U(k, µ, q),

where extxf(x) = f(x∗) where x∗ ∈ {x : ∇f(x) = 0}. Then we have that

u(µ, q;β, λ) = lim
k→0

1

k
U(k, µ, q)

=βλµ2 + β2(1− q2) +
1

2
log(1− q) +

1

2

q − µ2

1− q
,

and

φ(β, λ) = extµ,qu(µ, q;β, λ).

Per the definition of the ext operator, we solve for µ, q s.t. the partial derivatives are equal to 0:

∂µu = 2βλµ− µ

1− q
= µ

(
2βλ− 1

1− q

)
∂qu =− 2β2q − 1

2(1− q)
+

1

2

q

1− q
+

1

2

q − µ2

(1− q)2

=− 2β2q − µ2

2(1− q)2
+

1

2(1− q)2
.

Solving these equations, we have the following extrema:

1. µ1 = 0, q1 = 1− 1/2β, which implies that

φ1(β, λ) = 2β − 3

4
− 1

2
log(2β).
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2. 2βλ = 1/(1− q), which implies that

µ2 =
((

1− 1

λ2

)(
1− 1

2βλ

))1/2
,

q2 =1− 1

2βλ
.

Additionally, we have that

φ2(β, λ) = β
(
λ+

1

λ

)
−
( 1

4λ2
+

1

2

)
− 1

2
log(2λβ).

5 Computing the β → 0 Limit

We are close to having computed the free energy density, φ(λ). All that remains is taking the limit with
respect to β. With that in mind, computing the limits, we have that

φ1(λ) = lim
β→∞

1

β
φ1(β, λ) = 2,

φ2(λ) =λ+
1

λ
.

Noting that ‖W ‖op ≈ 2 and ‖λuuT ‖op ≈ λ, we note that

φ(λ) = lim
n→∞

E[λmax(λuuT +W )]

has two properties:

1. φ(λ) is non-decreasing

2. limn→∞ φ(λ) =∞

Plotting φ1, φ2 in Figure 1, we see that:

1. λ ≤ 1, φ2 is decreasing, which implies that the solution is φ1 = 2

2. λ < 1, φ1 stays constant, which implies that the solution is φ2

This defines the BBP transition:

φ(λ) =

{
2 λ ≤ 1

λ+ 1
λ λ > 1

.
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Figure 1: BBP Transition Illustrated
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