
STAT260 Mean Field Asymptotics in Statistical Learning Lecture 8 - 02/17/2021

Lecture 8: Replica method, I: the spiked GOE matrix
Lecturer: Song Mei Scriber: Taejoo Ahn

In this lecture, we finish the field theoretic calculation to derive the large deviation of overlap matrix from last
lecture, and introduce the replica method using the example of the spiked GOE matrix model. Throughout
this lecture, we rely on field theoretic calculation (which is not mathematically rigorous), and thus abuse
the use of ’=’ multiple times, without justification in changing the order of limits, expectation and integrals.
We will further justify our main results rigorously on later lectures.

1 Large deviation of overlap matrix and field theoretic calcula-
tions.

Remind the setup from the previous lecture. We have σ1, . . . ,σk
i.i.d.∼ Unif(Sn−1(

√
n)), and

σ := [σ1,σ2, . . . ,σk] ∈ Rn×k

and

Q̄(σ) := σ>σ/n =

 ‖σ1‖22/n · · · 〈σ1,σk〉/n
...

. . .
...

〈σk,σ1〉/n · · · ‖σk‖22/n

 ∈ Rk×k

Note that Q̄(σ) is symmetric and that Q̄(σ)ii = 1 for 1 ≤ i ≤ k. Now let Q ∈ Rk×k be a symmetric matrix
with Qii = 1. Here we are interested in the large deviation of Q̄ matrix:

lim
ε→0

lim
n→∞

1

n
logP(Q̄(σ)ij ∈ [−ε+Qij , Qij + ε],∀i, j)

Here we can express the ’probability of Q̄ being close to Q’ as below

P(Q̄(σ) ≈ Q)
.
=

∫
Rn×k δ(Q̄(σ)−Q)

∏k
i=1 dσi∫

Rn×k

∏k
i=1 δ(‖σi‖22 − 1)

∏k
i=1 dσi

.
=
Sn(Q)

Tn

where the numerator can represent the probability (if dσi are Lebesgue measures), and the denominator can
be regarded as a normalizing constant. Now we will calculate each Sn(Q) and Tn. Note that our interest
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lies on calculating the limit of 1
n logSn(Q) where k is fixed and n→∞.

Sn(Q) =

∫
Rn×k

∏
1≤i≤j≤k

δ(〈σi,σj〉 − nQij)
k∏
i=1

dσi

(1)
=

∫
Rn×k

k∏
i=1

dσi
1

(2π)k(k+1)/2

∫
Rk(k+1)/2

[
∏

1≤i≤j≤k

exp{−iλij〈σi,σj〉+ iλijnQij}
∏

1≤i≤j≤k

dλij

·
∏

1≤i≤k

exp{−iλii‖σi‖22/2 + iλiinQii/2}
∏

1≤i≤k

dλii]

(2).
= inf

Λ∈Rk×k

∫
Rn×k

(
k∏
i=1

dσi

)
exp{−

k∑
i,j=1

λij〈σi,σj〉/2 + n

k∑
i,j=1

λijQij/2}

(3)
= inf

Λ∈Rk×k

∫
Rn×k

k∏
i=1

n∏
α=1

dσαi exp{−
k∑

i,j=1

λij

n∑
α=1

σαi σ
α
j /2} × exp{n

k∑
i,j=1

λijQij/2}

(4)
= inf

Λ∈Rk×k

∫
Rk

k∏
i=1

dσi exp{−
k∑

i,j=1

λijσiσj/2}

n

× exp{n
k∑

i,j=1

λijQij/2}

(5)
= inf

Λ∈Rk×k

(
det(Λ)−

1
2 · (
√

2π)k
)n
× exp{n〈Λ,Q〉/2}

= inf
Λ∈Rk×k

exp{n[〈Λ,Q〉/2− 1

2
log det(Λ) +

k

2
log 2π]}

Here (1) is from the delta identity formula, and (2) is from the saddle point approximation since integration
respect to Λ was low dimensional integration. Also note that we dropped the constant factor as it vanishes
when we calculate 1

n logSn(Q) and let n→∞. (3) and (4) are just from rewriting inner product to element-
wise expression and factorizing it, and (5) is from the Gaussian formula:∫

Rk

k∏
i=1

dσi exp{−
k∑

i,j=1

λijσiσj/2} =

∫
Rk

exp{−〈σ̄,Λσ̄〉/2}dσ̄ = det(Λ)−
1
2 (
√

2π)k

Therefore with simple matrix calculus, we conclude:

1

n
logSn(Q) = inf

Λ
[〈Λ,Q〉/2− 1

2
log det(Λ) +

k

2
log 2π] =

1

2
log det(Q) +

k

2
log 2π

Finally, using the fact that when Q ≈ E[Q̄(σ)] = Ik, the probability should approximately be 1, or

sup
Q

lim
n→∞

1

n
logP(Q̄(σ) ≈ Q) = 0

so we can conclude that 1
n log Tn = k

2 log 2π, and have:

1

n
logP(Q̄(σ) ≈ Q) =

1

2
log det(Q) (1)

2 Field theoretic calculation for general large deviations.

In this section we present a general recipe for deriving large deviations using field theoretic calculation. Here

we have xi ∈ Rk with xi
i.i.d∼ Px and a function M : Rk → Rp, and our interest is to calculate the large

2



deviation:

lim
ε→0

lim
n→∞

1

n
logP

(
‖ 1

n

n∑
i=1

M(xi)−m‖22 ≤ ε

)
We start with

P(
1

n

n∑
i=1

M(xi) ≈ m)
.
=Ex[δ(

n∑
i=1

M(xi)− nm)]

(6).
=Ex

[
1

(2π)p

∫
Rp

exp{i〈
n∑
i=1

M(xi)− nm,Λ〉}dΛ

]
(7)
=

1

(2π)p

∫
Rp

exp{−in〈m,Λ〉}Ex

[
exp{i〈

n∑
i=1

M(xi),Λ〉}

]
dΛ

(8)
=

∫
Rp

exp{−in〈m,Λ〉}
(
E
[
ei〈Λ,M(x)〉

])n
dΛ

(9)
=extΛ

{
exp{−n〈Λ,m〉} ×

(
E
[
e〈Λ,M(x)〉

])n}
where (6) is from the delta identity formula and (7) is abuse of changing order of integration and expectation.
(8), we dropped the constant factor (with same reason from overlap matrix example) and factorized the
integration. (9) is from the saddle point approximation again, note that we replaced iΛ with Λ since the
extreme value are chosen in complex values of Λ. Finally, taking logarithm and limit, we get

1

n
logP(

1

n

n∑
i=1

M(xi) ≈ m)
.
= extΛ

{
−〈Λ,m〉+ logE

[
e〈Λ,M(x)〉

]}
(2)

3 The Cramer’s theorem.

Here we present a theorem that gives the rigorousness of the previous section ’s result.

Theorem 1 (Cramer). Let Xi
i.i.d∼ µX , and f : X → R. If A ⊆ R is a closed interval of real axis, then

lim
n→∞

logP

(
1

n

n∑
i=1

f(Xi) ∈ A

)
= − inf

a∈A
I(a)

where
I(a) := sup

λ

{
λa− logEX∼µX

[
eλf(X)

]}
.

We also write

P

(
1

n

n∑
i=1

f(Xi) ∈ A

)
.
= exp{−n inf

a∈A
I(a)}

We call I(a) the rate function, which is the dual of the log-moment generating function of f(X). We will
not give the full proof of the theorem in this lecture. Instead, we suggest an intuition which comes from
straightforward calculation using the Markov’s inequality: For A = [a,∞], we have

P

(
1

n

n∑
i=1

f(Xi) ∈ A

)
= P

(
eλ

∑n
i=1 f(Xi) ≥ eλna

)
≤ inf
λ≥0

EX
[
eλf(X)

]n
enλa
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4 The replica method.

In this section, we present the replica method, which is a powerful tool to calculate various objects in
statistical physics. Here we start with an example of the spiked GOE matrix to illustrate the replica
method. Recall the setup of the spiked GOE matrix model: u ∼ Unif(Sn−1) and Y := λuu>+W ∈ Rn×n
where the signal to noise ratio λ ≥ 0 and the noise matrix W ∼ GOE(n). Our interest lies on calculating
the limiting free entropy density

φ(λ) := lim
n→∞

E
[

sup
σ∈Sn−1

〈σ,Y σ〉
]

and the overlap of MLE with the signal vector

m(λ) := lim
n→∞

E
[
〈θ̂,u〉

]
where θ̂ := arg maxσ∈Sn−1〈σ,Y σ〉 is the MLE to estimate u. We have well known closed form of both of
them, which we call the BBP phase transition formula:

φ(λ) =

{
2, λ ≤ 1,

λ+ 1
λ , λ > 1,

m(λ) =

{
0, λ ≤ 1,

1− 1
λ2 , λ > 1.

Our goal here is to derive the formula using replica method and field theoretic calculations. Recall the free
energy approach from lecture 5. Our idea was to find a perturbed Hamiltonian so that we can express φ(λ) as
a low temperature limit of an ensemble average of some observable. We have Ω = Sn−1 as the configuration
space, and the reference measure ν0 is uniform on Ω. Then we defined Hamiltonian and potentials as below

Hλ(σ) = −n〈σ,Wσ〉 − nλ〈σ,u〉2

Zn(β, λ) =

∫
Ω

exp{−βHλ(σ)}ν0(dσ)

Φn(β, λ) = logZn(β, λ)

φ(β, λ) = lim
n→∞

1

n
E[logZn(β, λ)]

Then taking the low temperature limit of the free entropy density gives{
φ(λ) = E[maxσHλ(σ)/n] = limβ→∞

1
βφ(β, λ)

m(λ) = φ′(λ)

The crucial part of this calculation is calculating the free entropy density φ(β, λ). The main difficulty
comes from the nonlinearity of logarithm, so that we cannot insert the expectation inside the integration by
changing the order. Here we use the replica trick with heuristic derivation to resolve this issue.

Lemma 2 (Replica trick). E[logZ] ≡ limk→0
1
kE[Zk].

Heuristic derivation : Note that log(1 + x) ≈ x as x→ 0. We have

E[logZ] = E[(logZk)/k] = lim
k→0

E[log(1 + (Zk − 1))/k]

= lim
k→0

E[(Zk − 1)/k] = lim
k→0

(E[Zk]− 1)/k

= lim
k→0

1

k
log(1 + E[Zk]− 1) = lim

k→0

1

k
logE[Zk]
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Now return to the spiked GOE matrix model. Using replica trick, we start from

lim
n→∞

1

n
E[logZn] = lim

n→∞
lim
k→0

1

nk
E[Zkn] = lim

k→0
lim
n→∞

1

nk
E[Zkn].

To calculate E[Zkn], we use one more trick here: assume k as a positive integer and get closed form of E[Zkn]
as a function of k, and then take the limit k → 0 as if the formula works for all real numbers k. Overall
steps of the calculation are as below:

1. S(k, β, λ) := limn→∞
1
n logE[Zkn]

2. φ(β, λ) = limk→0
1
kS(k, β, λ)

3. φ(λ) = limβ→∞
1
βφ(β, λ)

The following lemma helps calculating of the first step.

Lemma 3. For k ∈ N+,

S(k, β, λ) = sup
Q∈R(k+1)×(k+1)

U(Q)

s.t. Q � 0, Qii = 1

where

U(Q) = βλ

k∑
i=1

q2
0i + β2

k∑
i,j=1

q2
ij +

1

2
log detQ

with Q = (qij)0≤i,j≤k

Sketch of proof : we start from

E[Zn(β, λ)k] = E

[(∫
Sn−1

exp{−βHλ(σ)}ν0(dσ)

)k]

= E

[∫
(Sn−1)⊗k

exp{−β
k∑
a=1

Hλ(σa)}
k∏
a=1

ν0(dσa)

]

=

∫
(Sn−1)⊗k

E

[
exp{−β

k∑
a=1

Hλ(σa)}

]
k∏
a=1

ν0(dσa)

=

∫
(Sn−1)⊗k

E

[
exp{βn(

k∑
a=1

λ〈σa,u〉2 + 〈σa,Wσa〉)}

]
k∏
a=1

ν0(dσa)

=

∫
(Sn−1)⊗k

exp{βn(

k∑
a=1

λ〈σ,u〉2)} · E[exp{βn
k∑
a=1

〈σa,Wσa〉}]︸ ︷︷ ︸
=:E

k∏
a=1

ν0(dσa)

Here we can calculate the expectation part, which we denoted E, by using moment generating function of
Gaussian. Define a random matrix G ∈ Rn×n with each element are independent standard Gaussian random

5



variables. Then W
d≡ (G+GT)/

√
2n, so that we have

E = E

[
exp{βn

k∑
a=1

〈σa, (G+GT)σa〉/
√

2n)}

]

= E

[
exp

{
βn · tr

(
k∑
a=1

σa(σa)T(G+GT)

)
/
√

2n

}]

= E

[
exp{β

√
2n〈

k∑
a=1

σa(σa)T,G〉}

]
(10)
= exp

{
β2 · n‖

k∑
a=1

σa(σa)T‖2F

}

= exp

{
β2 · n〈

k∑
a=1

σa(σa)T,

k∑
b=1

σb(σb)T〉

}

= exp{β2n

k∑
a,b=1

〈σa,σb〉2}

where all the steps are straightforward, while (10) is from the moment generating function of Gaussian.
Plugging into the original equation above, we have

E[Zn(β, λ)k] =

∫
(Sn−1)⊗k

exp{βn
k∑
a=1

λ〈σ,u〉2 + β2n

k∑
a,b=1

〈σa,σb〉2}
k∏
a=1

ν0(dσa)

(11)
=

∫
(Sn−1)⊗k

exp{βn
k∑
a=1

λq2
0a + β2n

k∑
a,b=1

q2
ab}

·

∫ k∏
a=1

δ(〈σa,u〉 − q0a)

k∏
a,b=1

δ(〈σa,σb〉 − qab)
k∏
a=1

dq0a

k∏
a,b=1

dqab

 k∏
a=1

ν0(dσa)

(12).
= sup

Q
exp{βn

k∑
a=1

λq2
0a + β2n

k∑
a,b=1

q2
ab}

·
∫

(Sn−1)⊗k

k∏
a=1

δ(〈σa,u〉 − q0a)

k∏
a,b=1

δ(〈σa,σb〉 − qab)
k∏
a=1

ν0(dσa)

(13)
= sup

Q
exp

.n
β k∑

a=1

λq2
0a + β2

k∑
a,b=1

q2
ab +

1

2
log det(Q)


where (11) is using the fact that:

1 =

∫ k∏
a=1

δ(〈σa,u〉 − q0a)

k∏
a,b=1

δ(〈σa,σb〉 − qab)
k∏
a=1

dq0a

k∏
a,b=1

dqab

and (12) is from the Laplace method using that integration over Q is low dimensional, and (13) is direct
result of the large deviation of overlap matrix from the first part of this lecture. This finishes the proof of
the lemma.
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