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Lecture 7: Concentration Inequalities and Field theoretic calculations
Lecturer: Song Mei Scriber: Mengqi Lin Proof reader: Tae joo Ahn

In this lecture, we will finish the discussion of concentration inequalities, which includes the general recipe
of showing the concentration of ensemble average of an observable and another example of its application:
Trace of resolvent of Wishart Matrix. And then talk about field theoretic calculations, which is the prerequi-
sites of Replica Methods, and an application example of Large deviation of overlap matrix will be discussed
as well.

1 Concentration Inequalities

1.1 General Recipe of showing the concentration of ensemble average of an
observable

Suppose we have a perturbed Hamiltonian Hλ(σ) = H0(σ)+λM(σ), where H0(σ) is a random Hamiltonian,
e.g H0(σ) = 〈σ,Wσ〉, and M(σ) is the observable, e.g M(σ) = 〈σ, θ〉2/n, the ensemble average 〈M〉β∗,λ∗/n
is the quantity of interest:

〈M〉β,λ ≡
∫

Ω

M(σ)Pβ,λ(dσ), Pβ,λ(dσ) ∝ exp{−βHλ(σ)}

Before calculating the limits of this ensemble average, we would like to firstly calculate the concentration of
it. The general steps are as follows:

Step 1: Showing the concentration of Free energy
Define the normalized free energy

Fn(β, λ)/n = − 1

nβ
log

∫
Ω

exp{−βHλ(σ)}

Let Un(λ) ≡ Fn(β∗, λ)/n, we would first to show the concentration of Un(λ):

lim
n→∞

P(|Un(λ)− E[Un(λ)]| ≥ ε) = 0 (1)

If the Hamiltonian involves Gaussian randomness, we can apply Gaussian concentration inequality to
show this.

Step 2: Derivative of the limiting free energy
Assume we are able to calculate the limiting free energy :

lim
n→∞

E[Un(λ)] = u(λ), ∀λ

and u(λ) is differentiable at particular λ∗.
Define the discrete derivative of the limiting free energy:

∆+(λ, δ) =
u(λ+ δ)− u(λ)

δ

∆−(λ, δ) =
u(λ)− u(λ− δ)

δ
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we have
lim
δ→0+

∆+(λ∗, δ) = lim
δ→0+

∆−(λ∗, δ) = u′(λ∗) (2)

Note this step is completely by assumption.

Step 3: Derivative of the prelimit free energy
Note ∆n(λ) ≡ U ′n(λ) = 〈M〉β∗,λ/n. Define the discrete derivative of the prelimit free energy:

∆+
n (λ, δ) ≡ Un(λ+ δ)− Un(λ)

δ

∆−n (λ, δ) ≡ Un(λ)− Un(λ− δ)
δ

Note U ′′n (λ) = −cV arβ∗,λ(M) ≤ 0 is concave, so we have:

∆+
n (λ, δ) ≤ ∆n(λ) ≤ ∆−n (λ, δ) (3)

Step 4: Bridge the above 3 steps

∆+
n (λ∗, δ)

(1)−−−−→
n→∞

∆+(λ∗, δ)
(2)−−−→
δ→0

u′(λ∗)

∆−n (λ∗, δ)
(1)−−−−→

n→∞
∆−(λ∗, δ)

(2)−−−→
δ→0

u′(λ∗)

⇒ ∆n(λ∗)
(3)−−−−→

n→∞
u′(λ∗)

where ∆n(λ∗) = 〈M〉β∗,λ∗ which is what we want to show : the concentration of ensemble average of the
observable.

Remark 1. If we directly apply Gaussian concentration inequality on 〈M〉β∗,λ∗ , we cannot get a tight
concentration bound. That’s why we need to introduce the free engergy function.

1.2 Example: Concentration of Trace of resolvent of Wishart matrix(Stieltjes
transform)

Let X ∈ Rn×d with Xij ∼i.i.d. N(0, 1/d). Let S(λ) = tr[(XTX + λId)
−1]/d, (λ > 0), n/d→ γ

Proposition For any δ > 0, we have:

P
(
|S(λ)− E[S(λ)]| ≤

√
c log(2/δ)

λ3d2

)
≥ 1− δ

Note: the bound rate is O(1/d), which is different from the previous examples of rate O(1/
√
d).

Proof. Goal: To show S is 1/d-Lipschitz in Gaussian r.v.
Let G =

√
dX ∈ Rn×d with Gij ∼i.i.d. N(0, 1)

S̄(G) = tr[(λId +GTG/d)−1]/d

= tr[(λdId +GTG)−1]

Use the fact that taking derivative and taking trace can be exchanged, ∂A(t)−1

∂t = −A(t)−1 ∂A(t)
∂t A(t)−1 and

tr(AB) = tr(BA):
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∂Gij
S̄(G) = − 2tr[(λdId +GTG)−1GTEij(λdId +GTG)−1]

= − 2tr[(λdId +GTG)−2GTEij ]

= − 2〈G(λdId +GTG)−2),Eij〉

Hence, in terms of G:
∇GS̄(G) = −2G(λdId +GTG)−2)

SVD decompose matrix G = UΣV T and Calculating the Lipschitz constant:

L2 = sup
G
‖2G(λdId +GTG)−2)‖2F (4)

= sup
G
‖2UΣV T(λdId + V Σ2V T)−2)‖2F (5)

= sup
G
‖2Σ(λdId + Σ2)−2)‖2F (6)

= 4 sup
G

n∑
i=1

σi(G)2

(λd+ σi(G)2)4
(7)

≤ 4

n∑
i=1

cλd

(λd+ cλd)4
(8)

= c2
n

λ3d3
(9)

where (8) follows from the fact that (7) maximizes when σi(G)2 = cλd for some constant c.

2 Field Theoretic Calculation

We can think of this as Heuristic Physics Calculation. This calculation is also the basic for replica method.
Quantity of interest:

Zn =

∫
Ω

exp{−βHλ(σ)}dσ

lim
n→∞

E
[ 1

n
logZn

]
(10)

2.1 Delta Function δ(x-a)

Mathematically:

• µ({a}) = 1, µ({R/{a}}) = 0

• δ(x− a) = lim
σ→0

φσ(x− a), where φσ(x− a) is the Gaussian density with mean a and variance σ2.∫
f(x)δ(x− a)dx = lim

σ→0

∫
f(x)φσ(x− a)dx, for some test function f.

Physically:

•
f(a) =

∫
R

f(x)δ(x− a)dx (11)

3



• Delta identity formula

a ∈ R, δ(x− a) =
1

2π

∫ +∞

−∞
eip(x−a)dp (12)

a ∈ Rd, δ(x− a) =
1

(2π)d

∫ +∞

−∞
ei〈p,x−a〉dp (13)

intuition:
We know from the Fourier transform:

f(x) =
1

2π

∫ +∞

−∞
eipx

(∫ +∞

−∞
e−iαpf(α)dα

)
dp

=

∫ +∞

−∞

( 1

2π

∫ +∞

−∞
eip(x−α)dp

)
f(α)dα

And by (11), we know:

f(x) =

∫ +∞

−∞
f(α)δ(x− α)dα

• 1 =
∫
R
δ(x− a)dx

2.2 Gaussian Identity Formula

We begin with some quantity in the LHS of the following formulas, and would try to derive it into an
integration of some Gaussian randomness.

exp{‖x− a‖2A/2} = det(A)−
1
2

∫
1

(
√

2π)d
exp{〈p,x− a〉 − 1

2
‖p‖2A−1}dp (14)

exp{−‖x− a‖2A/2} = det(A)−
1
2

∫
1

(
√

2π)d
exp{i〈p,x− a〉 − 1

2
‖p‖2A−1}dp (15)

(14) is derived from Gaussian moment generating function , (15) is derived from the Gaussian characteristic
formula. To remember the two formula, we can use the fact that:∫

1

(2π)d/2 det(A)1/2
exp{−(x− a−Ap)TA−1(x− a−Ap)/2}dp = 1

2.3 Laplace Method

• If fn(λ)→ f(λ) as n→∞, then
∫
Rk exp{nfn(λ)}dλ .

= sup
λ∈Rk

exp{nfn(λ)}.

where an
.
= bn ⇐⇒ lim

n→∞

1

n
log an = lim

n→∞

1

n
log bn

And we look into this kind of equivalence because of our quantity of interest (10).

• Example: fn(λ) =
1

n
log

∫
Rn

exp{
n∑
i=1

h(σi;λ)}
n∏
i=1

dσi∫
R

exp{nfn(λ)}dλ .
=

∫
R

∫
Rn

exp{
n∑
i=1

h(σi;λ)}
n∏
i=1

dσi
.
= sup
λ∈R

∫
Rn

exp{
n∑
i=1

h(σi;λ)}
n∏
i=1

dσi
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2.4 Saddle point approximation (Method of steepest descent)

• If fn(iλ)→ f(λ)asn→∞, then
∫
R exp{nfn(iλ)}dλ .

= ext
λ∈C

exp{nfn(λ)}.
where ext

λ∈C
exp{nfn(λ)} ≡ {f(λ∗) : f ′(λ∗) = 0}

• Example: fn(iλ) =
1

n
log

∫
Rn

exp{
n∑
i=1

h(σi; iλ)}
n∏
i=1

dσi∫
R

exp{nfn(iλ)}dλ .
=

∫
R

∫
Rn

exp{
n∑
i=1

h(σi; iλ)}
n∏
i=1

dσi
.
= sup
λ∈C

∫
Rn

exp{
n∑
i=1

h(σi;λ)}
n∏
i=1

dσi

2.5 Example: Large deviation of overlap matrix

Let σ1, . . . ,σk ∈ Rn, k fixed, n→∞, (σi)i∈[k] ∼i.i.d. Uinf(Sn−1(
√
n)). σ = [σ1,σ2 . . . ,σk] ∈ Rn×k.Q̄(σ) =

σTσ/n ∈ Rk×k, so Q̄(σ) is symmetric and Q̄(σ)ii = 1. Let Q ∈ Rk×k be a symmetric matrix with
Q(σ)ii = 1. Interest: P(Q ≈ Q̄). i.e

lim
ε→0

lim
n→∞

1

n
logP

(
Q̄(σ)ij ∈ [Qij − ε,Qij + ε],∀i, j

)
(16)

goes to some nontrivial constant.
Physicist prospective:

P
(
Q ≈ Q̄

)
.
=

∫
Rn×k δ(Q̄(σ)−Q)

∏k
i=1 dσi∫

Rn×k

∏n
i=1 δ(‖σi‖22/n− 1)

∏k
i=1 dσi

.
=
Sn(Q)

Tn
(17)

[Actually Tn
.
= Sn(I)]

We now calculate Sn(Q): Using (12):

Sn(Q) =

∫
Rn×k

( k∏
i=1

dσi

) 1

(2π)k(k+1)/2

∫
Rk(k+1)/2

∏
1≤i<j≤k

exp{−iλij〈σi,σj〉+ iλijnQij}
∏

1≤i<j≤k

dλij∏
1≤i≤k

exp{−iλii‖σi‖22/2 + iλiinQii/2}
∏

1≤i≤k

dλii

(18)

Using Saddle point approximation :

Sn(Q)
.
= inf

Λ

∫
Rn×k

( k∏
i=1

dσi

)
exp{−

k∑
ij=1

λij〈σi,σj〉/2 + n

k∑
ij=1

λijQij/2} (19)

= inf
Λ

∫
Rn×k

( k∏
i=1

n∏
α=1

dσαi

)
exp{−

k∑
ij=1

λij

n∑
α=1

σαi σ
α
j /2} exp{n

k∑
ij=1

λijQij/2} (20)

= inf
Λ

(∫
Rk

( k∏
i=1

dσi

)
exp{−

k∑
ij=1

λij

n∑
α=1

σiσj/2}
)n

exp{n
k∑

ij=1

λijQij/2} (21)

(22)

Using Gaussian Identity Formula (14):

Sn(Q)
.
= inf

Λ

(
det(Λ)−

1
2 (
√

2π)k
)n

exp{n〈Λ,Q〉/2} (23)

= inf
Λ

exp{n[〈Λ,Q〉/2− 1

2
log det(Λ) +

k

2
log(2π)]} (24)

(25)
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Therefore,

1

n
logSn(Q) = inf

Λ
[〈Λ,Q〉/2− 1

2
log det(Λ) +

k

2
log(2π)] (26)

=
1

2
log det(Q) +

k

2
log(2π) (27)

Therefore,

1

n
logP

(
Q̄ ≈ Q

)
.
=

1

n
logSn(Q)− 1

n
logSn(I) (28)

=
1

2
log det(Q) +

k

2
log(2π)− k

2
log(2π) (29)

=
1

2
log det(Q) (30)
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