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1 Concentration phenomena in mean-field asymptotic

In the non-asymptotic regime a typical bound is of the form

P
(
‖θ̂ − θ‖22/d ≥ C

√
d log d/δ

n

)
≤ δ. (1)

In the asymptotic regime the picture is a bit different. Typically the risk ‖θ̂ − θ‖22/d would not go to
zero when we consider a regime in which d/n converges to some constant. Under such regime the risk lower
bound in (1) would go to ∞ and the risk would not converge to zero, but rather concentrate around it’s
expectation, formally

1. limn→∞ P(|‖θ̂ − θ‖22/n− E‖θ̂ − θ‖22/n| ≥ ε) = 0,

2. limn→∞ ‖θ̂ − θ‖22/n = some formula.

In this lecture we will focus on step 1. Step 2 will be covered in later lectures.

2 The Gaussian concentration inequality

Proposition 1 (Gaussian concentration inequality). Let f : Rd → R be an L-Lipschitz function:

|f(x1)− f(x2)| ≤ L‖x1 − x2‖2, ∀x1, x2 ∈ Rd,

and let G = (G1, . . . , Gd) be a vector of standard Gaussian random variables (Gi ∼i.i.d N(0, 1)).
Then we have

P(|f(G)− Ef(G)| ≥ t) ≤ 2 exp{−t2/(2L2)}.

This proposition can be derived from the Gaussian log Sobolev inequality coupled with the Herbst’s
argument (c.f. [Thm 3.25] in Ramon van Handel’s notes).

3 Z2 synchronization problem

Let us define the problem, we have our true parameter θ = (θ1, θ2, . . . , θn)T ∈ Rn with θi ∼i.i.d Unif(Z2 =
{±1}). We have the observation vector Y = λ

nθθ
T +W ∈ Rn×n with W ∼ GOE(n). That is Wij ∼i.i.d

N(0, n−1) for 1 ≤ i ≤ j ≤ n and Wii ∼i.i.d for 1 ≤ i ≤ n with the restriction that W is symmetric
(Wij = Wji).

Remark 2. θθT scaling. An interesting thing to consider is the choice of scaling. We choose the scaling
of n so that the operator norms of λ

nθθ
T and W would be on the same scale (we consider to get a non-

trivial behavior of the spectral estimator which involves the calculation of the leading eigenvector). Indeed

‖W ‖op
2
≈ C and ‖θθT‖op ≈ ‖θ‖2 = n hence the choice of scaling is n, such that the signal to noise ration

is balances between the two norms.
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We observe Y and try to estimate θ, the spectral estimator is defined to be

θ̂(Y ) = θ̂spec(Y ) = arg max
σ∈Sn−1(

√
n)
〈σ,Y σ〉/n

Our first goal is to show maxσ∈Sn−1(
√
n)〈σ,Y σ〉/n ≈ it’s expectation (w.h.p), which follows from the propo-

sition below.

Proposition 3. Let Rn ⊆ {θ ∈ Rn : ‖θ‖22n ≤ 1} and let Y = A +W ∈ Rn×n, where A is deterministic
and W ∼ GOE(n)
Then δ〉0, we have

PW
(
| sup
σ∈Rn

〈σ,Y σ〉/n− E[ sup
σ∈Rn

〈σ,Y σ〉/n]| ≤
√

4 log(2/λ)

n

)
≥ 1− δ

We will now use the Gaussian inequality to prove the above mentioned proposition

Proof. Let G ∈ Rn× n with Gij ∼i.i.d N(0, 1) for 1 ≤ i, j ≤ n (which is not symmetric).

Denote W̃ = (G+GT)/
√

2n then we have W̃
d
= W .

Define Ỹ = A+ W̃ and

f(G) = sup
σ∈Rn

〈σ, Ỹ σ〉/n

= sup
σ∈Rn

〈σ, (G+GT)/
√

2nσ〉/n

We would like to show that f is a L-Lipschitz function and then apply the inequality.
Let G1,G2 ∈ Rn×n and let σ? = arg supσ∈Rn

〈σ, Ỹ 1σ〉/n

f(G1)− f(G2) = sup
σ∈Rn

〈σ, Ỹ 1σ〉/n+ inf
σ∈Rn

−〈σ, Ỹ 2σ〉/n

≤ 〈σ?, Ỹ 1σ
?〉/n+−〈σ?, Ỹ 2σ

?〉/n

= 〈G1 −G2,σ
?(σ?)T〉

√
2

n
/n

≤ ‖G1 −G2‖op‖σ?‖22/n︸ ︷︷ ︸
≤1

√
2

n

≤ ‖G1 −G2‖F

√
2

n

Which means that f is
√

2
n−Lipschitz

Remark 4. Differential f proof sketch To get an intuition for this proof we can consider the case where
f is differentiable. We use the implicit differentiation theorem to calculate the gradient of f and evaluate it
at σ? = arg supσ∈Rn

, indeed

‖∇Gf(G)‖F =

√
2

n
‖σ

?(σ?)T

n
‖F =

√
2

n
‖σ?‖22/n =

2

n

Which means f is 2
n−Lipschitz

We now use proposition 1 with L = 2
n and get

P(|f(G)− Ef(G)| ≥ t) ≤ 2 exp{−(nt2/4)}
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we solve
2 exp{−nt2/4} = δ

and conclude our proof with t =
√

4 log(2/δ)
n

The next step is to show the concentration of 〈θ̂,θ〉2/2 with θ̂ = arg supσ∈Sn−1(
√
n)〈σ,Y σ〉/n. We first state

a result to be used:

Remark 5. BBP phase transition We define Un(λ) = supσ∈Sn−1(
√
n)〈σ,Y σ〉/n.

We have that

lim
n→∞

EUn(λ) =

{
2 , λ ≤ 1

λ+ 1
λ , λ〉1

Using implicit differentiation,

d

dλ
Un(λ) =

d

dλ
sup
σ∈S

[
λ

n2
〈σ,θ〉2 + 〈σ,Wσ〉/2]

=
1

n2
〈θ̂,θ〉2

We now give a heuristic proof, for some intuition, we have shown (U is the same function as f)

lim
n→∞

P(|Un(λ)− EUn(λ)| ≥ ε) = 0

and we calculate (≈) the expectation

lim
n→∞

1

n
〈θ, θ̂〉2 ≈ ∂λ lim

n→∞
E[Un(λ)]

= ∂λ

{
2 , λ ≤ 1

λ+ 1
λ , λ〉1

=

{
0 , λ ≤ 1

1− 1
λ2 , λ〉1

We know show the deviation a bit more carefully, we define the ”discrete differential of size δ”

∆+
n (λ, δ) =

Un(λ+ δ)− Un(λ)

δ

∆−n (λ, δ) =
Un(λ)− Un(λ− δ)

δ

Indeed

Un(λ+ δ) = sup
σ∈S
〈σ,Wσ〉/n+

λ+ δ

n2
〈σ,θ〉2

≥ 〈σ
?,Wσ?〉
n

+
λ

n2
〈σ?,θ〉︸ ︷︷ ︸

Un(λ)

+
δ

n2
〈σ?,θ〉2

= Un(λ) +
δ

n2
〈θ̂,θ〉2

We conclude (by symmetry) the following inequality

∆−n (λ, δ) ≤ 〈θ, θ̂〉
2

n2
≤ ∆+

n (λ, δ) (2)
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Using BBP phase transition result we get

∆+(λ, δ) =
u(λ+ δ)− u(λ)

δ

∆−(λ, δ) =
u(λ)− u(λ− δ)

δ

for

u(λ) =

{
2 λ ≤ 1

λ+ 1
λ λ > 1

Next we apply the Gaussian concentration inequality

lim
n→∞

P(|∆±n −∆±| ≥ ε) = 0 (3)

Combining (3) with (2) we get

lim
n→∞

P(∆−(λ, δ)− ε ≤ 〈θ, θ̂〉
2

n2
≤ ∆+(λ, δ) + ε) = 1 (4)

By the definition of the derivative

lim
δ→0

∆±(δ, λ) =

{
0 λ ≤ 1

1− 1
λ2 λ > 1

(5)

And finally combining (5) and (4) we get

lim
n→∞

P(|〈θ̂,θ〉2/n2 −∆(λ)| ≥ ε) = 0

Remark 6. General recipe to show the concentration of any M(σ)

1. Define the appropriate perturbed Hamiltonian Hh(σ) = 〈σ,Y σ〉/n+ hM(σ)

2. Show the concentration of supσHh(σ) at some h near 0 with Hh(σ) differentiable with respect to h at
h = 0

3. Obtain the result by taking derivative with respect to h

4 Concentration of Lasso training loss

Let us consider the Lasso problem - we have a random matrix A ∈ Rn×d, Aij ∼ N(0, 1). Our estimand is
x0 ∈ Rd with ‖x0‖22/d ≤M . The observation vector is

y = Ax0 + ε

with ε ∼ N(0n, τ
2In).

We wish to consider two lasso estimators

• x̂1 = arg minx
1√
n
‖y −Ax‖2 + λ

d‖x‖1

• x̂2 = arg minx
1
n‖y −Ax‖

2
2 + λ

d‖x‖1

x̂2 is the familiar Lasso problem while x̂1 is called ”square root” lasso. We first show the concentration of
x̂1

4



Proposition 7. Let Ω ⊆ Rd be a compact region and consider

sup
x∈Ω
{‖x‖22/d} ≤ D

this is a compact set of radius
√
D times a constant. We define

1fΩ(A, ε) = min
x∈Ω

1√
n
‖y −Ax‖2 +

λ

d
‖x‖1

Then ∃K <∞ s.t ∀δ > 0 then

P
(
|fΩ(A, ε)− EfΩ(A, ε)|) ≥ K

(√ d

n
(M +D) + τ

)
︸ ︷︷ ︸

constant

√
log(2/δ)

n

)
≤ δ

Proof. We define the ”standardized” version of A and ε, A =
√
nA, ε = ε/τ . Let

F (A, ε) = fΩ(A/
√
n, ε · τ) = fΩ(A, ε)

we want to show that F is Lipschitz and apply the Gaussian concentration inequality. By definition

F (A, ε) = min
x∈Ω

1√
n
‖A(x0 − x) + ε‖2 +

λ

n
‖x‖1

= min
x∈Ω

sup
ν;‖ν‖2≤1

1

n
〈ν,A(x0 − x)〉+

τ√
n
〈ν, ε〉+

λ

n
‖x‖1︸ ︷︷ ︸

L(A,ε,x,ν)

Now let us consider the difference F (A1, ε1)−F (A2, ε2) and denote ν?j ,x
?
j the argmax’s for the optimization

problem F solves with respect to Aj , εj .

F (A1, ε1)− F (A2, ε2) = min
x∈Ω

sup
ν;‖ν‖2≤1

L(A1, ε1,x,ν) + max
x∈Ω

inf
ν;‖ν‖2≤1

−L(A2, ε2,x,ν)

≤ sup
ν;‖ν‖2≤1

L(A1, ε1,x
?
2,ν) + inf

ν;‖ν‖2≤1
−L(A2, ε2,x

?
2,ν)

≤ L(A1, ε1,x
?
2,ν

?
1)− L(A2, ε2,x

?
2,ν

?
1)

=
1

n
〈ν?1, (A2 −A2)(x0 − x?2))〉+

τ√
n
〈ν?1, ε1 − ε2〉

C.S
≤ 1

n
‖A1 −A2‖op‖ν?1‖2︸ ︷︷ ︸

≤1

‖x0 − x?2‖2︸ ︷︷ ︸
≤
√
dM∝

√
nM

+
τ√
n
‖ε1 − ε2‖‖ν?1‖2︸ ︷︷ ︸

≤1

≤ C(‖A1 −A2‖F + ‖ε1 − ε2‖2)/
√
n

≤ C ′
√

(‖A1 −A2‖2F + ‖ε1 − ε2‖22)/n

Now let G(A, ε) ∈ Rnd×n we have that F is C′√
n
−Lipschitz in G (‖G‖22 = ‖A1 −A2‖2F + ‖ε1 − ε2‖22).

We obtain the conclusion by applying the Gaussian inequality.

1fΩ is the square root lasso problem, with the minimization taken over a constrained set Ω. In future lectures we will show
that w.h.p the square root lasso solution lies within Ω .
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