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1 Concentration phenomena in mean-field asymptotic

In the non-asymptotic regime a typical bound is of the form

P(||9—0||§/d2 c\/‘“%d/‘s) <6 (1)

In the asymptotic regime the picture is a bit different. Typically the risk [|@ — 6]|2/d would not go to
zero when we consider a regime in which d/n converges to some constant. Under such regime the risk lower
bound in (1) would go to oo and the risk would not converge to zero, but rather concentrate around it’s
expectation, formally

L lim, oo P(|[10 — 6]3/n — E|1§ — 6]3/n] = ) =0,
2. limp o0 |6 — 6]|2/n = some formula.

In this lecture we will focus on step 1. Step 2 will be covered in later lectures.

2 The Gaussian concentration inequality
Proposition 1 (Gaussian concentration inequality). Let f : R? — R be an L-Lipschitz function:
|[f(z1) = f(z2)| < Lllz1 — w2ll2, Va1, 22 € RY,

and let G = (G1,...,Ggq) be a vector of standard Gaussian random variables (G; ~; ;.4 N(0,1)).
Then we have

P(|f(G) —Ef(G)| > t) < 2exp{—t*/(2L7)}.

This proposition can be derived from the Gaussian log Sobolev inequality coupled with the Herbst’s
argument (c.f. [Thm 3.25] in Ramon van Handel’s notes).

3 7Zs synchronization problem

Let us define the problem, we have our true parameter 8 = (61, 6s, ... ,On)T € R™ with 6; ~; ;.4 Unif(Ze =
{£1}). We have the observation vector Y = %BGT + W € R"™" with W ~ GOE(n). That is W;; ~;. .4
N(O,n1) for 1 < i < j < nand Wj; ~jiq for 1 < i < n with the restriction that W is symmetric
(Wij = Wy).

Remark 2. 00" scaling. An interesting thing to consider is the choice of scaling. We choose the scaling
of n so that the operator norms of %GOT and W would be on the same scale (we consider to get a non-
trivial behavior of the spectral estimator which involves the calculation of the leading eigenvector). Indeed

2
[Wllop = C and ||007|,p = ||0]|2 = n hence the choice of scaling is n, such that the signal to noise ration
1s balances between the two norms.



We observe Y and try to estimate 8, the spectral estimator is defined to be

O(Y) = bupec(Y) = arg _max (o, Yo)/n

Our first goal is to show max,cgn-1(/m) (0, Y o) /n = it’s expectation (w.h.p), which follows from the propo-
sition below.

Proposition 3. Let R, C {0 € R" : ||0]|3n < 1} and let Y = A+ W € R where A is deterministic
and W ~ GOE(n)
Then §)0, we have

4log(2/A
IPW(| sup (o,Yo)/n—E[ sup (o,Yo)/n]| < M) >1-4§
GER, oER, n

We will now use the Gaussian inequality to prove the above mentioned proposition

Proof. Let G € Rn x n with G;; ~;.;.q N(0,1) for 1 <14, j <n (which is not symmetric).

Denote }7[/ = (G + G")/v/2n then we have W ‘w.
Define Y = A + W and

f(G) = sup (U,YJ)/n

ocER,
= sup (o, (G +G")/V2no)/n
UERn

We would like to show that f is a L-Lipschitz function and then apply the inequality.
Let G1,G2 € R"*™ and let 0* = argsup,cp, (0, Y10)/n

f(G1) = [(G2) = Sup. (0, Y10)/n+ inf —(0,Y50)/n

<(o*, Y 6*)/n+ —(c*,Y0%)/n

= <G1 — GQ, \/7/71
<Gy = Galop|lol3 /n\[
———

<1

2
<Gy - G2||F\/;

Remark 4. Differential f proof sketch To get an intuition for this proof we can consider the case where
f s differentiable. We use the implicit differentiation theorem to calculate the gradient of f and evaluate it
at o* = argsup,cr, , ndeed

Ve @l = 21T L =\ 2o gy = 2

Which means f is %fLipschitz

Which means that f is \/% —Lipschitz

We now use proposition 1 with L = % and get

P(|f(G) —Ef(G)| = t) < 2exp{—(nt*/4)}



we solve
2exp{—nt?/4} = ¢

and conclude our proof with ¢ = 41%(2/6) O

The next step is to show the concentration of (8, 8)2/2 with 6 = arg SUPgesn—1(ym) (0, Y o) /n. We first state
a result to be used:

Remark 5. BBP phase transition We define U, (\) = sup,egn-1(/m) (0, Y o) /n.
We have that

2 A<1
lim EU,(\) = LT
n—00 A5 A1
Using implicit differentiation,
d d A
—U,(\) = — sup[ (o, 0)? %% 2
1 -
= 2(0.0)°

We now give a heuristic proof, for some intuition, we have shown (U is the same function as f)

lim P(|U,(\) — EU,(\)] > €) = 0

n—oo

and we calculate (=) the expectation

N R :
nlgréo ﬁ<0’0> ~6)\nll)rr;oIE[Un()\)]
<
L 1 A<l
A+1oan

_Jo A<
1-4&% A1
We know show the deviation a bit more carefully, we define the ”discrete differential of size ¢”

L Un(A+0) — U, (M)
AF(A0) = :

_ UM = Un(A=9)
B 1)

AL (N9)

Indeed
A+
Un(A+9) =sup{o,Wo)/n+ ;_2 (0,0)?
ocsS

o, Wo* A, o,
W) om0+ o 0

>

n

Un(X)

We conclude (by symmetry) the following inequality

a-ng) < @92 - xx 2)

n



Using BBP phase transition result we get
_u(A+0) —u(N)

AT(N,6) = ;
A_()\,(S) _ ’LL()\) — g()‘ _ 5)

for

2 A<1
u()‘): A 1
+X A>1

Next we apply the Gaussian concentration inequality

lim P(|JAF —A%|>¢) =0 (3)

n—r oo

Combining (3) with (2) we get

, _ (6,6)2 N
lim P(A7(A,0) —e < —5— <AT(\,0) +e) =1 (4)
n—oo n
By the definition of the derivative
<
lim A%(5,\) = 0 ) Asl (5)

And finally combining (5) and (4) we get

lim P(|(0,0)%/n> — A(\)| > €) =0

n—oo

Remark 6. General recipe to show the concentration of any M (o)
1. Define the appropriate perturbed Hamiltonian Hy (o) = (o, Y o)/n+ hM (o)

2. Show the concentration of sup, Hy(o) at some h near 0 with Hy (o) differentiable with respect to h at
h=0

3. Obtain the result by taking derivative with respect to h

4 Concentration of Lasso training loss

Let us consider the Lasso problem - we have a random matrix A € R"*¢ 4;; ~ N(0,1). Our estimand is
zo € R? with ||x¢]|3/d < M. The observation vector is

y:A$0+€

with € ~ N(0,,,72L,).
We wish to consider two lasso estimators

o & = argming —-[ly — Az + jllz|:
o 2y = argming ;. |ly — Az|3 + F|z[h

& is the familiar Lasso problem while #; is called ”square root” lasso. We first show the concentration of

T



Proposition 7. Let Q C R? be a compact region and consider
sup{||z|3/d} < D
e
this is a compact set of radius /D times a constant. We define
Ua(A, ) = min —ly — Ax|> + 5 x|,
zeQ \/ﬁ d

Then AK < 0o s.t V8 > 0 then

?(1fa(A,0) ~Efa(4,0) 2 K(/ L1+ D) + 7)) < 5

n

constant

Proof. We define the ”standardized” version of A and ¢, A = /nA,¢€ = ¢/7. Let
F(A)e) = fo(A/Vn,e-7) = fa(A,e)

we want to show that F' is Lipschitz and apply the Gaussian concentration inequality. By definition

F(Ae) = Iwnelg THA(% —x) +ell2+ *HmHl

1. — T A
=min sup —(v, A(zo - 2)) + =8 + ||z
T f<1 vn n

L(AjEx,v)

Now let us consider the difference F/(A;,€ ) — F(Aj, &) and denote v}, x} the argmax’s for the optimization

problem F solves with respect to A;, ;.

F(Ai,& Ay, &) =min sup L(A;,&,x,v)+max inf —L(As &, x,v
( ) ( ) xe vi|lv|l2<1 ( ) € v;|lv]2<1 ( )

< sup L(Ay,&,z5,v)+ inf —L(Ay &, x5 v)

vi[v]l2<1 vi[v]l2<1
< L(Zhglaw;ayi) - L(ZQ,EQ,QE;,VT)
< 1 (Ay — Ag)(m — a3))) +

cs 1
< —[[ A1 = Asflop|[¥l2 @0 — @hll2 + =& — &[]l
n —— — \F N——

<1 <VdMxvnM <1
< C(| A1 = Azlr + |l&1 — &ll2)/v/n

< (A - Al + 7 - 2l3)/n

Now let G(A,€) € R"*" we have that F is %—Lipschitz in G (||G]j3 = [|[A1 — Az||% + [|[&1 — €3).
We obtain the conclusion by applying the Gaussian inequality. O

1 fo is the square root lasso problem, with the minimization taken over a constrained set . In future lectures we will show
that w.h.p the square root lasso solution lies within Q .
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