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Lecture 5: Z, synchronization and the free energy approach

Lecturer: Song Mei Scriber: Omer Ronen Proof reader: Tae Joo Ahn

1 Asymptotic risk in Z, synchronization

1.1 Model setup
Let 8 = (61,02,...,0,) € © = {£1}" be the signal vector with 6; ~;;q Unif(Zy = {£1}). We observe
Y € R™*" which is a noisy version of the signal 66 :

Y = 200" + W e R, (1)
n

The noise matrix follows W ~ GOE(n), that is, we have W;; ~;iq N(0,1/n) for 1 < i < j < n with the
restriction that W;; = Wj;, and W;; ~iiq N(0,2/n) for 1 <i < n.

Our goal is to estimate @ given its noisy observation Y. For an estimator © : R R™ " we denote
its expected risk by

R(O(Y)) = Egumitzg ) y~ev|o)[|OY) — 007 |%] /n?.

Our goal is to calculate the expected risk for certain interesting estimators.

1.2 Stochastic block model

The stochastic block model is a random graph model, that produces graphs containing communities. This
model has a strong connection to the Zs synchronization problem.
Suppose we have people coming from two groups (more generally, k groups):

e People from the same group form an edge with probability p independently (p = a/n)
e People from different groups form an edge with probability ¢ independently (¢ = b/n)

We assume that p > ¢ and is scaled by n to obtain the desired property that the expected number of friends
(edges) does not scale with the number of people in the population (n). We observe the adjacency matrix
A and try to infer the two groups. Formally: let 8 ~ Unif({£1}"), we generate a graph G = (V, E), V =
{1,2,...,n}. We define the two groups

Vi={ieV:0,=4+1}, V_={ieV:0,=—-1}.
The adjacency matrix gives

Y { Ber(p), i, are in the same group,
W 744\ Ber(q), i,j are not in the same group.

We take A;; = 0. Taking conditional expectation, we have that

1 1
E[A[6] = 5(p + @117 + S+ q)06" — pl.
_/_/

signal

We define the de-noised version of A to be

1
Y =A- §(p+q)11T+pI,



and we get that
1 -
E[Y]0) = -(p— q)00" = 00"
2 n
To define our noise matrix W, we center Y to have mean zero

a—>b

W=Y —
2n

00", (2)

Calculating the variance and neglecting terms on the order of n=2 we get

p(l—p q(l—gq a+b
Var(WL-j): (2 )+ (2 )% 5

Re-arranging (2) we get
a—1b
2
This form is very similar in structure to Eq. (1). Rescaling W to have similar variance values (with difference
in distribution), we obtain the effective signal-to-noise parameter A = (a — b)/+/2(a + b).

Y =

00" + W. (3)

1.3 Estimators in Z; synchronization

In the last lecture we have derived a few estimators for the parameter vector 6:

o MLE: )
Omr, = argmax, ey 13n (0, Y o)

Unfortunately it is NP-hard to compute this estimator.

e Spectral estimator:

ésp(Y) = arg maXGESnfl(\/ﬁ) <0'7YU> = \/;L vmax(Y)
———

leading eigenvector

The spectral estimator is derived by relaxing the constraint set of the MLE ({£1}" C S"~1(y/n)), so
that it can be computed efficiently. The matrix estimator gives

~ A

O (Y) = 0,00, € R™".

e SDP estimator: N
Ospp(Y) = arg max (Y, X)
st. X >0
X = 1.
With the constraint that rank(X)=1, this estimator is equivalent to the MLE. So the SDP estimator

is also a relaxation of the MLE.

e Bayes estimator:
Obayes(Y) =E[007 Y] = > o0 P(o]Y),
oc{t1}m

where P(a|Y) x exp(A(o,Y 0))/2).



1.4 Expected risk

Here we plot the expected risk E[|@(Y) — 067 ||%./n? as a function of the signal to noise ratio parameter
for a few different estimators ©.
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Figure 1: The asymptotic expected risk of the estimators (n — c0)

e As \ — oo we can see that all estimators are consistent.

e For this problem the value A = 1 is called ”the information-theoretical threshold”. For A\ below this

threshold, even the Bayes estimator is no better than the 0 estimator. There is a phase transition at
A=1

e The Bayes estimator can be computed efficiently in this model. That means, there’s no statistical-
computational gap in this model (in a few other models, this is not the case).
1.5 Asymptotic formula
Proposition 1. Let 9Sp be the spectral estimator. Then, we have almost surely

{0 for A <1,

lim (0, 0)2/n? =
i (Bsp, 6)"/n 1—% for A > 1.

n—roo

This is known as BBP phase transition. Furthermore, we have

P 2 <1
lim [|000, — 06T |/n =12 1A=L
n— 00 5z for A > 1.

To prove this we first show concentration and then calculate the limit. We will show this deviation in
later lectures.

Proposition 2. Let (:)Bayes be the Bayes estimator. Then, we have almost surely

R A< 1
lim (0, Opayesd)?/n? = {0 for A<,

n—oo

(N2 for A > 1.

. 1 A<1
lim [|@payes — 007 |2/n? = , forash
n—o00 1-— q*()\) fOT A > 1.



Here q,()\)? is the unique non-negative solution of

q=Egno,1) [tanh(A\°q + A/gG)?].

2 Derivation of asymptotic risk

We now calculate the asymptotic formulas using the free energy approach. Our quantity of interest is
lim E[||Opayes — 00" ||2]/n? = 1 — 2a, + ¢,
n—oo

with A
Ay = lim E[<9, @Bayes0>]/n2’

n—oo

¢, = lim E[|©payes|7]/n”.
Remark 3. General recipe for calculating m, = lim,,_, E[X,,] for some X,
1. Find:

e A configuration space Q) and a reference measure vy,

e An observable M : Q) — R,

A perturbed Hamiltonian Hy : Q — R, Hy(o) = Ho(o) + A\M (o),
so that Pg x x exp(—FH\ (o)),

such that E[X,,] = (M)g x for some 3, \.

2. Calculate the free energy density analytically

mwzmh%ﬂmém&wmwmw.

n— oo

3. my = lim, o E[X,,] = O6f (5, A).

We now apply the general recipe to calculate a, and c,.

2.1 Calculation of a,

ay = lim E[<0,@Bayeso>]/n2

n—roo

= lim E[(6, Z oo ' P(a|Y)8)]/n?

n—oo
oc{t1}n
T 27,2
= lm B[ 37 ((0,6)°/n*)P(o Y )],
oc{£l1}m

Now we arrive at an expression that looks like an ensemble average for the measure

P(o|Y) x exp{\(o,Y o) /2}
A

= exp{ - A[—%(a, Wo) — %<070>Q]}.

Suppose we define

o O ={+1}", 1y = Unif,



o M(o)=—(0,0)*/2n,
e Hy(o) =—(o,Wa)/2+ AM(0),
e Ps (o) o exp(—BH (o)),
o P(a|Y) =Psa(0)[s=n-
Then we have

a, = lim —2E[(M)x x]/n.

n—oo

We will show in later lectures that, using the replica method, the free energy density gives:
F(8,2) = max fiue(b ¢, 5, A).

for

Fulby.8.3) = =381 = 0 + 50 =SB [log2eosh (B0W + V) ).

The optimizers of the variational problem above solves the following self-consistent equations

b, = E[tanh (B(Xb, + \/qu))}, (4)
g, = E[tanh (B(Ab, + \/qu))Q] (5)

To compute m,, we take partial derivatives

w1 (

b2 — %E [tanhﬁ(kb + \/ﬁG)ﬁb} lo=b, ,q=q. =

—

1
m*:fhf(ﬁ, ) bzibz:7§bi

1
2
and obtain our result

ay = —2m (B, N)|p=x = b2(\, \).

Here (1) comes from Implicit differentiation: O fi(A) = dx[max, f(q,N)] = Orf(g,A)|q=q, Where ¢, =
argmax, f(gq,A), and (2) comes from directly plugging in Eq. (4).

2.2 Calculation of c,
We have
E[[|©payes || 2]/n% = ( > 00 P(alY), Y oo P(o]Y))/n?

ocO ocO

= Z (010,020 )P(01|Y)P(05]Y)/n?

01€0,02€0

= Y {o1,02)"P(01]Y)P(a2]Y)/n?

01€0,02€0

= Z <o-1,o'2>2/¢(t71,t72|1’r)/”2

(0’1,0’2)6@)(@

Here p(o1,02Y) = P(o1|Y)P(02|Y) x exp(A(o1,Y01)/2+ Aoz, Yo3)/2). We proceed to define the
model:

o (1 =0 x 0,1y = Unif(©) x Unif(0),
e M(o) = {(01,02)%/n,



o Hy (o) = —%(o’l, Woi) — ﬁ<9701>2 - %<0'2,W0'2> - ﬁ(e,ag? + hM (o),
o Psan(0) x exp(—BHxu(0)),

and we get a representation of b, as an ensemble average of gibbs distribution

o= Jim Bl0saal,_,,

2.3 Calculation of m, = lim,_, E(64,(Y),0)2/n?

The spectral estimator was defined to be

Op(Y)= sup (o,Yo).
e ()

We define
e (0 =S""1 1 is the uniform distribution on S*~1,
o M(o)=(0,0)*/n,
o Hy(0) = —(0,Ya)/2,
o P n(o) ocexp (— B[Hx(o) +hM(a)]).
Then we have

m, = lim E[M(ésp)}/n

4 . .
= lim lim E[(M)gxn]/n|n=0

n—oo B—o0

5 . .
© lim lim E[(M)gxn]/n|n=0

B—o00 Nn—00

= lim lim E[0,F(B, A, h)]/n|n=0

B—00 n—r00

= lim 8hf(67>‘7 h)|h:0-
B—o0

Here (4) is from the low temperature limit of Gibbs measure (which concentrates on argmin, H (o)), and
(5) we assume this change of limit is valid without justification here.

2.4 An exercise

Suppose By ~ N(0,0814),y = XBy+e, Xij ~iia N(0,1/d) and &; ~;;qa N(0,0?). Denote the ridge estimator

B = argmin [ly = XBJ3 + A3 = (XTX + D)~ Xy,

1. Please figure out:

e A configuration space €2, vy,
e An observable M : Q) — R,
e A perturbed Hamiltonian H) : Q@ — R,



such that (3, B,)/n = limg_,o O\ F(B, \)/n where F(f, \) is the free energy associated with Hamiltonian
H), at temperature [.

. Please repeat this for ||3]|2/n.

. Hopefully, your Hy (o) is of quadratic form and v is the Lebesgue measure. In this case,

/Q exp{—BHx (o)} (do)

is a Gaussian integration, and can be written explicitly. Please simplify Ex g[F (3, A)] as much as
possible.
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