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1 Asymptotic risk in Z2 synchronization

1.1 Model setup

Let θ = (θ1, θ2, . . . , θn) ∈ Θ = {±1}n be the signal vector with θi ∼iid Unif(Z2 = {±1}). We observe
Y ∈ Rn×n which is a noisy version of the signal θθT:

Y =
λ

n
θθT +W ∈ Rn×n. (1)

The noise matrix follows W ∼ GOE(n), that is, we have Wij ∼iid N(0, 1/n) for 1 ≤ i ≤ j ≤ n with the
restriction that Wij = Wji, and Wii ∼iid N(0, 2/n) for 1 ≤ i ≤ n.

Our goal is to estimate θ given its noisy observation Y . For an estimator Θ̂ : Rn×n → Rn×n, we denote
its expected risk by

R(Θ̂(Y )) = Eθ∼Unif(Zn
2 ),Y ∼P(Y |θ)[‖Θ̂(Y )− θθT‖2F ]/n2.

Our goal is to calculate the expected risk for certain interesting estimators.

1.2 Stochastic block model

The stochastic block model is a random graph model, that produces graphs containing communities. This
model has a strong connection to the Z2 synchronization problem.

Suppose we have people coming from two groups (more generally, k groups):

• People from the same group form an edge with probability p independently (p = a/n)

• People from different groups form an edge with probability q independently (q = b/n)

We assume that p > q and is scaled by n to obtain the desired property that the expected number of friends
(edges) does not scale with the number of people in the population (n). We observe the adjacency matrix
A and try to infer the two groups. Formally: let θ ∼ Unif({±1}n), we generate a graph G = (V,E), V =
{1, 2, . . . , n}. We define the two groups

V+ = {i ∈ V : θi = +1}, V− = {i ∈ V : θi = −1}.

The adjacency matrix gives

Aij ∼iid
{

Ber(p), i, j are in the same group,
Ber(q), i, j are not in the same group.

We take Aii = 0. Taking conditional expectation, we have that

E[A|θ] =
1

2
(p+ q)11T +

1

2
(p+ q)θθT︸ ︷︷ ︸

signal

− pI.

We define the de-noised version of A to be

Y = A− 1

2
(p+ q)11T + pI,
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and we get that

E[Y |θ] =
1

2
(p− q)θθT =

a− b
2n

θθT.

To define our noise matrix W , we center Y to have mean zero

W = Y − a− b
2n

θθT. (2)

Calculating the variance and neglecting terms on the order of n−2 we get

Var(Wij) =
p(1− p)

2
+
q(1− q)

2
≈ a+ b

2
.

Re-arranging (2) we get

Y =
a− b

2
θθT +W . (3)

This form is very similar in structure to Eq. (1). RescalingW to have similar variance values (with difference
in distribution), we obtain the effective signal-to-noise parameter λ = (a− b)/

√
2(a+ b).

1.3 Estimators in Z2 synchronization

In the last lecture we have derived a few estimators for the parameter vector θ:

• MLE:
θ̂ML = arg maxσ∈{±1}n〈σ,Y σ〉

Unfortunately it is NP-hard to compute this estimator.

• Spectral estimator:

θ̂sp(Y ) = arg maxσ∈Sn−1(
√
n)〈σ,Y σ〉 =

√
n vmax(Y )︸ ︷︷ ︸

leading eigenvector

.

The spectral estimator is derived by relaxing the constraint set of the MLE ({±1}n ⊂ Sn−1(
√
n)), so

that it can be computed efficiently. The matrix estimator gives

Θ̂sp(Y ) = θ̂spθ̂
T

sp ∈ Rn×n.

• SDP estimator:
Θ̂SDP(Y ) = arg max

X
〈Y ,X〉

s.t. X � 0

Xii = 1.

With the constraint that rank(X)=1, this estimator is equivalent to the MLE. So the SDP estimator
is also a relaxation of the MLE.

• Bayes estimator:

Θ̂Bayes(Y ) = E[θθT |Y ] =
∑

σ∈{±1}n
σσTP(σ|Y ),

where P(σ|Y ) ∝ exp(λ〈σ,Y σ〉)/2).
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1.4 Expected risk

Here we plot the expected risk E‖Θ̂(Y )− θθT‖2F /n2 as a function of the signal to noise ratio parameter λ,

for a few different estimators Θ̂.

Figure 1: The asymptotic expected risk of the estimators (n → ∞)

• As λ→∞ we can see that all estimators are consistent.

• For this problem the value λ = 1 is called ”the information-theoretical threshold”. For λ below this
threshold, even the Bayes estimator is no better than the 0 estimator. There is a phase transition at
λ = 1.

• The Bayes estimator can be computed efficiently in this model. That means, there’s no statistical-
computational gap in this model (in a few other models, this is not the case).

1.5 Asymptotic formula

Proposition 1. Let θ̂sp be the spectral estimator. Then, we have almost surely

lim
n→∞

〈θ̂sp,θ〉2/n2 =

{
0 for λ ≤ 1,

1− 1
λ2 for λ > 1.

This is known as BBP phase transition. Furthermore, we have

lim
n→∞

‖θ̂spθ̂
T

sp − θθ
T‖2F /n =

{
2 for λ ≤ 1,
2
λ2 for λ > 1.

To prove this we first show concentration and then calculate the limit. We will show this deviation in
later lectures.

Proposition 2. Let Θ̂Bayes be the Bayes estimator. Then, we have almost surely

lim
n→∞

〈θ, Θ̂Bayesθ〉2/n2 =

{
0 for λ ≤ 1,

q?(λ)2 for λ > 1.

lim
n→∞

‖Θ̂Bayes − θθT‖2F /n2 =

{
1 for λ ≤ 1,

1− q?(λ)2 for λ > 1.
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Here q?(λ)2 is the unique non-negative solution of

q = EG∼N (0,1)[tanh(λ2q + λ
√
qG)2].

2 Derivation of asymptotic risk

We now calculate the asymptotic formulas using the free energy approach. Our quantity of interest is

lim
n→∞

E[‖Θ̂Bayes − θθT‖2F ]/n2 = 1− 2a? + c?,

with
a? = lim

n→∞
E[〈θ, Θ̂Bayesθ〉]/n2,

c? = lim
n→∞

E[‖Θ̂Bayes‖2F ]/n2.

Remark 3. General recipe for calculating m? = limn→∞ E[Xn] for some Xn

1. Find:

• A configuration space Ω and a reference measure ν0,

• An observable M : Ω→ R,

• A perturbed Hamiltonian Hλ : Ω→ R, Hλ(σ) = H0(σ) + λM(σ),

• so that Pβ,λ ∝ exp(−βHλ(σ)),

such that E[Xn] = 〈M〉β,λ for some β, λ.

2. Calculate the free energy density analytically

f(β, λ) = lim
n→∞

− 1

nβ
E
[

log

∫
Ω

exp{−βHλ(σ)}ν0(dσ)
]
.

3. m? = limn→∞ E[Xn] = ∂λf(β, λ).

We now apply the general recipe to calculate a? and c?.

2.1 Calculation of a?

a? = lim
n→∞

E[〈θ, Θ̂Bayesθ〉]/n2

= lim
n→∞

E[〈θ,
∑

σ∈{±1}n
σσTP(σ|Y )θ〉]/n2

= lim
n→∞

E[
∑

σ∈{±1}n
(〈σ,θ〉2/n2)P(σ|Y )].

Now we arrive at an expression that looks like an ensemble average for the measure

P(σ|Y ) ∝ exp{λ〈σ,Y σ〉/2}

= exp
{
− λ[−1

2
〈σ,Wσ〉 − λ

2n
〈θ,σ〉2]

}
.

Suppose we define

• Ω = {±1}n, ν0 = Unif,
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• M(σ) = −〈σ,θ〉2/2n,

• Hλ(σ) = −〈σ,Wσ〉/2 + λM(σ),

• Pβ,λ(σ) ∝ exp(−βHλ(σ)),

• P(σ|Y ) = Pβ,λ(σ)|β=λ.

Then we have
a? = lim

n→∞
−2E[〈M〉λ,λ]/n.

We will show in later lectures that, using the replica method, the free energy density gives:

f(β, λ) = max
b,q

fmf(b, q, β, λ).

for

fmf(b, q, β, λ) = −1

4
β(1− q)2 +

1

2
λb2 − 1

β
EG∼N (0,1)

[
log 2 cosh

(
β(λb+

√
qG)

)]
.

The optimizers of the variational problem above solves the following self-consistent equations

b? = E
[

tanh
(
β(λb? +

√
q?G)

)]
, (4)

q? = E
[

tanh
(
β(λb? +

√
q?G)

)2]
. (5)

To compute m?, we take partial derivatives

m? = ∂λf(β, λ)
(1)
=

1

2
b2 − 1

β
E
[

tanhβ
(
λb+

√
qG
)
βb
]
|b=b?,q=q?

(2)
=

1

2
b2? − b2? = −1

2
b2?

and obtain our result
a? = −2m?(β, λ)|β=λ = b2?(λ, λ).

Here (1) comes from Implicit differentiation: ∂λf?(λ) = ∂λ[maxq f(q, λ)] = ∂λf(q, λ)|q=q? where q? =
arg maxq f(q, λ), and (2) comes from directly plugging in Eq. (4).

2.2 Calculation of c?

We have

E[‖Θ̂Bayes‖2F ]/n2 =
〈 ∑
σ∈Θ

σσTP (σ|Y ),
∑
σ∈Θ

σσTP (σ|Y )
〉
/n2

=
∑

σ1∈Θ,σ2∈Θ

〈
σ1σ

T
1 ,σ2σ

T
2

〉
P (σ1|Y )P (σ2|Y )/n2

=
∑

σ1∈Θ,σ2∈Θ

〈
σ1,σ2

〉2
P (σ1|Y )P (σ2|Y )/n2

=
∑

(σ1,σ2)∈Θ×Θ

〈
σ1,σ2

〉2
µ(σ1,σ2|Y )/n2.

Here µ(σ1,σ2|Y ) = P (σ1|Y )P (σ2|Y ) ∝ exp(λ〈σ1,Y σ1〉/2 + λ〈σ2,Y σ2〉/2). We proceed to define the
model:

• Ω = Θ×Θ, ν0 = Unif(Θ)×Unif(Θ),

• M(σ) = 〈σ1,σ2〉2/n,
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• Hλ,h(σ) = − 1
2 〈σ1,Wσ1〉 − λ

2n 〈θ,σ1〉2 − 1
2 〈σ2,Wσ2〉 − λ

2n 〈θ,σ2〉2 + hM(σ),

• Pβ,λ,h(σ) ∝ exp(−βHλ,h(σ)),

and we get a representation of b? as an ensemble average of gibbs distribution

c? = lim
n→∞

E
[
〈M〉β,λ,h

]∣∣∣
β=λ,h=0

.

2.3 Calculation of m? = limn→∞ E〈θ̂sp(Y ), θ〉2/n2

The spectral estimator was defined to be

θ̂sp(Y ) = sup
σ∈Sn−1(

√
n)

〈σ,Y σ〉.

We define

• Ω = Sn−1, ν0 is the uniform distribution on Sn−1,

• M(σ) = 〈σ,θ〉2/n,

• Hλ(σ) = −〈σ,Y σ〉/2,

• Pβ,λ,h(σ) ∝ exp
(
− β[Hλ(σ) + hM(σ)]

)
.

Then we have

m? = lim
n→∞

E[M(θ̂sp)]/n

= lim
n→∞

E[M(arg min
σ∈Ω

Hλ(σ))]/n

(4)
= lim

n→∞
lim
β→∞

E[〈M〉β,λ,h]/n|h=0

(5)
= lim

β→∞
lim
n→∞

E[〈M〉β,λ,h]/n|h=0

= lim
β→∞

lim
n→∞

E[∂hF (β, λ, h)]/n|h=0

= lim
β→∞

∂hf(β, λ, h)|h=0.

Here (4) is from the low temperature limit of Gibbs measure (which concentrates on arg minσH(σ)), and
(5) we assume this change of limit is valid without justification here.

2.4 An exercise

Suppose β0 ∼ N(0,σ2
0Id),y = Xβ0 +ε, Xij ∼iid N(0, 1/d) and εi ∼iid N(0,σ2). Denote the ridge estimator

β̂ = arg min
β
‖y −Xβ‖22 + λ‖β‖22 = (XTX + λI)−1XTy.

1. Please figure out:

• A configuration space Ω, ν0,

• An observable M : Ω→ R,

• A perturbed Hamiltonian Hλ : Ω→ R,
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such that 〈β̂,β0〉/n = limβ→0 ∂λF (β, λ)/n where F (β, λ) is the free energy associated with Hamiltonian
Hλ at temperature β.

2. Please repeat this for ‖β̂‖22/n.

3. Hopefully, your Hλ(σ) is of quadratic form and ν0 is the Lebesgue measure. In this case,∫
Ω

exp{−βHλ(σ)}ν0(dσ)

is a Gaussian integration, and can be written explicitly. Please simplify EX,β [F (β, λ)] as much as
possible.
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