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In this lecture we introduce the concepts of statistical decision theory and their relation to statistical
physics. We demonstrate those relations using Z2 synchronization problem. We will show that the quantities
of interest that arise in Z2 synchronization problem can be exactly translated into physical quantities in the
Sherrington-Kirkpatrick spin glass model.

1 Statistical models, parameter space, likelihood function

In statistical decision theory an agent collects some (random) data and uses it to make the best action. We
begin by introducing the model from which the data is generated, i.e. we give the following

Definition 1 (Statistical model). Statistical model is a family {Pθ : θ ∈ Θ} of probability distributions on a
common space X parametrized by θ ∈ Θ. Θ is called the parameter space of the statistical model.

An observation X sampled from the distribution Pθ gives the agent information about the unknown
parameter θ. The quantity that measures how plausible it is for some value σ ∈ Θ to be the true parameter
is given by the following

Definition 2 (Likelihood function). Suppose all measures in {Pθ : θ ∈ Θ} have densities with respect to
some reference measure ν. The likelihood of parameter σ ∈ Θ given that X = x is defined as

L(σ|x) =
dPσ
dν

(x).

Remark 3. In most cases of interest, either the set X is discrete or X ⊆ Rd for some natural d. In the
first case, the standard choice of ν is the counting measure, i.e. L(σ|x) = (dPσ/dν)(x) = Pσ(X = x). In
the second case, ν is usually the Lebesgue measure on Rd.

Remark 4. The Hamiltonian of a physical system corresponds to negative log-likelihood of statistical model:

H(σ) = − logL(σ|x), σ ∈ Θ.

Example: Z2 syncronization. Let Θ = {−1, 1}n be the parameter space. Our observation will be

Y = λ
θθT

n
+W ∈ Rn×n,

where W ∼ GOE(n) (Gaussian orthogonal ensemble).

Wi,j ∼i.i.d. N
(

0,
1

n

)
1 ≤ i < j ≤ n,

Wj,i = Wi,j 1 ≤ i < j ≤ n,

Wi,i ∼i.i.d. N
(

0,
2

n

)
1 ≤ i ≤ n.

The distribution of the random matrix W has the following density with respect to the Lebesgue measure
on the space of real symmetric matrices:

p(W ) =
1

Zn
exp{−n‖W ‖2F /4}.
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Therefore, we have for the likelihood

L(σ|Y ) =
1

Zn
exp{−n‖Y − λσσT/n‖2F /4},

logL(σ|Y ) =− n‖Y − λσσT/n‖2F /4− const,

where the constant does not depend on σ. The scalar quantity λ is called signal-to-noise ratio. We assume
that it is a known constant.

2 Loss function

Consider some space A that we will call action space. As we stated before, the goal of an agent is to choose
”the best action” i.e. the element of the space A that minimizes some function L : A×Θ→ R. The function
L is called loss function.

A rather common situation is when one wants to estimate the parameter θ, so A = Θ. A classical example
is A = Θ = R and L(a, θ) = (a− θ)2.

There are two possible choices of the action space and the corresponding loss function for the Z2 syn-
chronization model:

• Vector square loss: A = [−1, 1]n and L(a,θ) = ‖a− θ‖2/n.

• Matrix square loss: A = [−1, 1]n×n and L(A,θ) = ‖A− θθT‖2F /n2.

3 Statistical estimator

The goal of an agent is to minimize the loss. However, the loss depends on the unknown parameter θ, so
the choice of agent’s action can only depend on the observation X sampled from Pθ. This leads us to the
following

Definition 5. A function θ̂ : X → A is called a statistical estimator.

A classical example of statistical estimator for the case of parameter estimation (i.e. A = Θ) is the

maximum likelihood estimator: θ̂ML = arg maxσ∈Θ L(σ|X).
For Z2 synchronization model we can derive

θ̂ML = arg max
σ∈Θ

L(σ|Y )

= arg min
σ∈{−1,+1}n

‖Y − λσσT/n‖2F

= arg min
σ∈{−1,+1}n

‖Y ‖2F − 2λ〈σ,Y σ〉/n+ λ2‖σσT‖2F /n2

= arg max
σ∈{−1,+1}n

〈σ,Y σ〉.

4 Risk function

The notion of loss that we introduced depends the unknown parameter θ as well as the random observation X
from Pθ, which makes it inconvenient to use loss to compare different estimators. The first step to overcome
this difficulty is to integrate out the dependence on the random element X. This leads to the following

Definition 6 (Risk function). For a statistical estimator θ̂ : X → A and a parameter θ ∈ Θ the risk of that
estimator is

R(θ̂, θ) = EX∼PθL(θ̂(X), θ) =

∫
X
L(x, θ)Pθ(dx).

The function R(·, ·) is called the risk function.
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5 Bayes optimality

Despite being non-random, our notion of risk still depends on the unknown θ, so it doesn’t yet allow direct
comparison of different estimators: one estimator can be better for some values of θ but worse for others.
There are two most common approaches to fix this: Bayesian and minimax. We choose to take the Bayesian
approach as its connections to statistical physics are more straightforward. Moreover, the minimax approach
can be reformulated as Bayesian approach where one takes the worst possible prior for each estimator.

The Bayesian approach is to integrate over θ just as we integrated over X to eliminate the dependence
on it. For a given measure Q on the space Θ we introduce the following

Definition 7 (Expected risk, Bayes risk, Bayes estimator).

Expected risk is RB(θ̂, Q) =

∫
Θ

R(θ̂, θ)Q(dθ).

Bayes risk is RB(Q) = inf
θ̂:X→A

RB(θ̂, Q).

Bayes estimator is θ̂Bayes = arg min
θ̂:X→A

RB(θ̂, Q).

The measure Q is often called the prior distribution of the parameter θ.
The main virtue of Bayesian approach is that for any x ∈ X the value of θ̂Bayes(x) can be computed

without any knowledge of θ̂Bayes(y) for any other y ∈ X . The formal statement of this result is given by the
following

Theorem 8 (Bayes theorem). Bayes estimator minimizes the posterior expected value of a loss function:

θ̂Bayes(x) = arg min
a∈A

∫
Θ

L(a,σ)L(σ|X)Q(dσ).

Proof. The full rigorous proof is left as an exercise to the reader. We only provide the main idea, which is
to write the following

θ̂Bayes = arg min
θ̂

∫
Θ

∫
X
L(θ̂(x),σ)Pσ(dx)Q(dσ)

= arg min
θ̂

∫
Θ

∫
X
L(θ̂(x),σ)L(σ|x)ν(dx)Q(dσ)

= arg min
θ̂

∫
X

(∫
Θ

L(θ̂(x),σ)L(σ|x)Q(dσ)
)
ν(dx).

The quantity inside the brackets only depends on the value of θ̂ in x, so to maximize the whole integral one
can separately maximize

∫
Θ
L(θ̂(x),σ)L(σ|x)Q(dσ) in θ̂(x) for each x.

Now let’s see how Bayesian approach can be applied to Z2 synchronization. Consider the matrix squared
loss L(A,θ) = ‖A−σσT‖2F /n2, and choose Q to be the uniform distribution on Θ = {−1,+1}n. The Bayes
estimator becomes

θ̂Bayes(Y ) = arg min
A∈[−1,1]n×n

∫
Θ

(‖A− σσT‖2F /n2)L(σ|Y )Q(dσ).

To find the minimizer we can take the derivative in A and put it equal to zero. Plugging in ∇A‖A −
σσT‖2F = 2(A− σσT) gives us

θ̂Bayes(Y ) =

∫
Θ

σσTP (σ|Y )Q(dσ),
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where

P (σ|Y ) =
L(σ|Y )∫

Θ
L(σ|Y )Q(dσ)

.

In the following ξ ∝ η means that ξ/η does not depend on σ. We write

L(σ|Y ) ∝ exp{−n‖Y − λσσT/n‖2F /4}
= exp{−n‖Y ‖2F /4− nλ2‖σσT/n‖2F /4 + λ〈σ,Y σ〉/2}
∝ exp{λ〈σ,Y σ〉/2}.

To make the last transition we used the fact that σ ∈ {−1, 1}n, so ‖σσT/n‖2F = 1 — does not depend on σ.
Finally, we see that the Bayes estimator is the average value of σσT with respect to the measure on

discrete cube {−1, 1}n, whose density is proportional to exp{λ〈σ,Wσ〉/2 + λ〈σ,θ〉2/(2n)} (plug in Y =
W + λθθT/n). From this expression one can already see that the Bayesian estimator is exactly the average
of the observable with respect to the Gibbs measure. We will further discuss the connections with statistical
physics in the next section.

6 Connection of Z2 synchronization with Sherrington-Kirkpatrick
spin glass

Recall the Sherrington-Kirkpatrick model that we defined previously:

• The configuration space is Ω = {−1,+1}n.

• The Hamiltonian is Hn,λ(σ) = −〈σ,Wσ〉/2− λ〈σ,1〉2/(2n), where W ∼ GOE.

• The Gibbs measure is Pn,β,λ(σ) ∝ exp{−βHn,λ(σ)}.

We can immediately see the connections with Z2 synchronization:

• The configuration space of Sherrington-Kirkpatrick model is exactly the parameter space of Z2 syn-
chronization model.

• If θ = 1, then the posterior distribution of the Z2 synchronization model is exactly the Gibbs distribu-
tion of Sherrington-Kirkpatrick model with inverse temperature β = λ. To extend this correspondence
to general θ, one can generalize the definition of Sherrington-Kirkpatrick model by substituting vector
1 by an arbitrary vector θ in the definition of Hn,λ(σ).

• Under the same conditions as in the previous bullet point(i.e. β = λ and θ corresponds to 1), Bayes
estimator of the Z2 synchronization model is exactly the average of the observable σσT in Sherrington-
Kirkpatrick model.

• The maximum likelihood estimator in the Z2 synchronization model is exactly the minimizer (the
ground state) of the Hamiltonian in the Sherrington-Kirkpatrick model.

7 Key questions in Z2 synchronization

The main questions that we want to answer about the Z2 synchronization model are

• What is the asymptotic risk of θ̂Bayes, θ̂ML and other statistical estimators of interest?

• How to efficiently compute those estimators?

Further we will see how connections with statistical physics help us answer these questions.
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