
STAT260 Mean Field Asymptotics in Statistical Learning Lecture 21 - 04/12/2021

Lecture 21: Derivation of AMP II
Lecturer: Song Mei Scriber: Alexander Tsigler Proof reader: Alexander Tsigler

1 MP for LASSO

Previously we have defined the following Message Passing (MP) algorithm for a general Markov random
field:

Definition 1 (Message passing algorithm). For each k, {mk
i→a, v

k
i→a, m̂

k
a→i, v̂

k
a→i} are called “beliefs”, which

are real values. Define ρki→a(xi) and ρ̂ka→i(xi) as the densities of N(mk
i→a, v

k
i→a) and N(m̂k

a→i, v̂
k
a→i) respec-

tively, i.e.,

ρki→a(xi) =
1√

2πvki→a
exp
{
− (xi −mk

i→a)2

2vki→a

}
,

ρ̂ka→i(xi) =
1√

2πv̂ki→a
exp
{
− (xi − m̂k

i→a)2

2v̂ki→a

}
.

Given initialization {m0
i→a, v

0
i→a, m̂

0
a→i, v̂

0
a→i}, compute

γ̂ka→i(xi) ∝
∫
ψa(x∂a)

∏
j∈∂a\i

ρkj→a(xj)dx∂a\i, (1)

γk+1
i→a(xi) ∝ ψi(xi)

∏
b∈∂i\a

ρ̂kb→i(xi), (2)

and update the messages as

(m̂k
a→i, v̂

k
a→i) = mean and variance of γ̂ka→i(xi), (3)

(mk
i→a, v

k
i→a) = mean and variance of γki→a(xi). (4)

Finally, we extract the marginal as

γk+1
i (xi) ∝ ψi(xi)

∏
b∈∂i

ρ̂kb→i(xi). (5)

A very important property of this algorithm is that it is ”non-backtracking”, meaning that the message
that a sends to i does not depend on the message that i sent to a in the previous iteration and vice versa.
Note, however, that the expression for the final output includes the product over the whole ∂i.

1.1 LASSO with finite temperature

In this lecture we apply that procedure to the LASSO problem:

Example 1 (LASSO with temperature β). Consider

µβ(x) =

n∏
a=1

exp
{
− (ya − 〈Aa, x〉)22

2

}
︸ ︷︷ ︸

ψa(x∂a)

d∏
i=1

exp(−βλ|xi|)︸ ︷︷ ︸
ψi(xi)

.

1

Here V = [d] and F = [n]. The BP update rule is given by

µ̂ka→i(xi) ∝
∫
Rd−1

∏
j 6=i

dxj exp
{
− (ya − 〈Aa, x〉)22

2

}∏
j 6=i

µkj→a(xj),

µk+1
i→a(xi) ∝ exp(−βλ|xi|)

∏
b 6=a

µ̂kb→i(xi),

and the extracted marginal is

µk+1
i (xi) ∝ exp(−βλ|xi|)

∏
b∈[n]

µ̂kb→i(xi).

We need to understand what are the means and variances of distributions γka→i and γ̂ki→a. Let’s start
with γka→i. Plugging in the expressions for LASSO in the MP we get

γk+1
i→a(xi) ∝ ψi(xi)

∏
b∈∂i\a

ρ̂kb→i(xi)

∝ exp(−βλ|xi|)× exp
{
−
∑
b 6=a

(xi − m̂k
b→i)

2

2v̂kb→i

}
∝ exp

{
−β
((xi − θki→a)2

2ζki→i
+ λ|xi|

)}
,

where θki→a and ζki→i are mean and variance of the Gaussian distribution with density, proportional to

exp
{
−
∑
b 6=a

(xi − m̂k
b→i)

2

2βv̂kb→i

}
.

The exact expressions are the following

β(ζki→a)−1 =
∑
b 6=a

(v̂kb→i)
−1, (6)

β(ζki→a)−1θki→a =
∑
b 6=a

(v̂kb→i)
−1m̂k

b→i, (7)

mk+1
i→a = Exi∼π(β,λ,θki→a,ζ

k
i→a)

[xi], (8)

vk+1
i→a = Varxi∼π(β,λ,θki→a,ζ

k
i→a)

[xi], (9)

(10)

where

π(β, λ, θ, ζ) ∝ exp
{
−β
((x− θ)2

2ζ
+ λ|x|

)}
. (11)

The expression for γ̂ka→i turns out to be a bit simpler:

γ̂ka→i(x) ∝
∫
Rd−1

exp
{β

2
(ya − 〈Aa, x〉)2

}
︸ ︷︷ ︸

ψa(x∂a)

× exp
{
−
∑
j 6=i

xj −mk
j→a)2

2vkj→a

}
︸ ︷︷ ︸∏

j∈∂a\i ρ
k
j→a(xj)

dx\i.

This is a Gaussian integration, which gives a Gaussian density.

γ̂ka→i(x) ∝ exp
{
−
∑
j 6=i

(xi − m̂k+1
a→i)

2

2v̂k+1
a→i

}

2

Because of that the result is explicit: mean and variance are affine functions of means and variances of
incoming messages correspondingly.

Aai · m̂k
a→i = ya −

∑
j 6=i

Aajm
k
j→a, (12)

A2
ai · v̂ka→i =

∑
j 6=i

A2
ajv

k
j→a +

1

β
. (13)

1.2 LASSO with infinite temperature

The formulas above give the AMP algorithm with finite β. This is sufficient in Bayesian setting with the
corresponding prior. However, for the vanilla LASSO we need to send β to infinity. Recall the definition of
π in Equation 11. Let’s write out the following for convenience:

d

dx

((x− θ)2

2ζ
+ λ|x|

)
=

{
ζ−1(x− θ − λζ), x < 0,

ζ−1(x− θ + λζ), x > 0.

By Laplace approximation we have for expectation

lim
β→∞

EX∼π(β,λ,θ,ζ)[X] = arg min
x

{ (x− θ)2

2ζ
+ λ|x|

}

=


θ + λζ, if θ < −λζ,
θ − λζ, if θ > λζ,

0, else;

= η(θ;λζ) — soft-threshold.

When it comes to variance, we look at the second derivative at the minimum:

d2

dx2

((x− θ)2

2ζ
+ λ|x|

)
x=η(θ;λζ)

.

We see that that second derivative is ζ−1 if |θ| > λζ, but the function is not twice differentiable at the
minimum for |θ| ≤ λζ, i.e. the second derivative is infinite. Thus we obtain

lim
β→∞

VarX∼π(β,λ,θ,ζ)[X]× β =

{
ζ, if |θ| > λζ,

0, if |θ| < λζ;

= ζ · η′(θ;λζ).

In view of these asymptotic relations, we change notation:

mk
i→a ← lim

β→∞
mk
i→a, m̂k

i→a ← lim
β→∞

m̂k
a→i

vki→a ← lim
β→∞

βvki→a, v̂ki→a ← lim
β→∞

βv̂ka→i

3

Plugging this into equations 6–9, 12, 13 gives

(ζki→a)−1 =
∑
b 6=a

(v̂kb→i)
−1,

(ζki→a)−1θki→a =
∑
b 6=a

(v̂kb→i)
−1m̂k

b→i,

mk+1
i→a = η(θki→a;λζki→a),

vk+1
i→a = ζki→a · η′(θki→a;λζki→a),

Aai · m̂k
a→i = ya −

∑
j 6=i

Aajm
k
j→a,

A2
ai · v̂ka→i =

∑
j 6=i

A2
ajv

k
j→a + 1.

So far we treated matrix A as a given design matrix. To further analyze the AMP for LASSO we will
need to impose some assumptions on it. Eventually we would like to have Aai ∼i.i.d. N (0, 1/n). However,
for now we assume Aai ∼i.i.d. Unif({±1/

√
n}), so we can replace A2

ai by 1/n. The intuition for this is that
by universality the distribution of Aai doesn’t matter as long we match the first and the second moments.
An alternative explanation is that the objects of interest (such as

∑
j 6=iA

2
ajv

k
j→a) should concentrate around

their expectations, and therefore only the moments of Aai matter.
Let’s make one more slight change of variables:

zka→i ≡ Aai · m̂k
a→i = ya −

∑
j 6=i

Aajm
k
j→a,

τka→i ≡ A2
aiv̂

k
a→i =

∑
j 6=i

A2
ajv

k
j→a + 1.

Our MP equations become:

θki→a =

∑
b 6=aAbiz

k
b→i/τ

k
b→i

1
n

∑
b6=a 1/τkb→i

, (14)

mk+1
i→a = η(θki→a;λζki→a), (15)

zka→i = ya −
∑
j 6=i

Aajm
k
j→a, (16)

ζki→a =
(1

n

∑
b 6=a

1/τkb→i

)−1
, (17)

vk+1
i→a = ζki→a · η′(θki→a;λζki→a), (18)

τka→i =
1

n

∑
j 6=i

vkj→a + 1. (19)

These give the Message Passig algorithm for LASSO. Note that since we have i ∈ V , a ∈ F , |V | = n and
|F | = d, the number of messages is of order dn.

2 From message passing to approximate message passing.

Our goal in this section is to simplify MP (2× n× d # of messages). After simplification there are going to
be only d messages. First we will introduce the main idea that leads to such simplification in Section 2.1.
However, the straightforward application of this idea does not lead to a good approximation. We will then
show how to relax it and make it work in Section 2.2

4

2.1 Crude approximation of MP

Observe that the source of such a large number of messages is a non-backtracking property. For example,
we only need to track the dependence of θki→a on a because we don’t want to account for the message from a
in its update rule. A simple idea that comes to mind is to give up on this property and to hope that adding
one extra term to each summation will not influence much. This leads to the following crude approximation:

θki =

∑
bAbiz

k
b /τ

k
b

1
n

∑
b 1/τkb

,

mk+1
i =η(θki ;λζki),

zka =ya −
∑
j

Aajm
k
j ,

ζki =
(1

n

∑
b

1/τkb

)−1
,

vk+1
i =ζki · η′(θki , λζki),

τka =
1

n

∑
j

vkj + 1,

From the last equation we see that τka =: τk — does not depend on a. This propagates to the equation
for ζki and gives ζki = τk =: ζk — does not depend on i. τk also cancels in the equation for θki . After these
simplifications we only get 3 equations:

mk+1 = η(mk + ATzk;λζk) ∈ Rd, (20)

zk = y −Amk(without Onsager term) ∈ Rn, (21)

ζk+1 = ζk × 1

n

∑
i∈[n]

η′(mk + Azk;λζk)i + 1 ∈ R. (22)

It turns out that the approximation above is too crude, so it needs a correction. The equations for ζ, v and
τ (the variables that correspond to variances of the messages) are fine. The equations for θ, m, z (variables
that correspond to means) are off by O(1). We cannot drop non-backtracking property in equations for those
variables.

2.2 Derivation of AMP from MP

As we mentioned before, we only want to drop the non-backtracking property in equations for ζ, v and τ .
When we replace τki→a by τk, ζki→a by ζk and vki by vk, the equations 17, 18 and 19 can be combined into a
single update rule

ζk+1 = ζk × 1

n

∑
i∈[n]

η′(mk + Azk;λζk)i + 1.

So far, the equations 14, 15 and 16 become

θki→a =
∑
b 6=a

Abiz
k
b→i,

mk
i→a = η(θki→a;λζk),

zka→i = ya −
∑
j 6=i

Aajm
k
j→a,

(equations for m and z remain unchanged yet, in the equation for θ we cancelled τk and plugged in (n−1)/n ≈
1 in the denominator).

5

Now we would like to deal with the variables θ, m, z. The idea to completely eliminate non-backtracking
property does not work for these variables, so let’s try to relax it a little bit. For example, instead of fully
dropping the dependence of θi→a on a, let’s say that this dependence results in a small correction to the
update rule. More precisely, we would like to introduce the following decomposition:

θki→a = θki + δθki→a, (23)

mk
i→a = mk

i + δmk
i→a, (24)

zka→i = zka + δzka→i, (25)

(26)

where δθ, δm and δz are terms of smaller order of magnitude than θ, m and z correspondingly.
Defining δθki→a is rather straightforward:

θki→a =
∑
b

Abiz
k
b→i︸ ︷︷ ︸

θki

−Aaizka→i︸ ︷︷ ︸
δθki→a

.

Note that because of CLT we can think of θki as of something of order O(1), while δθki→a is O(1/
√
n). So

it is indeed a small correction. The update rules are as follows:
θki =

∑
b

Abiz
k
b→i =

∑
b

Abiz
k
b +

∑
b

Abiδz
k
b→i,

δθki→a = −Aaizka→i = −Aai(zki + δzka→i).

The derivation for m is a bit more involved because we need to push small correction δθki→a through
non-linear function η:

mk+1
i→a = η(θki ;λζk)︸ ︷︷ ︸

mk+1
i

+ η′(θki ;λζk) · δθki→a︸ ︷︷ ︸
δmk+1

i

,

{
mk+1
i = η(θki ;λζk),

δmk+1
i→a = η′(θki , λζ

k) · δθki→a.
Finally, we derive the decomposition for z. It is quite similar to that for θ:

zka→i = ya −
∑
b

Abjm
k
j→a︸ ︷︷ ︸

zka

+Aaim
k
i→a︸ ︷︷ ︸

δzka→i


zka = ya −

∑
j

Aajm
k
j→a = ya −

∑
j

Aajm
k
j −

∑
j

Aajδm
k
j→a,

δzka→i = Aaim
k
i→a = Aai(m

k
i + δmk

i→a).

So far we didn’t actually change much: by introducing the small correction terms we didn’t decrease the
number of updates, but only emphasized which quantities in those updates may be negligible. Now we are
in a good shape to make some simplifying approximations. We have already stated that simply neglecting
δθki→a, δmk+1

i→a and δzka→i in the updates of θki , mk+1
i and zka is too crude. So let’s try to neglect those

quantities in their own update rules, i.e. let’s take

δθki→a = −Aaizki ,
δmk+1

i→a = η′(θki , λζ
k) · δθki→a,

δzka→i = Aaim
k
i .

6

We get
mk+1
i = η(θki ;λζk),

θki =
∑
b

Abiz
k
b +

(∑
b

A2
bi

)
mk
i

≈ mk
i +

∑
b

Abiz
k
b ,

zka = ya −
∑
j

Aajm
k
j +

∑
j

A2
aj∂η(θkj ;λζk)zk−1a

≈ya −
∑
j

Aajm
k
j +

1

n

∑
j

∂η(θkj ;λζk)zk−1a ,

where we also substituted A2
ai → 1/n for every a, i.

Our final system of update rules is

mk+1 = η(mk + ATzk;λζk) ∈ Rd,

zk = y −Amk +
[1

n

∑
j

∂η(θkj ;λζk)
]
zk−1︸ ︷︷ ︸

Onsager term

∈ Rn,

ζk+1 = ζk × 1

n

∑
i∈[n]

η′(mk + Azk;λζk)i + 1 ∈ R.

It is interesting to compare it to our crude system (Equations 20, 21, 22). The only correction appears
in the update rule for zk. This correction term is called ”Onsager term”.

7

	Lecture 21 – Derivation of AMP II
	MP for LASSO
	LASSO with finite temperature
	LASSO with infinite temperature

	From message passing to approximate message passing.
	Crude approximation of MP
	Derivation of AMP from MP

