
STAT260 Mean Field Asymptotics in Statistical Learning Lecture 20 - 04/07/2021

Lecture 20: Derivation of AMP I
Lecturer: Song Mei Scriber: Yihong Wu Proof reader: Alexander Tsigler

The overall methodology of deriving the AMP and related algorithms is summarized as follows:
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1 Markov random field

A factor graph G = (V, F,E) is a bipartite graph where |V | = N, |F | = M and E ⊂ V × F . Here V and F
are the sets of variable nodes and factor nodes, respectively.

Given G, a Markov random field is a probability measure µ on the configuration space Ω = X⊗N which
admits the following form

µ(x) =
1

Z

∏
a∈F

ψa(x∂a)
∏
i∈V

ψi(xi) (1)

Here for each factor a ∈ F , ∂a ⊂ V are its neighbors (variables), and we denote x∂a = (xi : i ∈ ∂a).
Many Gibbs measure of the form µ(x) ∝ exp(−βH(x)) can be rewritten in the form (1) with appropriately

chosen factor graph. This representation, however, is not unique in general.

Example 1 (1-D Ising model with 3 spins). Consider Ω = {±1}3,

µ(x1, x2, x3) ∝ e−β(x1x2+x2x3) = ψa1(x1, x2)ψa2(x2, x3), (2)

where ∂a1 = {x1, x2}, ∂a2 = {x2, x3}, ψa1(x1, x2) = e−βx1x2 , ψa2(x2, x3) = e−βx2x3 , ψ1(x1) = ψ2(x2) =
ψ3(x3) = 1. See

Example 2 (Bayes linear model). Consider the setting of linear regression y = Ax0+w, where x0 ∈ Rd, A ∈
Rn×d, w ∈ Rn. Assume that x0i

iid∼ P0 and wi
iid∼ N(0, σ2). Then the posterior of x0 is

µ(x) = P (x|A, y) ∝ exp

{
−‖y −Ax‖

2
2

2σ2

} d∏
i=1

P0(xi) =

n∏
a=1

exp

{
− (ya − 〈Aa, x〉)22

2σ2

}
︸ ︷︷ ︸

ψa(x∂a)

d∏
i=1

P0(xi)︸ ︷︷ ︸
ψi(xi)

.

In this case, the factor graph is fully connected.
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Figure 1: 1-D Ising model with 3 spins

Our main task is to compute the marginal distribution for all xi

µi(xi) ≡
∫
µ(x)

∏
j 6=i

dxj .

To this end, we consider a number of algorithms.

2 Belief propagation algorithm on trees

Let G be a tree factor graph. Let

• Va→i be the all reachable variables starting from a by blocking i;

• Vi→a be the all reachable variables starting from i by blocking a;

• Fa→i be the all reachable factors starting from a by blocking i;

• Fi→a be the all reachable factors starting from i by blocking a.

Define

ν̂a→i(x) ∝
∏

b∈Fa→i

ψb(x∂b)
∏

j∈Va→i

ψj(xj) ∈ P(Ω),

νi→a(x) ∝
∏

b∈Fi→a

ψb(x∂b)
∏

j∈Vi→a

ψj(xj) ∈ P(Ω),

and their respective marginals

µ̂a→i(xi) =
∑
x\i

ν̂a→i(x) ∈ P(X ),

µi→a(xi) =
∑
x\i

νi→a(x) ∈ P(X ).

Here we denote x\i = (xj : j 6= i).
We claim that {µ̂a→i, µi→a} satisfies the following relations:

µ̂a→i(xi) ∝
∑
x∂a\i

ψa(x∂a)
∏

j∈∂a\i

µj→a(xj), (3)

µi→a(xi) ∝ ψi(xi)
∏

b∈∂i\a

µ̂b→i(xi), (4)
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and the true marginals of µ can be computed as follows

µi(xi) ∝ µi→a(xi)µ̂a→i(xi)
(4)
= ψi(xi)

∏
b∈∂i

µ̂b→i(xi). (5)

The claim can be proved by induction. Next we revisit Example 1, where µ is given in (2). The factor
graph in Figure 1 is a tree. Suppose we want to compute the marginal of x3. We can do this starting from
x1 as follows. Since x1 is a degree-one node, both V1→a1 and F1→a1 are empty. So ν1→a1 is uniform and
µ1→a1(x1) ∝ 1. Continuing this using (3)–(4), we get

µ̂a1→2(x2) ∝
∑
x1

ψa1(x1x2)µ1→a1(x1) ∝
∑
x1

ψa1(x1x2)

µ2→a2(x2) ∝ ψ2(x2)µ̂a1→2(x2) = µ̂a1→2(x2)

µ̂a2→3(x3) ∝
∑
x2

ψa2(x2x3)µ2→a2(x2) ∝
∑
x2

ψa2(x2x3)ψa1(x1x2).

Finally, using (5),
µ3(x3) ∝ ψ3(x3)µ̂a2→3(x3) = µ̂a2→3(x3)

In general, we can use (3) and (4) as recursions then extract the marginals using (5), resulting in the
following BP algorithms for trees:

Definition 1 (BP on trees). For each time k, {µ̂ka→i, µki→a : i ∈ V, a ∈ F} are called “beliefs”, which are
probability measures on X . Given some initialization {µ0

i→a : i ∈ V, a ∈ F}, we update {µ̂0
i→a, µ

1
i→a, . . .} in

succession according to the following rule1

µ̂ka→i(xi) ∝
∑
x∂a\i

ψa(x∂a)
∏

j∈∂a\i

µkj→a(xj), (6)

µk+1
i→a(xi) ∝ ψi(xi)

∏
b∈∂i\a

µ̂kb→i(xi), (7)

and extract the marginal by

µk+1
i (xi) ∝ ψi(xi)

∏
b∈∂i

µ̂kb→i(xi). (8)

Theorem 2. For trees, BP algorithm converges to the true marginals after 2K iterations, where K is the
diameter of the tree (length of the longest path). In other words, µki (xi) = µi(xi) for all i ∈ V and all
k ≥ 2K.

3 Loopy BP on general graphs

Definition 1 and Theorem 2 hold for trees. Nevertheless, for general graphs, one can still consider Definition 1,
known as loopy BP. Next let’s look at an example in the context of linear regression. Just like Example 2,
the factor graph is complete and not a tree.

Example 3 (LASSO with temperature β). Consider

µβ(x) =

n∏
a=1

exp

{
− (ya − 〈Aa, x〉)22

2

}
︸ ︷︷ ︸

ψa(x∂a)

d∏
i=1

exp(−βλ|xi|)︸ ︷︷ ︸
ψi(xi)

.

1For continuous space,
∑

x∂a\i
in (6) is replaced by

∫
dx∂a\i.
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Here V = [d] and F = [n]. The BP update rule is given by

µ̂ka→i(xi) ∝
∫
Rd−1

∏
j 6=i

dxj exp

{
− (ya − 〈Aa, x〉)22

2

}∏
j 6=i

µkj→a(xj),

µk+1
i→a(xi) ∝ exp(−βλ|xi|)

∏
b6=a

µ̂kb→i(xi),

and the extracted marginal is

µk+1
i (xi) ∝ exp(−βλ|xi|)

∏
b∈[n]

µ̂kb→i(xi).

Remark 3. • Although there is no general theorem like Theorem 2, the hope that as k → ∞, µk+1
i

converges to some µ̃i. This limit however is in general not µi.

• In many cases, µk+1
i does converge empirically.

• This results in a practical algorithm if ψa and ψi are “simple”. But this does not hold for LASSO
(cannot integrate in close form).

4 From BP to message passing algorithms

Note that in general each belief being updated in the BP algorithm is a probability distribution on X (such
as a density). It will be more convenient to operate on the basis of real-valued messages. The idea of message
passing algorithm is to approximate each belief by parametric distributions such as exponential family, then
update the parameters. Consider X = R and Gaussian approximation

Definition 4 (Message passing algorithm). For each k, {mk
i→a, v

k
i→a, m̂

k
a→i, v̂

k
a→i} are called “beliefs”, which

are real values. Define ρki→a(xi) and ρ̂ka→i(xi) as the densities of N(mk
i→a, v

k
i→a) and N(m̂k

a→i, v̂
k
a→i) respec-

tively, i.e.,

ρki→a(xi) =
1√

2πvki→a
exp

{
− (xi −mk

i→a)2

2vki→a

}
,

ρ̂ka→i(xi) =
1√

2πv̂ki→a
exp

{
− (xi − m̂k

i→a)2

2v̂ki→a

}
.

Given initialization {m0
i→a, v

0
i→a, m̂

0
a→i, v̂

0
a→i}, compute

γ̂ka→i(xi) ∝
∫
ψa(x∂a)

∏
j∈∂a\i

ρkj→a(xj)dx∂a\i, (9)

γk+1
i→a(xi) ∝ ψi(xi)

∏
b∈∂i\a

ρ̂kb→i(xi), (10)

and update the messages as

(m̂k
a→i, v̂

k
a→i) = mean and variance of γ̂ka→i(xi), (11)

(mk
i→a, v

k
i→a) = mean and variance of γki→a(xi), (12)

Finally, we extract the marginal as

γk+1
i (xi) ∝ ψi(xi)

∏
b∈∂i

ρ̂kb→i(xi). (13)
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Remark 5. Why “Gaussian approximation”?

• The wrong intuition is that beliefs are approximately Gaussian. For example, for LASSO, this is due
to non-Gaussian terms ψx(xi) = exp(−βλ|xi|).

• The correct intuition is that in the update rule, only means and variances of incoming beliefs are
“important”, so we can approximate the input beliefs by Gaussians (ρ and ρ̂). But the output beliefs
(γ and γ̂) are non-Gaussian. For example, in (13), the product of ρ̂’s are Gaussian, but ψx(xi) is not.
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