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Lecture 20: Derivation of AMP 1
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The overall methodology of deriving the AMP and related algorithms is summarized as follows:
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1 Markov random field

A factor graph G = (V, F, E) is a bipartite graph where |V| = N,|F| =M and E C V x F. Here V and F
are the sets of variable nodes and factor nodes, respectively.
Given G, a Markov random field is a probability measure p on the configuration space = X® which

admits the following form
1
= H Ya(T0a) H Vi) (1)
acF eV

Here for each factor @ € F, da C V are its neighbors (variables), and we denote zg, = (z; : ¢ € da).
Many Gibbs measure of the form p(z) < exp(—SH (z)) can be rewritten in the form (1) with appropriately
chosen factor graph. This representation, however, is not unique in general.

Example 1 (1-D Ising model with 3 spins). Consider Q = {#1}3,
H’(xl7 132, 1'3) X e*B(I1I2+I2I3) = ’l/)ch (Ila 132)1/)@ (,IQ, x3)7 (2)

where da; = {x1,22}, daz = {m2, 23}, Vo, (T1,22) = e P¥172 4h, (20, 23) = e P72 4y (1) = tho(z2) =
w3($3) = 1. See

Example 2 (Bayes linear model). Consider the setting of linear regression y = Azy+w, where xo € R% A €
R4 4 € R™. Assume that zo; i Py and w; i N(0,0?). Then the posterior of z is
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In this case, the factor graph is fully connected.
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Figure 1: 1-D Ising model with 3 spins

Our main task is to compute the marginal distribution for all x;
piwi) = [ uta) Lo
J#i

To this end, we consider a number of algorithms.

2 Belief propagation algorithm on trees

Let G be a tree factor graph. Let
e V,_.; be the all reachable variables starting from a by blocking i;
e V; ., be the all reachable variables starting from 4 by blocking a;
e F,_,; be the all reachable factors starting from a by blocking ¢;
e F; ., be the all reachable factors starting from 4 by blocking a.

Define

asi(@) o< [[ wulwar) [ vilx;) € P,

beF, ; JE€EVa—i
visa(@) o< ] welxar) [] ¢ilx;) € PO,
beFi*)a je‘/i—nl
and their respective marginals
ﬂaﬁz(xz) - lya%i(x) € P(X)7
T\;
,Ufz%a(xz) - Zyi%a(x) € p( )
T\4

Here we denote x\; = (x; : j # 1).
We claim that {fiq—i, tti—a} satisfies the following relations:

fla—i () o Zwa(mé’a) H Hj—a(5),
Toa\i jeaa\i

lfliaa(xi) o8 1#1(961) H ﬂb—)i(xi)a

bedi\a



and the true marginals of y can be computed as follows

16(23) & icsa (@) framsi(s) 2 by (a;) 1T AsiCao). (5)
bedi

The claim can be proved by induction. Next we revisit Example 1, where p is given in (2). The factor
graph in Figure 1 is a tree. Suppose we want to compute the marginal of z3. We can do this starting from
x1 as follows. Since z; is a degree-one node, both Vi_,,, and Fi_,,, are empty. So v1_,,, is uniform and
H1-sa, (21) o< 1. Continuing this using (3)—(4), we get

,Ufal~>2 $2 E 1/%11 T1T2 Nl%al $1 E 1/%11 $1332

H2as (22 ) x ¢2($2)Ma1—>2($ ) = Ma1—>2(332)
flaz—3(z Z% 293) 12 say (T2) X Y Pay (2223) 0, (T122).

T2
Finally, using (5),
ps(xs) o< 3(23) flag—3(23) = flas—3(x3)

In general, we can use (3) and (4) as recursions then extract the marginals using (5), resulting in the
following BP algorithms for trees:

Definition 1 (BP on trees). For each time k, {i¥ ., u¥., i € Via € F} are called “beliefs”, which are
probability measures on X. Given some initialization {9, 1 i € V,a € F}, we update {0, pti_q,---} in
succession according to the following rule'

/La—n xl Z wa l’aa H ,Uf]_m -75] (6)

Toa\i j€da\i
it (i) o< i) [ fbss(a), (7)
bedi\a
and extract the marginal by
() oc () [T e (8)
bedi

Theorem 2. For trees, BP algorithm converges to the true marginals after 2K iterations, where K is the
diameter of the tree (length of the longest path). In other words, u¥(z;) = pi(z;) for all i € V and all
k> 2K.

3 Loopy BP on general graphs

Definition 1 and Theorem 2 hold for trees. Nevertheless, for general graphs, one can still consider Definition 1,
known as loopy BP. Next let’s look at an example in the context of linear regression. Just like Example 2,
the factor graph is complete and not a tree.

Example 3 (LASSO with temperature 8). Consider
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LFor continuous space, > in (6) is replaced by [ dzgg;-
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Here V = [d] and F = [n]. The BP update rule is given by

H — (Aq, )3 11
:U‘a—m / dl’] exp{ 2 2 :u?—m (xj)v
Rd—1 +:& oy
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and the extracted marginal is

b (@) oc exp(=BAzal) [T ih(w).
be(n]

Remark 3. o Although there is mo general theorem like Theorem 2, the hope that as k — o0, u’”l
converges to some [i;. This limit however is in general not u;.

e In many cases, ,uﬁ'l does converge empirically.

e This results in a practical algorithm if ¥, and ; are “simple”. But this does not hold for LASSO
(cannot integrate in close form).

4 From BP to message passing algorithms

Note that in general each belief being updated in the BP algorithm is a probability distribution on X (such
as a density). It will be more convenient to operate on the basis of real-valued messages. The idea of message
passing algorithm is to approximate each belief by parametric distributions such as exponential family, then
update the parameters. Consider X = R and Gaussian approximation

Definition 4 (Message passing algorithm). For each k, {mk_  oF ., k. ok 3} are called “beliefs”, which
are real values. Define p¥ ., (x;) and pF_,,(x;) as the densities of N(mF,, ,vF., ) and N(mF_, oF ) respec-
tively, 1i.e.,

1 (z; —mk )2
pra(mi) = - exp{— - 5 el
2mvg ., Visa
) 1 (v, — k., )2
P];Hi(xi) = €Xp {_ - 29k = :
27'("[)1_)(1 Vissa
Given initialization {m9_ ., v9, w0, 00 .}, compute
’Ya%z 1’1 /wa I'Ba H Pjﬁa x])dxaa\za (9)
j€da\i
YA @i) o i) [ i), (10)
bedi\a
and update the messages as
(k. 0k ) = mean and variance of 3* ., (z;), (11)
(m¥ ., vF, ) = mean and variance of yF ., (x:), (12)
Finally, we extract the marginal as
Y @) oc i) [ A5i(wa)- (13)
bedi



Remark 5. Why “Gaussian approzimation”?

e The wrong intuition is that beliefs are approzimately Gaussian. For example, for LASSO, this is due
to non-Gaussian terms ¥ (x;) = exp(—BA|zi]).

e The correct intuition s that in the update rule, only means and variances of incoming beliefs are
“tmportant”, so we can approximate the input beliefs by Gaussians (p and p). But the output beliefs
(v and 4) are non-Gaussian. For example, in (13), the product of p’s are Gaussian, but ¥, (z;) is not.
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