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1 Algorithm for Gibbs mean (Statistical estimators)

Consider a configuration space 2 C R? with base measure vy € P(R?), recall a Gibbs distribution
Py(do) oc e PRy (dor)

at inverse temperature § is determined by a (random) Hamiltonian H : Q@ — R. We are interested in
efficiently approximating ensemble averages (o) 5 € R¢,

Example 1 (Bayes linear model, Bayes estimator, LASSO). Let xg € R? with zo; ~;.q Py, A € R"¥4,
y = Az +w, w; ~i;q N(0,0%).
The posterior mean estimator is

plx| Ay)oce 207 Po(;).
The LASSO estimator

. .1 A .
Erass0 = argmin 5 ly — Az|3 + =[|lz]: = hm/ zps(x | A, y)de,
@ n n B—o0 R4

1 A
po(e | A o {5 |5y - Aeli+ 2el] .

Remark 1. We have seen many observables with concentrated ensemble averages, e.g.

d
Ofw) =33 5 — (0); ~E(0),.

where the randomness comes from the Hamiltonian H (i.e. A, xg, and w for the Bayes linear model). If
<O>ﬁ concentrates, it can be approrimated independent of any specific realization of A, xg, and w hence its
limiting value depends on the distribution of the random Hamiltonian H.

However, ensemble averages of coordinates O(zx) = x; typically do not concentrate (i.e. (x;)5 % E (z:)4).
Hence, approximating ensemble averages of coordinates <xZ>B depends on a specific instance (i.e. realizations
of A, xg, w) of the Hamiltonian H.

The approximate message passing (AMP) algorithm is used to calculate & = (o) 5.

2 ISTA and FISTA for LASSO

The convex optimization problem defining LASSO has structure

. . 1 A
&rasso = argmin 2*||y*A$||§ + —llzllx
x n n
——

convex differentiable f(x) convex separable g(x)



An algorithm for solving this is proximal gradient descent (PGD) / iterative thresholding (ISTA) algo-
rithm, defined by iterates

k+1

2"+ = argmin %nw (@ — GV @) 2 + ()
x k —_—

—.gpkt1/2

This is also called prozimal gradient descent (PGD), and has closed-form solution when g is separable. For

LASSO,

" = (b — AT (AP —y);AG), = =0,
n(x;0) = (Jz| — 0) - 1{[z] > 0}.

Theorem 2. Suppose f € C?(RY) convez, sup,, [|V2f(x)|lop < B, g € C(R?) conver, C(z) = f(x) + g(x),
argmin,, C(x) # 0. Then taking ( = %, the kth PGD iterate =* has cost-function guarantee

/_ 2 1
C(a) — minC(w) < ﬁ”wT‘”’“”? =0 (k) .
Proof reference. Fully deterministic, based on Jensen’s inequality and algebra. See [Beck and Teboulle, 2009]
O

An accelerated variant called APGD / fast iterative soft-thresholding (FISTA) uses a momentum sequence

14+4/14+4p2 _ .
1 =0, pp = T, Yk = kaf and defines iterates

= argmin [ 2o~ (@~ £V 1) +g<w>} ,

R ( k+1

x 1=y )" .

Theorem 3. Under the same assumptions, the iterates of APGD satisfy

!/ _ 2
C(x") — mminC(:c) < Qﬁ”wkika”z =0 <kl2> .

3 The AMP algorithm for LASSO

ISTA with step size 1 has updates
xh = n(xk + AT 25, 0;),
2k =y — AzF,

where 0, = A.
Compare this to AMP (will show how to derive in later lectures), which has updates

k+1 k T _k
" =k + A 25 0,),
2F =y — Azh + WEZ ,
Onsager correction term

k

where w;, = 5 Zle 7 (Z%:0)_1), where " = x¥ + AT 2¥~1 and each 6}, is a suitably chosen scalar.

Remark 4. In practice it is not suggested to use AMP to solve LASSO. This is because



o AMP is not monotonically decreasing in C; not a deterministic proof of convergence.
e The convergence analysis of AMP depends on assumptions on A and y.

However, when distribution assumptions on A and y are satisfied typically AMP is faster than ISTA/FISTA.
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o 2000 h;ooo ? teretions

Assumptions required for AMP:

1. A € R"*? with entries Aij ~iia. N(0,1/n).

2. g €RY, LS 6, = Pay, 100 22— Eqgy[23].
3. weRY, 1" 5, =P, 130 w? - E,[w?].

4. y=Axs+w e R".

5. n/d — 0.

4 Theoretical analysis of AMP

To understand and analyze AMP, it is helpful to consider a state evolution (SE) characterization
Tl?«kl = F(Tlgaek)v
where

F(r2,0) == 0 + %E[(U(Xo +7G;0) — Xo)?,

(X(), G) ~ ]PXO X N(O, 1)
AMP and SE are connected by the following key result:

Theorem 5 ( [Bayati and Montanari, 2011]). Let assumptions 1-5 hold. For any test pseudo-Lipschitz test
function ¢ : R? - R (i.e. [p(x) —¢Y(y)| < K|z —yll2(1+ ||z]|2 + ||yll2)), almost surely

d
lim é > (@it 20.4) = B[ (n(Xo + G, 0k), Xo)].

d—oo ‘
n/d—§ =1



Remark 6. This result says 6(77,, —0?) =lim 4oo [|®" — x¢||3/d. So, to analyze the asymptotic behavior
n/d—§

of (high dimensional) AMP on x, it suffices to analyze the (low dimensional) behavior of SE. We will later
see that SE converges to the solution of a fized point, and another later result will show AMP converges to
LASSO, yielding a chain of relations:

Thmi
AMP [Hijh dim gl):ravw(,sx &

/ Prop L
?neP 2.

Thm ?_—4___7, F(%&,L l>o?nt @1y~011@ﬂ

> State. evolation

LASO 2stimabr. =

Let (74, a) be a proper solution of the fixed-point equations
72 = 0% + 6 'E[(n(Xo + 7G; a1) — X0)?],
A =ar (1 — 6 B[ (X + TG a7)])2 ,
with (uniqueness-enforcing) constraint § > 6, (02, \).

Proposition 7. With 0}, = a1y, the state evolution {7 }x>1 of T, = F(72, i) converges (exponentially
fast) to 2.
Proposition 8. Let &(\) = argmin,, o ||y — Az[3 + 2||z|, {x"}r>1 AMP iterates. Then

T 2n

lim lim ||2(\) —2"||3/d = 0.

k—o00 n—o0

Proof strategy. Show Jvy, € 9C(x) (subgradients, since C not smooth) such that limg . [|vk]|3/d = 0 (de-
pends on previous proposition). Then use convexity of C(x) to argue sequence converges to minimizer of

C(x). O
Remark 9. One can get exponential convergence in distance in the following sense: for any k

lim (&) —2*[3/d < e lim [|&(\) — «°|3/d.

n—oo
Note this is differs from standard exponential convergence, which requires:
[&(\) — 2[13/d < e~ &(\) — 2°||3/d.
The connection between LASSO and the fixed point of SE closes the loop:

Theorem 10 ([Bayati and Montanari, 2011]). Let assumptions 1 through 5 hold. For any test pseudo-
Lipschitz test function ¢ : R? — R (i.e. [(x) —(y)| < K|z — yll2(1 + ||z]|2 + [|y|]2)), almost surely

d
fim &> 0@, 00:) = EW(1(Xo + 7.Gs @), Xo)).
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