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1 Algorithm for Gibbs mean (Statistical estimators)

Consider a configuration space Ω ⊂ Rd with base measure ν0 ∈ P(Rd), recall a Gibbs distribution

Pβ(dσ) ∝ e−βH(σ)ν0(dσ)

at inverse temperature β is determined by a (random) Hamiltonian H : Ω → R. We are interested in
efficiently approximating ensemble averages 〈σ〉β ∈ Rd.

Example 1 (Bayes linear model, Bayes estimator, LASSO). Let x0 ∈ Rd with x0i ∼i.i.d. P0, A ∈ Rn×d,
y = Ax0 +w, wi ∼i.i.d. N(0, σ2).

The posterior mean estimator is

x̂Bayes =

∫
Rd
xp(x | y,A)dx ∈ Rd,

p(x | A,y) ∝ e−
‖y−Ax‖22

2σ2

d∏
i=1

P0(xi).

The LASSO estimator

x̂LASSO = arg min
x

1

2n
‖y −Ax‖22 +

λ

n
‖x‖1 = lim

β→∞

∫
Rd
xpβ(x | A,y)dx,

pβ(x | A,y) ∝ exp

{
−β
[

1

2n
‖y −Ax‖22 +

λ

n
‖x‖1

]}
.

Remark 1. We have seen many observables with concentrated ensemble averages, e.g.

O(x) =
1

d

d∑
i=1

x2
i =⇒ 〈O〉β ≈ E 〈O〉β ,

where the randomness comes from the Hamiltonian H (i.e. A, x0, and w for the Bayes linear model). If
〈O〉β concentrates, it can be approximated independent of any specific realization of A, x0, and w hence its
limiting value depends on the distribution of the random Hamiltonian H.

However, ensemble averages of coordinates O(x) = xi typically do not concentrate (i.e. 〈xi〉β 6≈ E 〈xi〉β).
Hence, approximating ensemble averages of coordinates 〈xi〉β depends on a specific instance (i.e. realizations
of A, x0, w) of the Hamiltonian H.

The approximate message passing (AMP) algorithm is used to calculate x̂ = 〈σ〉β .

2 ISTA and FISTA for LASSO

The convex optimization problem defining LASSO has structure

x̂LASSO = arg min
x

1

2n
‖y −Ax‖22︸ ︷︷ ︸

convex differentiable f(x)

+
λ

n
‖x‖1︸ ︷︷ ︸

convex separable g(x)

.
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An algorithm for solving this is proximal gradient descent (PGD) / iterative thresholding (ISTA) algo-
rithm, defined by iterates

xk+1 = arg min
x

 1

2ζk
‖x− (xk − ζk∇f(xk))︸ ︷︷ ︸

=:xk+1/2

‖22 + g(x)

 .
This is also called proximal gradient descent (PGD), and has closed-form solution when g is separable. For
LASSO,

xk+1 = η(xk − ζkA>(Axk − y);λζk), x1 = 0,

η(x; θ) = (|x| − θ) · 1{|x| > θ}.

Theorem 2. Suppose f ∈ C2(Rd) convex, supx ‖∇2f(x)‖op ≤ β, g ∈ C(Rd) convex, C(x) = f(x) + g(x),
arg minx C(x) 6= ∅. Then taking ζk = 1

β , the kth PGD iterate xk has cost-function guarantee

C(xk)−min
x
C(x) ≤ β‖x′ − xk‖22

2k
= O

(
1

k

)
.

Proof reference. Fully deterministic, based on Jensen’s inequality and algebra. See [Beck and Teboulle, 2009]
.

An accelerated variant called APGD / fast iterative soft-thresholding (FISTA) uses a momentum sequence

µ1 = 0, µk =
1+
√

1+4µ2
k−1

2 , γk = 1−µk
µk+1

and defines iterates

νk+1 = arg min
x

[
β

2
‖x− (xk − 1

β
∇f(xk))‖22 + g(x)

]
,

xk+1 = (1− γk)νk+1 + γkν
k.

Theorem 3. Under the same assumptions, the iterates of APGD satisfy

C(xk)−min
x
C(x) ≤ 2β‖x′ − xk‖22

k2
= O

(
1

k2

)
.

3 The AMP algorithm for LASSO

ISTA with step size 1 has updates

xk+1 = η(xk +A>zk; θk),

zk = y −Axk,

where θk = λ.
Compare this to AMP (will show how to derive in later lectures), which has updates

xk+1 = η(xk +A>zk; θk),

zk = y −Axk + ωkz
k−1︸ ︷︷ ︸

Onsager correction term

,

where ωk = 1
d

∑d
i=1 η

′(x̄ki ; θk−1), where x̄k = xk +A>zk−1, and each θk is a suitably chosen scalar.

Remark 4. In practice it is not suggested to use AMP to solve LASSO. This is because
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• AMP is not monotonically decreasing in C; not a deterministic proof of convergence.

• The convergence analysis of AMP depends on assumptions on A and y.

However, when distribution assumptions on A and y are satisfied typically AMP is faster than ISTA/FISTA.

Assumptions required for AMP:

1. A ∈ Rn×d with entries Aij ∼i.i.d. N(0, 1/n).

2. x0 ∈ Rd, 1
d

∑d
i=1 δx0,i

⇒ Px0
, 1
d

∑d
i=1 x

2
0,i → Ex0

[x2
0,i].

3. w ∈ Rn, 1
n

∑n
i=1 δwi ⇒ Pw, 1

n

∑d
i=1 w

2
i → Ew[w2

i ].

4. y = Ax0 +w ∈ Rn.

5. n/d→ δ.

4 Theoretical analysis of AMP

To understand and analyze AMP, it is helpful to consider a state evolution (SE) characterization

τ2
k+1 = F (τ2

k , θk),

where

F (τ2, θ) := σ2 +
1

δ
E[(η(X0 + τG; θ)−X0)2],

(X0, G) ∼ PX0
×N (0, 1).

AMP and SE are connected by the following key result:

Theorem 5 ( [Bayati and Montanari, 2011]). Let assumptions 1–5 hold. For any test pseudo-Lipschitz test
function ψ : R2 → R (i.e. |ψ(x)− ψ(y)| ≤ K‖x− y‖2(1 + ‖x‖2 + ‖y‖2)), almost surely

lim
d→∞
n/d→δ

1

d

d∑
i=1

ψ(xk+1
i , x0,i) = E[ψ(η(X0 + τkG, θk), X0)].
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Remark 6. This result says δ(τ2
k+1 − σ2) = lim d→∞

n/d→δ
‖xk −x0‖22/d. So, to analyze the asymptotic behavior

of (high dimensional) AMP on x, it suffices to analyze the (low dimensional) behavior of SE. We will later
see that SE converges to the solution of a fixed point, and another later result will show AMP converges to
LASSO, yielding a chain of relations:

Let (τ∗, α∗) be a proper solution of the fixed-point equations

τ2 = σ2 + δ−1E[(η(X0 + τG;ατ)−X0)2],

λ = ατ
(
1− δ−1E[η′(X0 + τG;ατ)]

)2
,

with (uniqueness-enforcing) constraint δ ≥ δ∗(σ2, λ).

Proposition 7. With θk = α∗τk, the state evolution {τk}k≥1 of τ2
k+1 = F (τ2

k , α∗τk) converges (exponentially
fast) to τ2

∗ .

Proposition 8. Let x̂(λ) = arg minx
1

2n‖y −Ax‖
2
2 + λ

n‖x‖1, {xk}k≥1 AMP iterates. Then

lim
k→∞

lim
n→∞

‖x̂(λ)− xk‖22/d = 0.

Proof strategy. Show ∃vk ∈ ∂C(x) (subgradients, since C not smooth) such that limd→∞ ‖vk‖22/d = 0 (de-
pends on previous proposition). Then use convexity of C(x) to argue sequence converges to minimizer of
C(x).

Remark 9. One can get exponential convergence in distance in the following sense: for any k

lim
n→∞

‖x̂(λ)− xk‖22/d ≤ e−ck lim
n→∞

‖x̂(λ)− x0‖22/d.

Note this is differs from standard exponential convergence, which requires:

‖x̂(λ)− xk‖22/d ≤ e−ck‖x̂(λ)− x0‖22/d.

The connection between LASSO and the fixed point of SE closes the loop:

Theorem 10 ([Bayati and Montanari, 2011]). Let assumptions 1 through 5 hold. For any test pseudo-
Lipschitz test function ψ : R2 → R (i.e. |ψ(x)− ψ(y)| ≤ K‖x− y‖2(1 + ‖x‖2 + ‖y‖2)), almost surely

lim
d→∞
n/d→δ

1

d

d∑
i=1

ψ(x̂i(λ), x0,i) = E[ψ(η(X0 + τ∗G;α∗τ∗), X0)].
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