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Lecture 15: CGMT and Lasso asymptotics
Lecturer: Song Mei Scriber: Wenlong Mou Proof reader: Zitong Yang

In this lecture, we give a rigorous proof of the Lasso asymptotic risk based on the convex Gaussian
minimax theorem. In particular, we establish a non-asymptotic result that certifies the heuristic derivation
based on replica method in previous lectures. This also serves as an example of application of CGMT to
penalized least square problems.

1 Statement of the theorem

We consider the standard setup of Lasso, with signal vector x0 ∈ Rd, design matrix A ∈ Rn×d and noise
w ∈ Rn. The response is generated from y = Ax0 + w. We make the following probabilistic assumptions
on the model:

x0,i ∼i.i.d. P0, wi ∼i.i.d. N (0, σ2), Aij ∼i.i.d. N (0, 1/n).

We denote δ := n/d, and will work with the proportional limit with n→ +∞ given this ratio fixed.
The lasso estimator is then defined as:

x̂ := arg min
x∈Rd

{
1

2n
‖Ax− y‖22 +

λ

n
‖x‖1

}
. (1)

We are interested in the joint empirical distribution of the coordinates for the ground truth x0 and the
estimator x̂. More precisely, we define the following random measure:

µ̂λ :=
1

d

d∑
j=1

δ(x0,j ,x̂j). (2)

Before stating the theorem, we first define a few useful quantities. Define η to be the soft-thresholding
function η(x; z) := sign(x) · (|x| − z)+ for z > 0.

Let τ? = τ?(β) to be the largest solution to the equation

τ2 = σ2 + δ−1E(X0,G)∼P0×N (0,1)

[(
η(X0 + τG;

τλ

β

)
−X0)2

]
, (3a)

and β? is the unique non-negative solution to

β = τ?(β) ·
(

1− δ−1E(X0,G)∼P0×N (0,1)

[
η′
(
X0 + τ?(β)G;

τ?(β)λ

β

)])
, (3b)

and let τ? := τ?(β?).

Finally, we define the joint law µ̄λ to be the joint law of
(
η(X0 + τ?G; τ?λβ?

), X0

)
, where X0 ∼ P0 and

G ∼ N (0, 1) are independent.
Now we are ready to state the main theorem.

Theorem 1 ([?]). Under above setup, for any 0 < λmin ≤ λmax < +∞ and B > 0, there exist constants
c, C > 0 depending on (λmin, λmax, B, δ, σ

2). The LASSO estimator (1) satisfies the following bound for any
ε > 0:

sup
‖x0‖22/d≤B2

P

(
sup

λ∈[λmin,λmax]

W2
2 (µ̂λ, µ̄λ) > ε

)
≤ C

ε2
exp

(
−cdε3/ log2(ε)

)
. (4)
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A few remarks are in order. First, the result is stated as completely non-asymptotic, without a limit
involve. A caveat, though, is that the constants (c, C) can depend on the problem parameters. Second, the
result gives a strong convergence in Wasserstein distance, which implies the convergence of empirical average
under any uniformly continuous test function dominated by a quadratic function. Finally, the probablistic
convergence is uniform in λ. This allows for data-dependent choice of λ, which is often used in practice.

The rest of this lecture is devoted to a proof sketch of Theorem 1. The key technical tool is convex
Gaussian minimax theorem introduced from last lecture, which is recalled as follows:

Theorem 2 ([?]). Let Su ⊆ Rm and Sv ⊆ Rn be compact sets, consider a continuous function ψ on Su×Sv.
Define the following functions:

Φ(G) := min
u∈Su

max
v∈Sv

〈u,Gv〉+ ψ(u,v), and (5a)

φ(g,h) := min
u∈Su

max
v∈Sv

‖u‖2〈g,v〉+ ‖v‖2〈h,u〉+ ψ(u,v) (5b)

For Gi,j , gi, hj ∼i.i.d. N (0, 1), the following results hold true:

(a) For any τ ∈ R, we have:

P
(
Φ(G) ≤ τ

)
≤ 2P

(
φ(g,h) ≤ τ

)
. (6a)

(b) Assume in addition that Su and Sv are both convex, and the function ψ is convex-concave on Su×Sv,
for any τ ∈ R, there is:

P
(
Φ(G) ≥ τ

)
≤ 2P

(
φ(g,h) ≥ τ

)
. (6b)

See Lecture 14 for the proof of this theorem.

2 Derivation of the limit and proof sketch

In this section, we derive the limiting empirical distribution (2) using Theorem 2, and provide a sketch of
the proof for Theorem 1. Note that the purpose of this section is just to give an overview of the method of
derivation based on CGMT. Several steps in the derivation are not fully justified in this note. In the next
section, we will discuss how to make the proof rigorous, highlighting the key techniques. The readers are
encouraged to read the paper [?] for a complete proof.

In order to prove the convergence in Wasserstein distance, we take a sufficiently smooth test function
ψ : R2 → R, and define the perturbed objective:

f(γ) := lim
d→+∞

min
x

{
1

2d
‖y −Ax‖22 +

λ

d
‖x‖1 +

γ

d

d∑
i=1

ψ(xi, x0,i)

}
. (7)

Assuming that f(γ) concentrates around its expectation uniformly over γ, and assume the regularity condi-
tions that allow exchanging limit with expectation and derivatives, one would hope to get:

f ′(0) = lim
d→+∞

E

[
1

d

d∑
i=1

ψ(x̂i, x0,i)

]
. (8)
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Taking u = x− x0, we start with the following derivation:

f(γ)× d

= min
u

max
v

〈v,Au〉+ 〈v,w〉 − 1

2
‖v‖22 + λ‖u + x0‖1 + γ

d∑
j=1

ψ(uj + x0,j , x0,j)

 (9a)

≈ min
u

max
v

‖u‖2〈g,v〉/√n+ ‖v‖2〈h,u〉/
√
n+ 〈v,w〉 − 1

2
‖v‖22 + λ‖u + x0‖1 + γ

d∑
j=1

ψ(uj + x0,j , x0,j)


(9b)

= min
u

max
β≥0

β · (‖‖u‖2g +
√
n ·w‖2 + 〈h,u〉

)
− n

2
β2 + λ‖u + x0‖1 + γ

d∑
j=1

ψ(uj + x0,j , x0,j)

 (9c)

≈ min
u

max
β>0

β ·
(
n

√
σ2 +

‖u‖22
n

+ 〈h,u〉

)
− n

2
β2 + λ‖u + x0‖1 + γ

d∑
j=1

ψ(uj + x0,j , x0,j)

 (9d)

In step (9a), we use the variational representation of squared norm

‖x‖22 = max
z
〈z,x〉 − 1

2
‖z‖22.

In step (9b), we apply Theorem 2. Assuming the concentration of the optimal value φ(g,h) of the auxiliary
minimax optimization problem, we can deduce the concentration of the optimal value Φ(G) of the original
problem. However, there are two issues applying this result: first, the theorem requires compact domain,
while minimax optimization problem in Eq (9a) is searching over the entire Euclidean space; second, the

function (u,v) 7→ 〈v,w〉− 1
2‖v‖

2
2 +λ‖u+x0‖1 +γ ·

∑d
j=1 ψ(uj +x0,j , x0,j) is required to be convex-concave.

The first issue can be resolved by taking a large bounded domain with radius ω(
√
d). As d → +∞, the

probability that the optimal solution lies outside the domain diminishes. To resolve the second issue, one
method is to note that the condition is satisfied when the function ψ is always convex with respect to its
first argument when γ > 0, and concave when γ < 0. We can then represent a sufficiently smooth univariate
function by difference of convex and smooth functions, and obtain the result for arbitrary test function ψ.
Another method is via an application of CGMT within a carefully-constructed domain, which is discussed
in the next section.

In step (9c), we take the change-of-variable v = β
√
nv̄ with v̄ ∈ Sd−1, and explicitly optimize the vector

v̄ on the unit sphere. In step (9d), we make use of concentration inequalities for the norm of Gaussian
random vectors, such that ‖g‖2, ‖w‖2/σ ≈

√
n with high probability.

From Eq (9d), we note that the terms involving u are separable along d-dimensions except for the
square-root term. Recall that the goal is to relate lasso risk with that of a one-dimensional optimization
problem. In order to make it coorindate-wise separable, we make use of the variational representation√
x = minτ>0

{
x
2τ + τ

2

}
, and obtain the following equations:

Eq (9d)

= min
u∈Rd

max
β≥0

min
τ>0

β ·
(

1

2τ

(
nσ2 + ‖u‖22

)
+
nτ

2
+ 〈h,u〉

)
− n

2
β2 + λ‖u + x0‖1 + γ

d∑
j=1

ψ(uj + x0,j , x0,j)


(9e)

= max
β≥0

min
τ>0

d∑
j=1

min
uj∈R

{(σ2

τ
+ τ
)βδ

2
− δ

2
β2 +

β

2τ
u2j + βhjuj + λ|uj + x0,j |+ γψ(uj + x0,j , x0,j)

}
. (9f)
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In step (9e), we substitute with the variational representation of square root, and in the step (9f), we use
the strong duality result for convex-concave minimax optimization, which, once again, holds true when ψ is
convex in its first argument for positive γ (and concave for negative γ).

Using standard concentration inequalities and ε-net arguments, we have the uniform convergence result:1

d

d∑
j=1

min
uj

(
β

2τ
u2j + βhjuj + λ|uj + x0,j |+ γψ(uj + x0,j , x0,j)

)
(β,τ)

p→
{
E(X0,G)∼P0×N (0,1)

[
min
u

(
β

2τ
u2 + βG+ λ|u+X0|+ γψ(u+X0, X0)

)]}
(β,τ)

.

We therefore have the relation

Eq (9f) ≈ d×max
β≥0

min
τ>0

{(σ2

τ
+ τ
)βδ

2
− δ

2
β2 + E

[
min
u

(
β

2τ
u2 + βG+ λ|u+X0|+ γψ(u+X0, X0)

)]}
,

(9g)

for the random variables (X0, G) ∼ P0 × N (0, 1). Solving for the optimality condition, we get the self-
consistent equations (3a) and (3b) for (β?, τ?). Using the implicit differentiation theorem, we can then
obtain the expression for the empirical average of ψ.

lim
d→+∞

E

[
1

d

d∑
i=1

ψ(x̂i, x0,i)

]
≈ f ′(0) ≈ E

[
η
(
X0 + τ?G;

τ?λ

β?

)]
. (10)

This concludes the derivation of the asymptotic empirical distribution for the Lasso estimator in Theorem 1

3 How to make it rigorous?

In this section, we discuss the technical components that make the derivation steps in the previous section
rigorous. We will also present an alternative strategy that directly prove the Wasserstein convergence result,
without going through the perturbed free energy trick.

We first discuss the “≈” steps appearing in the long derivation in the prevoius section.

• To apply CGMT and obtain step (9b), besides the compactness and convexity conditions, one would
need the value of the minimax problems to concentrates well around its expectation. Conditionally
on the random variables x0 and w, for bounded u and v, the objective in the minimax problem is a
Lipschitz function of (rescaled) Gaussian random matrix A. We can then invoke the Borel-TIS lemma
to obtain the concentration result.

• In step (9d), we note that for g ∼ N (0, Id) and w ∼ N (0, σ2Id) independent, for given u, we have that

‖u‖2g +
√
n ·w ∼ N

(
0, (nσ2 + ‖u‖22)Id

)
.

The result then follows from the standard result for concentration of χ2 random variables.

• The uniform concentration result holds true for (β, τ) in any compact set. However, the optimization
is over an unbounded domain. In order to obtain Eq (9g), we also need to apply a truncation argu-
ment: showing the uniform concentration in a large compact domain and also show that the minimax
equilibrium is achieved in this domain with high probability.
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• In order to go from concentration of the function value to that of the derivative in Eq (10), we can
apply the same trick as used in Lecture 6. In particular, define the discrete derivatives:

∆+
n (γ, ε) =

f(γ + ε)− f(γ)

ε
, and ∆−n (γ, ε) =

f(γ)− f(γ − ε)
ε

.

Since f is a concave function, we have ∆+
n ≤ f ′ ≤ ∆−n . We can then show the concentration inequalities

for ∆+
n and ∆−n for any finite ε, and then apply monotone convergence theorem.

• The results can be shown for test functions ψ that are convex in its first coordinate. On the other
hand, note that any univariate C2 smooth function is the difference of two convex and smooth ones.
The convergence result can therefore be extended to the class of functions with uniformly bounded
second derivatives. To further extend it to the class of pseudo-Lipschitz functions, one can start with
a function ψ and mollify it with a Gaussian kernel to get a smooth function ψ̃ := ψ ? φε, where φε is
the Gaussian density with variance ε2. Showing the convergence with test function ψ̃ and estimating
the approximation error leads to a W2 convergence result (albeit with worse rate of convergence).

Another approach is to use the original free energy but with a carefully-designed domain to apply CGMT.
In particular, we let:

Φ(u) :=
1

2d
‖Au + w‖22 +

λ

d
‖u + x0‖1, (11a)

Γ(u) := β? ·
(

1

2τ?

(
δσ2 +

‖u‖22
d

)
+
τ?δ

2
+
〈h,u〉
d

)
− δ

2
β2
? +

λ

d
‖u + x0‖1 (11b)

Denote by Φ? the asymptotic risk of the lasso problem. Applying Theorem 2 and following the derivation
until step (9e), we have:

• For any compact set S, we have:

P
(

min
u∈S

Φ(u) ≤ Φ? + ε

)
. P

(
min
u∈S

Γ(u) ≤ Φ? + ε

)
. (12a)

• For compact set T , we have:

P
(
|min
u∈T

Φ(u)− Φ?| ≥ ε
)

. P
(
|min
u∈T

Γ(u)− Φ?| ≥ ε
)
. (12b)

Take T to be a large compact set such that the minimum is contained in T with high probability. Following
concentration property of minu Γ(u), we conclude that minu Φ(u) is concentrating around Φ?.

For any ω > 0, we define the set:

S(ω) := B(0, R
√
d) \

{
u :W2

(
µ̂(x0+u,x0), µ̄λ

)
≤ ω

}
,

where R is a large constant such that the minimum is contained in B(0, R
√
d) with high probability.

Applying the bound (12a) with set S = S(ω), we note that P
(
minu∈S(ω) Γ(u) ≤ Φ? + ε

)
→ 0 implies the

limit P
(
minu∈S(ω) Φ(u) ≤ Φ? + ε

)
→ 0. By standard concentration inequalities and local strong convexity of

Γ, one can show that the set approximate minima of Γ is attained outside the set S(ω), with high probability,
so that we have:

P
(

min
u∈S(ω)

Φ(u) ≤ Φ? + ε

)
→ 0.

This implies the limiting statement P
(
minu∈S(ω) Φ(u) ≤ Φ? + ε

)
→ 0, which means the minimum is con-

tained within set S(ω) with high probability.
Above derivation exemplifies the following general proof strategy: in order to show that arg minu Φ(u) ∈

E where E is a good set (a Wasserstein neighborhood in this case), it suffices to show minu∈Rd\E Φ(u) ≥
minu∈Rd Φ(u) + ε. The probability of latter event can typically lower bounded by the probability of an
analogous event in a simpler problem using CGMT, leading to the desired non-asymptotic result.
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