STAT260 Mean Field Asymptotics in Statistical Learning  Lecture 11 - 03/01/2021

Lecture 11: Zy synchronization and replica symmetry breaking

Lecturer: Song Mei Scriber: Yaodong Yu Proof reader: Zitong Yang

This lecture is a continuation of previous lectures on explaining the Zs synchronization model. To start
with, we will first fix an issue left in the previous lecture in Section 1.

(Note: This is one of the most difficult lecture in this course. The content of this lecture is not a prerequisite
for any lectures afterwards.)

1 Z, synchronization

We first consider the Zs synchronization described as follows:

Signal: 6 € R", 0; ~j;q. Unif({£1}), A>0,

A
Observation: Y = =007 + W € R™", W ~ GOE(n),
n

Estimator: é(Y) = {(o)g\ = Z oPs (o),
o €Ly

Gibbs measure: Pg x(0) x exp{f{o,Y o)} v,(0),

where v, is the prior and is a uniform measure. Also note that when 8 = oo, 8(Y) gives the maximum
likelihood estimator (MLE); When 8 = \/2, 8(Y") gives the Bayes estimator.

An issue. There is an issue left in the last lecture: because of the symmetric of this Gibbs measure, when
we flip all the o, the Gibbs measure stays the same, i.e.,

Pga(o) =Pga(—0) = () =0,

which makes the estimator not informative for any finite (.

A solution. One solution to the above issue could be: Prior v, on the ground truth parameter 8;, where

1+¢
1, w.p ,
_ 2
0, =
1 1—¢
4 w. B}
P

where ¢ is very small positive parameter. Then we define the tilted Gibbs measure as follows:
Pﬂ)\,ﬁ(a) X exp {6<0-v YU>} Ve (0-)7

where ¢ is the tilted prior on 6.

By considering the tilted Gibbs measure, we can define the limiting observables we are interested in,

m.(B8,A) = lim lim E

e—0+ n—oo

1 n
{ > (o, 01’)>/3,)\,6‘| ;
=1

5+(8,A) = lim lim E

e—0+ n—oc0

% > p(ei)saes 91‘)] ;

i=1



where 1) : R? — R is the sufficiently smooth test function. Note that the difference between m. (3, \) and
s«(B,A) is that the ensemble average is take inside the ¢ function for s.(8,A). Also, the s.(8, ) is more
important than m. (8, A) when we study the properties of the estimator. For now, we will first ignore this &
issue. This does not affect much the replica calculation (i.e., keep this € and take it goes to 0).

2 Formalism

In this section, we will show the formalism that we studied in the previous lecture. (All the results are in
the sense of taking Pg x . and send € — 0.)
We first look at the following m. (3, A) quantity,

(A) m.(B,A\) = lim lim E |{

e—0+ n—oo

S|

Z V(0:,0:))s.xe | = Ec.o {EonD(tann@sru.o0+28 a76)) [0(F,0)]},
=1

where G ~ N(0,1), 6 ~ Unif({+1}). Also we have
o € {£1}, Elo]=tanh(28A\u.0 + 26/¢:G).
where ¢., i1« are two parameters and can be described as solutions of the following self-consistent equations:

¢ = Eg ¢ [tanh(28A\n.0 + 28,/4.G)?]
tie = Eg g [ftanh (2610 + 283G,

where p, > 0. Actually,

1 n
- E (o, 0;) = E[Y(a,0)], in probability under E[(-)g].
i=1
Int lation: Ly ) L f(o,0
nterpolation:  — 2_1 (o:,0,) — Law of (7,0),

and the joint distribution is defined as follows,
0 ~ Unif({£1}), G~ N(0,1), & ~ D(tanh(25Au.0 +25,/q:.G)),

and this can be interpreted as: we first sample # ~ Unif({£1}), then we independent Gaussian random
variable G ~ N(0, 1), and we get two random variables (6, G). Then we sample another random variable &
which depends on (6, G). The distribution D can be described in terms of a single variable tanh(28A .60 +
23.,/q:G), i.e., the distribution D is a binary {£} and its mean is tanh(23Au.8 + 26,/¢.G). Note that we
have derived the above results in the previous lecture.

Next, we will study the s.(8,\) in this lecture,

n

(B) 5.(5,0) = lim lim E i;w«am,@ei) — Egp [0(tanh(26M1.0 + 28y/3.G), 0)].

The interpolation of this m.(8,) can be described as follows,

. 1 ¢
Interpolation: - Zl 0((a:)p0,0:) — Law of (m,0),

where

0 ~ Unif({£1}), G ~N(0,1), m = tanh(28Au.0+ 25/¢.G),



where m can be regarded as m = E [¢], and the expectation is under the D distribution.

To calculate the s,(8,\), we will first introduce the cheating principle.

A cheating principle:

When replica symmetric ansatz holds, suppose we have Vi) : R — R, smooth test function,

- Lo -
lim E | (— Z o'm z = EO,GE [E&ND(O,;B) [1/)(57 G)H .

n—oo

3

which implies that V4 : R? — R, smooth test function,

o .
lim E ng«anﬁ,e» = Eo [V(Eonn(o [6].6)] -

2.1 Free energy trick and replica trick for m.(3, \)

In the last lecture, we have shown that how to use the free energy trick and replica trick to derive the
m. (B, A) quantity. In this subsection, we will briefly review the contents of the last lecture.

To start with, we assume Q = Z% and vy = Unif. Then

{2

Hyplo) = —(o,Wao) — \o,0)% — hZM

perturbation
Zu(BMh) = / exp {—BH) 4 (0)} vo(dor),
Q
P(BAN) = T ~E[log Zu(5,A, )]

ma(3.0) = 50BN,

Next, we consider the following three terms (by using the replica trick):
1
(). S(k,B,A\h) = lim —logE (Z,(B, N W], (The n limit.)
(b). (B, A h) = lim lS(k,ﬂ,)\,h), (The k limit.)
k—0 k

(¢). m.(B,A) = %8hap(,6,)\,h)‘h_0. (The h derivative.)

2.1.1 (a). The n — oo limit

To start with, recall that the rate function of the moment can be expressed (using the variational formula)
as follows,

S(kaﬂa/\ah) - ext U(”’aQ)

HERF QERFXF.Q;;=1,Q=0

Suppose 6§ ~ Unif({£1}), o ~ Unif({+1}*), and the U function can be expressed as:

exp {QﬁAZN(an9+252 Z qabU'aU'b‘FﬁhZT/) Tt }] )

ab=1

Up, Q) = —B/\Zua -B Z a2y +logEg o

ab=1

where the log expectation term corresponds to the entropy term.



2.1.2 (b). The k — 0 limit

(B, h) = lim - Uln, Q)} |

ex
k—0 k MERk7Q€Rka7Qii=17Qt0

Next we study how to simplify the above expression.

Trick 0: Replica symmetric ansatz. (consider the stationary point.)

Ko = My 1<a<k,
qabZQa 1Sa#b§k7

After we plug in the above expression into U, we can get a simplified expression as follows,

Ulp, Q) = — BAkp® — B2 (k + k(k — 1)¢*) +28°(1 — q)

k k 2 k
+10gEq g [exp{ BALY | oal + 28 (Z%) +BhY (04, 0) ¢ |,
a=1

a=1 a=1

where we can find that U depends on k more explicitly.

Trick 1: To handle the entropy term, we assume G ~ N(0, 1),

o3 o2 ()

a=1

= —BAkp® — B2 (k+ k(k — 1)¢®) + 28*(1 — )k

k k k
+logEg 0.0 [exp {2&“ D 0l +28\4GD o+ BhY ¥(0a,0) H
a=1 a=1 a=1

= —f\kp? — 2 (k: + k(k — 1)q2) +28%(1 — q)k +logEq e [(Ea exp {28 \uob + 28,/qGo + Bhy (o, 6’)})]C .

By introducing the G variable, we can factorize the exponential term in the entropy term into single expo-
nential to the power of k.

Trick 2: The reverse replica trick: limy_,o ¢ logE, [Z(2)*] = E, [log Z(z)].

lim U (1, 0)
= — B\ —B%(1 — ¢*) +28%(1 — q) +Eg ¢ {log [Eo exp {2800 + 28,/qGo + Bhip(a,0)}]}
B2(1—q)?
=u(p, q; 8, A, h),

where (G, 8,) ~ N(0,1) x Unif({£1}) x Unif({£1}).
©(B, A\ h) = ext u(p, q; B, A\, h),

where

u(p, ¢; B, h) = —BA? + B2(1 — q)° + Eg o {log [Eq exp {2606 + 28\/4Go + (o, 0)}]} -



2.1.3 (c). The h derivative

Pl AN = Sonulig: 500

(9=qx,u=f1x,h=0)

Eo [exp {26Au*09 + 26\/(1*6'0'} Y(o, 9)]
Eo [exp {2800 + 261/q.Go }]

=Ec,0 [Es~p [V(a,0)]],

=Eqgy

where & satisfies
E[e] = tanh(26 .0 + 281/¢:.G),
and

(f45 @) = argext u(p, q; B, A, h)‘
H.q h=

Therefore, we have

e =B [0 tanh (28700 +261/0.G)|
¢ =Eay [tanh (26)\u*0 + 25\/qTG) 1 .

2.2 Free energy trick and replica trick for s.(5,\)
In this lecture, we will study the following s. (8, \) quantity:

iZw«amwﬁ] .

=1

Our goal: s.(f,\) = lim E

n— oo

We can find that the s, (8, ) quantity is a bit hard to calculate since it is hard to express £ Y7 ¥((0;) 5.1, 8i)

n
in terms of ensemble average of some Gibbs distributions. To start with, we first look at the observation.

Observation: Let (o!,02,--- ,0N) ~ IF’?J;\C where N is the number of replicas. Then if we fix i,

N

1

i Zo‘? N (oi)grs (Law of large number).
a=1

Then we look at the following quantity,
LS (500 5 LS wloan !
P (Nazlai, > W 7 20 (00, M)
Next we can define the ensemble average of a function of these explicit replicas, i.e.,
N
ot o aan = [ p(@ e ™) [[ Poalda).
a=1

Then our are going to calculate the following term

s+(8,\) = lim E l; > W (<ai>ﬁ,%9i)l
=1

1 n
{ > (m,&))g,x]
=1

? lim lim E[---],

= N—o00on—o0

= lim lim E
n—o00 N—o00




where the second equality is because of Eq. (1), and the question is whether we could exchange the limits.
We could use the free energy trick to calculate the inner limit (limiting observable in the finite replica case),
and then send the replica to infinity. Next we first introduce the free energy trick.

Free energy trick:

_ O®N _ ,,®ON _ 1 2 N
Q_Q ) @ VO ) g—(a',a',---7 g )
“E-replica”

Then we define the following terms,

n N
Hy (o ZH,\ hz¢<;/.20?,9i>,
i=1 a=1

. 1
PO = lim = log [ exp{~BHann(@)) vo,
Q

n—oo N

n

N
<Z d)(% Zo‘?, 9i)>ﬁ,>\,N‘| /n} .

i=1

ahgo(/87)‘307N): ll)m {]E

We expect (which is our plan):

i=1

Z¢(<Uz‘>5,m@i)] /n = Jim Onp(B, A, 0, N).
In fact, we will show that:
n N
i [ Z (% Zf” »91')>w1
:8}1()0(57)‘,07 )

N
1 ~a
=Eg {Ecra,\,i.i.d.D(tarlh(QﬂAu*9+2B\/qTG)) [Q’ZJ(N ZU ,9)] } )
a=1

therefore,

J\}i_r)noo Ohp(B,X,0,N) =Eg g [¢(tanh(28A\n.0 + 28/9:G), 0)] .

Next we present the Replica tricks:

k
(a). S(k,B,\,h,N)= lim ilogE(/ exp{—BH,\yh,N(a)}Vod(a)) , (The n limit.)
n—oo Q -

®). ©(B.\h,N) = %ir%%S(k,ﬁ,)\7h,N), (The k limit.)
—
(¢). s«(B,A) = Nlim One(B,\,hy,N). (The h derivatives.)
—o0

2.2.1 (a). The n limit

First of all, we have



then we compute E[Z¥] (by ezpanding the integrals):
k N n N N ok
E[Zﬁ] =E [/ exp {—BZ (Z HB))\(O'ab) + ﬁhqu(Z O'?b, 91>> } H H Vo(ddab)]
QeNk b=1 \a=1 i=1  a=1 a=1b=1
There are two types of replicas: explicit replicas (“E-replicas”) and auxiliary replicas (“A-replicas”):

11 1IN

o ces o Group 1
replicas introduced
in the o2l oN Group 2
replica trick
auxiliary
"A-replicas"
v oM e N Group k

replicas introduced in the free energy trick

"E-replicas"

We can find that there are some symmetries and some breaking symmetries in the above expression Eq. (2):
1. If h = 0: all the replicas are symmetric.
2. If h # 0: symmetric is broken.
Also, note that
e Invariant if exchange replicas in the same group. v
e Invariant if exchange groups. v
e Non-invariant if exchange replicas in different groups. X

Next we present the calculation of S(k, 3, A, h, N). To start with, we have

S(k, B\, h,N) = t U, Q),
(k.8 )= e g gl @)

where U(p, Q) is defined as

N k N k
U, Q) == BAY_ > u2y =8> > Y. @pan (3)

b=1a=1 bb'=1a,a’=1
kE N N k k XN
b b _a't! b
+logEs ¢ |exp 26)\;;“@0’“ 0 + 232 bb,zl Zlqab’a/b,o’“ o’ + ﬁh;d)(ﬁ ;a‘? ,0)
—1a= b=1a.,a = — =



where 0 ~ Unif({£1}), o = (U“b)1gagN,1gkgK ~iid. Unif({£1}), and

d11,11
Q pr—

ANk, 11

d11,Nk

)

ANk, Nk

The consequence will happen in the small & limit.

2.2.2 (b). The k — 0 limit

B = [Hn

HNk] .

Replica symmetric ansatz (k = 3, N = 2), Q is in block structure, i.e., where ¢; may not equal to g, also
note that we can only change the index of @ which are invariant, and @ is deinfed as follows:

I @ i@ @ ! %
@ 1 v @ @ ! %0 @
90 /) 1 Q1 9 9
® Q! a 1 g q
9 q 9 g 1 ¢
9 o 9o 9 T 1
l_ T I L ] ‘ L ]

Group 1 Group 2 Group 3

We define @ as g = (p, o, -+, ).

- Group 1

I Group 2

. Group 3

Claim: There must be a stationary point of U in Eq. (3) that satisfies the above form.

You could check the above claim by looking at the symmetry of U(u, Q).

Then we plug in the @ and p into the function U(u, Q), and compute

Uk, gy, g0, 1, N) = —BANkp® — 8% [Nk(1 — q,)* + N?k(q, — qo)* + N?k*q3 — 2(1 — q,)Nk] + T,

where the quadratic parts are similar, and the entropy term is

T =logEsp

ab

also by introducing the Gaussian variable G,

k

exp {26)\'“20_@(;9 + 232(‘11 —qp) Z

b=1

ez

a=1

exp

2

2.

b

a

N N
O o™ +28%,(> > o)

2(

k
b=1a=1

2
a,ab)

k
1
P8Ry Y(—
2y

N

Z a_ab7 9)

a=1

!



Then the calculation tricks are similar as before, we can calculate T as follows

E N N
T =1ogEs.Go0 [exp{2ﬂ)\u20“b6‘+252 Z Zo’“b 2+25\/%G()220ab+5hz 1 Za“b 0) }]
ab b=1 a=1 b=1a=1 b=1 a:l
I N L
= logEq (E,, exp {mm > 0% +28%(q; — q0)(Y_ o) + 28/4,Go Z o + By (5 > ot })
a=1 a=1 a=1

r k
N N N
1
= logEq.c, (Ea,gl exp {wm > o 0+28\/q —quG1 Yo" +28\/qGo Yo" + B+ > o, 9)}) ;
a a=1 a=1 a=1

where we eliminate b in the second equality, and we introduce another Gaussian variable in the last step.
Now we have a simplified expression and the free entropy density can be calculated as

@(B, A, h, N)

1
=i “U(k,qq,qo, 1, N
k%qiﬁf’,“k (k,q1,94, 1, N)

=—BAN — B2 [N(1—q,)* + N*(q, — qo)* — 2(1 — q;) ]

N N N
1
logEs ¢, |f3xp {25/\11, E o0+ 28\/q; — qG1 E o’ +26./q,Go E o —i—ﬁhw(ﬁ E 0’“,9)}H ;
a a=1 a=1 a=1

+ Eo.qq

where we have an additional term 25,/q,Go Z _, 0% compared with previous calculations.

2.2.3 (c). The h derivatives

By applying the implicit differentiation theorem, we can calculate 9, (3, A, h, N) as follows

ah@(,B,)\,h,N) (4)
= ahu(qla qp, K3 67 >\7 07 N)

Eq.cy [exp {267, 32, 00 + 28(va0 = 40.G1 + 35:Go) Yoy o (% S0, 07,0)]
Eoc, [exp {2601 3, 090+ 26(/@1. = 40.G1 + @0 Go) 0y o }]

= Ey,q,

where

My 145 dox = argeXt u(qlaqOHU'; 67 Aa Oa N)
H,491,90

“Obviously” , there exists a stationary point such that (when h is 0)
Q1*a qO* - Q*v and (u‘*vq*) = argext u(qvl'l’vﬁv)‘ao) .
, —_—————
o the N =1 formula

This is the correct stationary point for some region (3, \). (Remark: the replica symmetric phase.)
Then we can futher simplify the expression in Eq. (4) as follows,

N
1
One(B, A\ h,N) =Eqy {E&awiid_D(tanh(26Ay,K9+2ﬁ\/in)) [WN Z o, 9)] } .

Therefore, we can calculate s.(3, \):

s«(B, ) = A}gnoo Ohp(B, 2, 0,N) =Eg ¢ [¢(tanh(28Au.0 + 26/¢:G), 0)] .



2.3 1-RSB prediction of Z, sync free entropy density

Next, we will have a bried introduction of replica symmetric breaking ansatz. For most models we encounter
in this course, we will not use the replica symmetric breaking ansatz. The complication mainly comes from
the formula.

To start with, we consider the Zy synchronization, we assume Q = Z% and v¢ = Unif (without considering
the perturbation). Then

Hyp(o)=—(c,Wo) — )\<0',€>2/n,
Zu(BAH) = / exp {—BH 1 (o)} wo(dor),
Q
.1
We consider the following two terms
(a). S(k,B,\ h) = lim ! logE [Z,(B, M\ h)¥],  (The n limit.)
n—oo M

(B). (B A h) = lim ~S(k, B\ h), (The k limit.)
k—0 k

2.3.1 (a). The n — oo limit

The calculation of the n — oo limit is similar as before,

S(k,B, A h) = ext U(p, Q),

HERF QERFXF.Q;;=1,Q=0

where 0 ~ Unif({£1}), o ~ Unif({£1}*), and

k k k k
U, Q) = —BAY pe— 5> auy +1logEo» lexp {wz%aae +28% ) qubaaabH :

a=1 ab=1 a=1 ab=1

2.3.2  (b). The k — 0 limit

For the £ — 0 limit case, the calculation changes compared with previous ones,

o1
p(B, A h) = lim “,in‘f,gtoU(“’Q)'

Replica symmetric ansatz does not always hold. Here we assume 1-step replica symmetric breaking ansatz.
Then we compute

note that there is no perturbation that breaks the symmetry. Then T' can be calculated as (by pluging in

10



1 @ i@ @i d @
Size ky . , - Group 1

Q _ - Group 2
- ® Q@ q 1 ! a@

o @ i@ @ ia 1

Groupl  Group2  Groupky

the Q and p):
1 0 k1 ko k1 ko
T =10gEq |exp {26>\u220“b9+2ﬁ2q0 > o) +25%g O>Z<Zaab)2H
b=1a=1 b=1a=1 b=1 a=1
ki ko ki ko k1 ko
=logEo 0.0, [exp{Qﬁ)\uZZo’abGJrZﬂ\ﬁGo D> o)+ 287 20) Y (> 0" H
b=1a=1 b=1a=1 b=1 a=1

= 10gEg7GO

o

ko ko ko k
exp {%Au D 0“0 +28@Go Yo" +25%(q1 — 9)Gi (D U“)Q}D
a=1 a=1 a=1

(E
I ko ko ko ky
=logEg q, (EmGl [exp {26>\u > 00 +28\/qeGo Y 0" +28/q, — qeG1 Y aabH )
a=1 a=1 a=1

= IOgE&GO

o [Eo (exp (267100 + 28,/a,Goor + 28\/a, — 4uGro'}) ])k}

= 10gEg7GO

(o
(

Then we take k — 0:

k/ko
Ec, {cosh 2608 +26\/G3Go + 261/a1 — 4oC1)" ]) } :

1
lim EU(IJ’>QO7q17k07k) = u(p, 9o, 41, ko, B, A)
= =B’ — B [~koq) + (ko — 1) — 1 —2(1 — q,)]
1 ko
+ 1B, [log Ec, [cosh (28M\b + 28/G3Go + 28\/a — GoG1) H ,

therefore,
e(B,A) = ext  u(p,qq,91,k0; 8, ). (range of ko € [0,1].)

I-"qu:qu?O

11



Remark: To derive the results for the MLE estimator, we need to use a more complicated ansatz, i.e.,
2-RSB ansatz:

s SO s @

@ e S

The ground state of SK model when A = 0 is co-RSB.

12
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